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16. Lineare Abbildungen

In den letzten Kapiteln haben wir ausfiihrlich Vektorrdaume untersucht — also die grundlegende Struk-
tur, mit der sich die lineare Algebra befasst — und dabei auch gesehen, wie man konkret mit ihnen
rechnen kann. Um nun verschiedene Vektorrdume miteinander in Verbindung setzen zu konnen,
miissen wir als Nichstes Abbildungen zwischen Vektorriumen untersuchen, die mit den gegebenen
Vektorraumstrukturen vertriglich sind. Dies wollen wir in diesem Kapitel tun.

In der Tat ist dies eine sehr allgemeine Vorgehensweise der Mathematik: Immer wenn man eine neue
mathematische Struktur (wie z. B. Gruppen, Korper, oder jetzt hier die Vektorrdume) einfiihrt, wird
man als Erstes zwei Dinge untersuchen:

e die sogenannten Unterstrukturen, d. h. Teilmengen, die selbst wieder die betrachtete Struktur
haben (in der linearen Algebra also die Untervektorrdume aus Abschnitt 13.B), und

e die sogenannten Morphismen, d. h. Abbildungen, die diese Struktur erhalten.

Wir haben dies in Abschnitt 3.A nur deswegen fiir Gruppen und Korper nicht getan, weil wir in
dieser Vorlesung nur Vektorrdume, aber nicht Gruppen und Korper ausfiihrlich studieren wollen.
Diejenigen von euch, die auch die Parallelvorlesung ,,Algebraische Strukturen* héren, haben dort
aber z. B. auch schon Untergruppen und Morphismen von Gruppen kennengelernt — und werden im
Vergleich zur linearen Algebra sicher feststellen, dass sich Untervektorraume und Morphismen von
Vektorrdumen in vielerlei Hinsicht sehr dhnlich verhalten.

16.A Morphismen von Vektorriumen

In der linearen Algebra besteht die ,,Struktur® eines Vektorraums gemif} Definition 13.1 in der Exis-
tenz einer Vektoraddition und einer Skalarmultiplikation mit gewissen Eigenschaften. Die mit dieser
Struktur vertrdglichen Abbildungen sind also genau die im Sinne der folgenden Definition linearen
Abbildungen.

Definition 16.1 (Lineare Abbildungen bzw. Morphismen). Es seien V und W zwei Vektorrdume
tiber demselben Grundkorper K. Man nennt eine Abbildung f: V — W eine lineare Abbildung
oder Morphismus (oder (Vektorraum-)Homomorphismus), wenn fiir alle x,y € V und A € K gilt,
dass

Fx+y)=F(x)+f(y) (.f ist vertrdglich mit der Vektoraddition*)
und F(Ax)=Af(x) (.f ist vertriglich mit der Skalarmultiplikation®).

Die Menge aller solchen Morphismen mit Startraum V und Zielraum W wird mit Homg (V, W) be-

zeichnet (oder auch nur mit Hom(V, W), wenn der Grundkorper aus dem Zusammenhang klar ist).
X1 X1

Ist V = K" fiir ein n € N, so schreiben wir statt f : der Einfachheit halber oft nur f
Xn Xn

Bemerkung 16.2. Setzt man A = 0 in Definition 16.1 ein, so erhilt man sofort, dass f(0) = O fiir

jeden Morphismus f: V — W gelten muss. Fiir ein festes b € V\ {0} ist also z. B. die Verschiebeab-
bildung f: V — V, x+— x+ b wegen f(0) = b # 0 nie ein Morphismus.

Beachte, dass es hier also (leider) unterschiedliche Notationen in der Analysis und der linearen
Algebra gibt: Eine Funktion der Form f: R — R, x — ax+ b mit a,b € R\{0} wiirde man in der
Analysis im Sinne von Definition 3.24 als linear bezeichnen, sie ist in der linearen Algebra gemal
Definition 16.1 aber wegen f(0) # O keine lineare Abbildung!
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(a) Fiir beliebige K-Vektorraume V und W ist die Nullabbildung f: V — W, x +— 0 natiirlich
immer ein Morphismus, ebenso fiir gleichen Start- und Zielraum die identische Abbildung
dy: V=V x—ax.

(b)

Fiir eine Matrix A € K"™*" bezeichnen wir mit f4 die Abbildung

fa: K" — K™, x— Ax.

Sie ist ein Morphismus, denn fiir alle x,y € K" und A € K gilt

Jalx+y) =A(x+y) =Ax+Ay = fa(x) + fa(y)

und  f4(Ax)=A

(Ax) = A(Ax) = A f4 (x).

Dies ist sicher das mit Abstand wichtigste Beispiel fiir eine lineare Abbildung — in der Tat
werden wir in Abschnitt 16.C noch sehen, dass sogar jede lineare Abbildung von K" nach
K™ so geschrieben werden kann.

Konkret erhalten wir z. B. fiir die Matrix

0
a=(;

—1
0

) € R??  die lineare Abbildung f4: R? — R?, (il> - (
2

—X7
X1

).

Geometrisch beschreibt sie wie im Bild unten links eine Vierteldrehung um den Ursprung.
An den anderen beiden Bildern kann man die Morphismuseigenschaft auch gut anschaulich
ablesen: Im mittleren Bild ist z.B. das gepunktete Parallelogramm aus der Drehung des
gestrichelten entstanden, und der duBerste Punkt ergibt sich damit sowohl durch Addition der
Punkte f(x) und f(y) als auch durch Drehung von x+y, d.h. es ist f(x) + f(y) = f(x+ ).
Entsprechendes gilt fiir die Skalarmultiplikation im rechten Bild.

Jx+yp=fx)+ () 1
[0 447
S :
1 x SO) e of(x) -t
-7 L. Y ,’ X -7
”,/’ :x2 /_/ ey . ///.

X1

Anschaulich ist damit auch schon erkennbar, dass Drehungen um andere Winkel um den
Ursprung ebenfalls Morphismen sein sollten. Wir werden solche allgemeinen Drehungen
spéter in Beispiel 19.13 und Abschnitt 22.A noch untersuchen.

©

Die Abbildung

FRESR, <2> 13 +x,

ist nicht linear, denn es ist z. B.

(&) o(B)-rmso=s )

(d) Fiir alle m,n € N ist die Transposition von Matrizen

f: Kmxn _>Kn><m) AI—)AT

0

eine lineare Abbildung, denn fiir alle A = (a; ;)i j,B = (bij)i,j € K™" und A € K gilt

FA+B)=(A+B)" = (aji+bji)ij=(aj)ij+ bj)ij=A" +B" = f(A)+ f(B)
und f(lA) = (laj,,'),”- = ;L(aj7i),'7j = 7LAT = lf(A)
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(e) Zum Vektorraum Pol(IR,R) aller reellen Polynome aus Beispiel 13.12 (c) betrachten wir die
Abbildung f: Pol(R,R) — Pol(R,R), ¢ + ¢, die jedem Polynom ¢: x — ¥7_ a;x* seine
Ableitung

Qx> Z kap! (*)
k=1

zuordnet.

Wenn ihr die Ableitung bereits aus der Analysis kennt, wisst ihr aus Beispiel 10.9 (c) schon,
dass die Ableitung eines Polynoms durch (x) gegeben ist, und dass f eine lineare Abbildung
ist, da nach Satz 10.8 (a) und Beispiel 10.9 (b) fiir alle differenzierbaren Funktionen ¢ und
v sowie A € R sowohl (¢ + y)' = ¢’ + v’ als auch (A@)’ = A1 ¢’ gilt.

Wenn ihr die Ableitung aus der Analysis noch nicht kennt, konnt ihr () fiir die Zwecke
der linearen Algebra einfach als Definition der Ableitung eines Polynoms ansehen. Man
rechnet dann schnell nach, dass f wirklich eine lineare Abbildung ist: Fiir zwei Polynome
@(x) = X1y apx* und y(x) = Yi_,brx* (wobei n der groBere der beiden Grade ist, so dass
sowohl ¢ als auch y so geschrieben werden kénnen) sowie A € R ist

(p+y) (x Zk ay + by)x Zkakxk l—l-Zkbkxk =o' (x)+ ¥/ (x)
k=1
und Z (Aap)x* "1 =2 Z kapxd ' = 1o’ (x).
k=1 k=1

Aufgabe 16.4. Untersuche, ob die folgenden Abbildungen f zwischen R-Vektorrdumen linear sind:

2
@ f:R*? =R, <i1 ) — <ax2 * bx2> in Abhingigkeit von fest gegebenen a,b,c € R.
2

cX1X2
(b) f: V=V, ¢ f(@)mit f(@)(x) = x> @(x) fiir alle x € R.
Aufgabe 16.5. Wir betrachten die Vektoren

1 1 3 4 3
xi=(2],0=13],x3=|1 eR? sowie y1:<3>,)’2:(1) e R
3 4 5

Man zeige:
(a) Es gibt einen Morphismus f: R? — R3 mit f(x;) = ¢, fiir alle i € {1,2,3}.
(b) Es gibt einen Morphismus g: R? — R? mit g(x;) = y; fiir alle i € {1,2,3}.
(Die Morphismen miissen nicht explizit angegeben werden.)
Wir wollen nun einige elementare Eigenschaften von Morphismen zeigen und beginnen damit, dass

Bilder und Urbilder (im Sinne von Definition 2.11) von Unterrdumen unter Morphismen immer
wieder Unterrdume sind.

Lemma 16.6 (Bilder und Urbilder von Unterrdumen). Es sei f: V — W eine lineare Abbildung.
Dann gilt:
(a) Fiir jeden Unterraum U von'V ist f(U) ein Unterraum von W.

(b) Fiir jeden Unterraum U von W ist f~'(U) ein Unterraum von V.
Beweis. Die Aussagen ergeben sich durch einfaches Nachpriifen der Definition 13.8:

(a) Wegen 0 € U ist nach Bemerkung 16.2 zunichst auch 0 = f(0) € f(U). Wir zeigen nun
die Abgeschlossenheit von f(U) beziiglich der Vektoraddition. Es seien dazu x,y € f(U),
d.h. x = f(u) und y = f(v) fiir gewisse u,v € U. Dann ist auch u+ v € U, und damit folgt
xty=f)+fv)=flutv) e fU).

Genauso zeigt man die Abgeschlossenheit unter der Skalarmultiplikation.
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(b) Wegen f(0) = 0 € U ist zunichst einmal 0 € f~!(U). Wir zeigen jetzt die Abgeschlos-
senheit von f~!(U) unter der Vektoraddition. Dazu seien x,y € f~!(U), d.h. x,y € V mit
f(x),f(y) €U.Dannistauch f(x+y) = f(x)+ f(y) €U, alsox+y € f~1(U).

Analog ergibt sich die Abgeschlossenheit unter der Skalarmultiplikation. d

Die wichtigsten Spezialfille dieses Lemmas sind die folgenden, die wir in Definition 15.10 und
Lemma 15.11 schon im Zusammenhang mit Matrizen kennengelernt hatten:

Definition 16.7 (Bild, Rang und Kern eines Morphismus). Es sei f: V — W eine lineare Abbildung
von K-Vektorrdumen.

(a) Die Menge Im f := f(V) = {f(x) : x € V} heiBt das Bild von f; nach Lemma 16.6 (a) ist sie
ein Unterraum von W. Die Dimension dieses Unterraums heifit der Rang von f, geschrieben
tk f:=dimIm f € NU {eo}.

(b) Die Menge Ker f := f~!1({0}) = {x € V : f(x) = 0} heiBt der Kern von f; nach Lemma
16.6 (b) ist sie ein Unterraum von V.

Bemerkung 16.8. Fiir eine Matrix A € K"*" mit m,n € N hatten wir in Beispiel 16.3 (b) die li-
neare Abbildung f4: K" — K™, x — Ax konstruiert. Vergleichen wir nun Definition 16.7 mit den
Definitionen 15.10 und 15.11, so sehen wir also unmittelbar, dass

Imfy =ImA, rkfy =rkA und Kerfy =KerA

gilt. Insbesondere konnen wir damit Bild, Rang und Kern solcher linearen Abbildungen mit den
Methoden aus Abschnitt 15.C auch explizit berechnen.

Offensichtlich ist eine lineare Abbildung f: V' — W nach Definition genau dann surjektiv, wenn
Im f = W gilt. Wir wollen jetzt ein analoges Kriterium auch fiir die Injektivitit zeigen.

Lemma 16.9. Eine lineare Abbildung f:V — W ist genau dann injektiv, wenn Ker f = {0} gilt.

Beweis.

»=“ Ist f injektiv, so hat der Nullvektor hichstens ein Urbild unter f. Wegen f(0) = 0 ist das
Urbild des Nullvektors also genau der Nullvektor, d. h. es ist Ker f = {0}.

»<=*“: Es sei Ker f = {0}. Weiterhin seien x,y € V mit f(x) = f(y). Wegen der Linearitit von f
gilt dann f(x—y) = f(x) — f(y) =0, mit Ker f = {0} also x —y = 0. Damit folgt x =y, d. h.
f ist injektiv. 0

Lemma 16.10 (Umkehrabbildungen und Verkettungen). Es sei f: V — W ein Morphismus von
K-Vektorrdumen. Dann gilt:

(a) Ist f bijektiv, so ist auch die Umkehrabbildung f~" ein Morphismus.

(b) Ist g: W — Z ein weiterer Morphismus von K-Vektorrdumen, so ist auch go f: V — Z ein
Morphismus.

Beweis.
(a) Es seien x,y € W; wir setzen u = f~'(x) und v = f~!(y), also x = f(u) und y = f(v). Dann
gilt
STy = S+ )
= fu+v)) (f ist ein Morphismus)
=u+tv (f~! ist die Umkehrabbildung von f)
— ).

Analog zeigt man die Vertraglichkeit mit der Skalarmultiplikation.
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(b) Fir alle x,y € V gilt
g(f(x+y)) =g(f(x)+f(¥) (f ist ein Morphismus)

=g(f(x))+&(f(y)) (g istein Morphismus).
Genauso ergibt sich die Vertrdglichkeit mit der Skalarmultiplikation. 0

Aufgabe 16.11. Man zeige: Sind f,g: V — W zwei lineare Abbildungen, so gilt
(@) Im(f+g) <Imf+Img;
(b) KerfNKerg < Ker(f+g).

Weiterhin gebe man in beiden Fillen ein Beispiel an, das zeigt, dass man im Allgemeinen nicht ,,<*
durch ,,=* ersetzen kann.

Aufgabe 16.12. Fiir ein gegebenes n € N betrachten wir die Abbildung
(1)
fi:Pol,_1(R,R) - R", ¢ — :
¢(n)
(a) Zeige, dass f linear ist.

(b) Bestimme Kern und Bild von f, und gib dabei von jedem Element von Im f explizit ein
Urbild an.

Aufgabe 16.13. Es sei f: V — W eine lineare Abbildung zwischen K-Vektorraumen. Ferner sei U
ein Unterraum von V mit U NKer f = {0} und U + Ker f = V.

Zeige, dass die Abbildung f|y: U — Im f bijektiv ist.

Aufgabe 16.14. Beweise fiir jede lineare Abbildung f: V — V mit gleichem Start- und Zielraum,
dass

fof=f < Ker(idy —f) =Imf.

Wie wir nun zum Abschluss dieses Abschnitts noch sehen wollen, haben bijektive Morphismen wie
in Lemma 16.10 (a) in der Praxis eine besondere Bedeutung. Sie haben daher auch einen besonderen
Namen:

Definition 16.15 (Isomorphismen). Es seien V und W zwei K-Vektorrdume.

(a) Einen bijektiven Morphismus f: V — W (der nach Lemma 16.10 (a) also einen Umkehr-
morphismus f~!: W — V besitzt) bezeichnet man als (Vektorraum-)Isomorphismus.

(b) V und W heillen isomorph (in Zeichen: V = W), wenn es einen Isomorphismus f: V — W
zwischen ihnen gibt.

Beispiel 16.16. Anschaulich bedeutet ein Isomorphismus f zwischen zwei Vektorrdumen V und
W, dass diese beiden Rdume ,,als Vektorrdume ununterscheidbar® sind: Die Objekte in V und W
sind zwar unterschiedlich benannt, aber in allen Rechnungen kénnen wir jederzeit mit der bijektiven
Abbildung f bzw. der inversen Abbildung f~! zwischen den beiden Darstellungen in V und W hin-
und herwechseln, ohne das Endergebnis zu dndern. Die folgenden beiden Beispiele verdeutlichen
dies; viele weitere werden wir im nichsten Abschnitt noch kennenlernen.

(a) Der Unterraum

X1 X1
V=X x| eR x,necR}<R® istmit f:V—->R? [x H(“)
0 0 2

isomorph zu R?. In der Tat ist in diesem Beispiel offensichtlich, dass f linear und bijektiv
ist. Auch anschaulich ist in diesem Fall klar, dass V und R2 _,im Prinzip ununterscheidbar*
sind, denn beide Ridume sind einfach die reelle Ebene — die im Fall von V lediglich als
Koordinatenebene in den R? eingebettet ist.
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(b) Fiir alle m,n € N ist der Raum K™*" aller m x n-Matrizen iiber K isomorph zu K™": Ein
Isomorphismus f: K™*" — K™" ist einfach dadurch gegeben, dass man die Eintrdge einer
Matrix von links oben nach rechts unten nun untereinander in einen Vektor in K" schreibt.
Auch hier ist klar, dass f linear und bijektiv ist, also dass die Anordnung der Zahlen — einmal
als rechteckiges Schema und einmal untereinander geschrieben — nichts an der Vektorraum-
struktur dndert, da Addition und Skalarmultiplikation in beiden Fillen einfach komponen-
tenweise ausgefiihrt werden. (Dass es in K”*" eine Matrixmultiplikation gibt, in K™ jedoch
nicht, spielt hierbei keine Rolle, da dies nicht Teil der Vektorraumaxiome ist.)

Wie erwartet haben isomorphe Vektorrdume als ,,ununterscheidbare Vektorrdaume* auch immer die
gleiche Dimension. Dies wollen wir zum Abschluss dieses Abschnitts noch formal beweisen.

Lemma 16.17. Es sei f: V — W ein Morphismus zwischen endlich-dimensionalen K-Vektorrdiu-
men.

(a) Ist f surjektiv, so bildet f jedes Erzeugendensystem von V auf ein Erzeugendensystem von
W ab. Insbesondere gilt dann also dimV > dimW.

(b) Ist f injektiv, so bildet f jede linear unabhdngige Familie in V auf eine linear unabhdingige
Familie in W ab. Insbesondere gilt dann also dimV < dimW.

(c) Ist f ein Isomorphismus, so bildet f jede Basis von'V auf eine Basis von W ab. Insbesondere
gilt dann also dimV = dimW.

Beweis. Es sei B = (xi,...,x,) eine Familie von Vektoren in V. Wir betrachten die abgebildete
Familie f(B) := (f(x1),...,f(x,)) von Vektoren in W.

(a) Es seien B ein Erzeugendensystem von V und y € W beliebig. Da f surjektiv ist, gibt es
zunéchst ein x € V mit f(x) = y. Weil B ein Erzeugendensystem von V ist, kénnen wir dann
x = Ax1 + -+ Aux, fiir gewisse Ay, ..., A, € K schreiben. Damit ist aber auch

y=f(x)=f(hxi 4+ +Auxy) =M f(x1) + -+ Auf(xa) € Linf(B).
Also ist f(B) ein Erzeugendensystem von W.

Wenden wir dies auf eine Basis B von V an, so erhalten wir aus Folgerung 14.21 (a) sofort
dimV =n>dimW.

(b) Es seien B linear unabhiingig und A, ..., 4, € K mit A; f(x;) + -+ A, f (x,) = 0, also (weil
f linear ist) mit
f(llxl + e+ QL,,x,,) =0.

Nach Voraussetzung ist f injektiv, d. h. es ist Ker f = {0} aufgrund von Lemma 16.9. Also
folgt bereits A;x1 + - - - + A,x, = 0, und damit auch A; = --- = 4, = 0, da B linear unabhéngig
ist. Die Familie f(B) ist somit linear unabhingig.

Wenden wir dies wieder auf eine Basis B von V an, so erhalten wir aus Folgerung 14.21 (b)
diesmal dimV =n < dimW.

(c) Dies ist einfach (a) kombiniert mit (b). [l

16.B Die Klassifikation endlich-dimensionaler Vektorriume

Immer wenn man eine mathematische Struktur eingefiihrt und dazu ein paar Beispiele untersucht hat,
fragt man sich in der Regel, ob man vielleicht sogar eine vollstindige Liste aller Beispiele angeben
kann — in der linearen Algebra also, ob wir eine vollstindige Liste aller (endlich-dimensionalen)
Vektorrdume hinschreiben kdnnen. Dabei soll ,,vollstindig* immer ,,vollstindig bis auf Isomorphie*
bedeuten, da wir ja gerade in Beispiel 16.16 gesehen haben, dass isomorphe Vektorrdume von ihrer
Struktur her ohnehin ununterscheidbar sind, so dass es uns natiirlich reichen sollte, wenn dann einer
von ihnen in unserer Liste steht.

35
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Bei vielen mathematischen Strukturen ist eine derartige Klassifikation schlichtweg aussichtslos, weil
es viel zu viele Beispiele gibt, die auch keinem ersichtlichen Schema folgen. Dies ist z. B. bei Grup-
pen (siehe Definition 3.1) der Fall — niemand kann eine vollstidndige Liste aller Gruppen (bis auf
Isomorphie) angeben. Falls ihr die Parallelvorlesung ,,Algebraische Strukturen* hort, in der Grup-
pen ausfiihrlich untersucht werden, werdet ihr dort also nahezu keine Resultate in diese Richtung
finden.

Es ist eine Besonderheit der linearen Algebra, dass dies bei endlich-dimensionalen Vektorrdumen
anders ist: Wie wir jetzt sehen wollen, sind diese Vektorrdume genau durch ihre Dimension klassi-
fiziert, d. h. zu jedem Korper K und jeder natiirlichen Zahl n € N gibt es bis auf Isomorphie genau
einen K-Vektorraum dieser Dimension, ndmlich K. Dies wird unsere weitere Arbeit ganz wesent-
lich vereinfachen: Wenn wir dann Aussagen iiber beliebige endlich-dimensionale Vektorrdume be-
weisen wollen, geniigt es deswegen namlich, nur die Vektorraume K" zu betrachten — und mit denen
lasst es sich natiirlich deutlich leichter arbeiten als mit abstrakten Vektorrdaumen.

In der Tat haben wir alle Ideen zum Beweis dieser Klassifikation schon gesehen: Zu einem n-dimen-
sionalen Vektorraum V konnen wir nach Satz 14.11 eine Basis B wéhlen, und dann jeden Vektor in
V nach Lemma 14.8 eindeutig durch seine Koordinaten beziiglich B beschreiben, die einen Vektor
in K" bilden. Diese Zuordnung liefert wie folgt den gewiinschten Isomorphismus zwischen V und
K"

Konstruktion 16.18 (Koordinatenabbildungen). Es sei V ein endlich erzeugter Vektorraum der Di-

mension n = dimV mit gegebener Basis B = (xi,...,x,). Da jeder Vektor x € V nach Lemma 14.8
eine eindeutige Darstellung x = Ay x| + - - - + A,x, mit Ay,..., A, € K besitzt, gibt es dann eine bijek-
tive Abbildung

M

Dp: V=K' Aixi+-+Ax, — :
An
Man nennt @5 die Koordinatenabbildung zur Basis B, und ®g(x) € K" fiir ein x € V den Koordi-

natenvektor von x beziiglich B. Offensichtlich ist ®p linear, und damit ein Isomorphismus zwischen
V und K".

Beispiel 16.19.

(a) Fir die Standardbasis B = (ej,...,e,) von K" mit n € N ist die Koordinatenabbildung
Pp: K" — K" natiirlich einfach die identische Abbildung.

(b) Es seien n € N und B = (1,x,...,x") die Basis von Pol,(R,R) aus Beispiel 14.5 (d). Die
zugehorige Koordinatenabbildung

ao
®p: Pol,(R,R) — R ag+aix+ -+ apx —
an

ordnet dann einem Polynom genau seine Koeffizienten zu (in der Reihenfolge, die wir fiir
die Basis B gewihlt haben). Also ist Pol,(R,R) = R""!, Im Sinne von Beispiel 16.16 ist
dieser Isomorphismus auch hier anschaulich klar, da der Vektor der Koeffizienten ay, ..., a,
dieselben Informationen enthilt wie das daraus gebildete Polynom ag +ajx+ - - - + a,x".

Folgerung 16.20 (Klassifikation endlich-dimensionaler Vektorrdume). Jeder endlich-dimensionale
K-Vektorraum V ist (iiber die Koordinatenabbildung zu einer beliebigen Basis) isomorph zu K" fiir
ein eindeutig bestimmtes n € N, namlich fiir n = dimV.

Beweis. Die Existenz eines Isomorphismus haben wir in Konstruktion 16.18 gesehen, die Eindeu-
tigkeit von n in Lemma 16.17 (c). ]

Mit diesem wichtigen Ergebnis konnen wir nun wie angekiindigt viele Aussagen und Rechenme-
thoden von K" auf beliebige endlich-dimensionale Vektorrdume iibertragen. Als Erstes betrachten
wir dazu den offensichtlichen Isomorphismus K" x K™ = K"t fiir alle m,n € N, der sich ergibt,
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da die Elemente beider Seiten einfach durch n + m skalare Komponenten gegeben sind. Fiir endlich
erzeugte Vektorrdaume ergibt sich daraus die folgende Dimensionsaussage.

Folgerung 16.21 (Dimensionsformel fiir Produkte). Sind V und W zwei endlich-dimensionale Vek-
torrdume, so gilt

dim(V x W) = dimV +dimW.

Eine analoge Aussage gilt natiirlich auch fiir Produkte von mehr als zwei Vektorrdumen.

Beweis. Nach Folgerung 16.20 gibt es I[somorphismen f: V — K" und g: W — K™ mit n = dimV
und m = dimW. Dann ist aber auch

VXxW = K'x K" = K" (x,x) — (f(x),g(x))
ein Isomorphismus (mit Umkehrabbildung (y,y') = (f~'(y),¢~'(3'))), und damit ergibt sich aus
Folgerung 16.20
dim(V x W) =n+m=dimV +dimW. O
Auch die Algorithmen zur Bestimmung von Erzeugendensystemen und linearer Unabhingigkeit, zur
Basisauswahl und -ergiinzung, oder zur Berechnung von Durchschnitten und Summen von Unter-

rdumen konnen wir iiber Koordinatenabbildungen von K" auf beliebige endlich-dimensionale Vek-
torrdume iibertragen. Am besten sieht man dies vermutlich an einem Beispiel:

Beispiel 16.22. Im Vektorraum Pols (R, R) aller reellen Polynome vom Grad hichstens 3 seien
Uy =Lin(1+2,x+x*+x*) und Uy =Lin(1 +x+2¢ x> +x%).

Um mit diesen Unterrdumen konkrete Berechnungen durchzufiihren, kénnen wir gemif3 Beispiel
14.5 (d) die Basis B = (1,x,x*,x3) von Pol3(R,R) wihlen und die Koordinatenvektoren beziiglich
B benutzen. Konkret sind diese Koordinatenvektoren der oben gegebenen Polynome die Vektoren

1 0 1 0

0 1 0
Op(1+2x°) = 0 , Pp(x+x*+x°) = | , @p(1+x42x0) = 0 , Dp(F* 4 1) = 1 (%)

2 1 2 1

in R*. Damit konnen wir z. B. berechnen:

(a) Da die ersten beiden Vektoren in (x) linear unabhingig in R* sind, sind die Polynome 14 2x°
und x + x* + x> nach Lemma 16.17 (b) linear unabhingig in U;, und damit eine Basis von
U;. Es ist also dimU; = 2. Analog sieht man auch dimU, = 2.

(b) Die ersten beiden Vektoren in () bilden eine 4 x 2-Matrix in Spaltenstufenform mit 2 Stufen
und den Stufenzeilen 1 und 2. Nach Algorithmus 15.41 (d) kénnen sie also mit den Einheits-
vektoren e3 und e4 zu einer Basis von R?* erginzt werden. Anwenden des Isomorphismus
@, ! liefert daher mit Lemma 16.17 (c), dass @5 (e3) = x*> und @5 (e4) = x° die Polynome
1+ 2% und x +x% +x° zu einer Basis von Pol; (R, R) erginzen.

(¢) Um eine Basis des Durchschnitts U; N U, zu bestimmen, berechnen wir zundchst das Bild
dieses Durchschnitts unter ®p. Diese Rechnung haben wir schon in Algorithmus 14.27 (a)
durchgefiihrt: Es ist

@B(Ul)ﬂq)B(Uz) = Lin N Lin C R*.

N OO =
—_—— = O
DO = =
L) = =

Anwenden von CIDJ_!;1 liefert also Uy NU, = Lin(1 +x+x2+ 3x3); insbesondere hat Uy N U,
damit die Dimension 1.
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16.C Abbildungsmatrizen

Im letzten Abschnitt haben wir endlich-dimensionale Vektorrdume klassifiziert: Jeder solche Vektor-
raum V ist (iiber die Koordinatenabbildung zu einer beliebigen Basis) isomorph zu K" mitn =dimV.
Mit diesem sehr niitzlichen Ergebnis der linearen Algebra kann man sowohl Beweise (wie in Folge-
rung 16.21) als auch Rechnungen (wie in Beispiel 16.22) in V auf solche in K" zuriickzufiihren, wo
sie z. B. mit Hilfe von Matrizen und dem Gauf3-Algorithmus oft einfacher durchfiihrbar sind.

Ein dhnliches Klassifikationsproblem wollen wir nun auch fiir Morphismen untersuchen: Ist W ein
weiterer endlich-dimensionaler Vektorraum der Dimension m, konnen wir dann alle linearen Abbil-
dungen von V nach W Kklassifizieren, also die Menge Hom(V, W) beschreiben? Wenn ihr auch die
»~Algebraischen Strukturen hort, habt ihr dort vielleicht schon das eine oder andere Mal das ana-
loge Problem fiir Gruppen gesehen — also alle Morphismen zwischen zwei gegebenen Gruppen zu
bestimmen — und gesehen, dass dies in der Regel gar nicht so einfach ist und sehr von den konkret
betrachteten Gruppen abhingt. Aber auch hier wollen wir jetzt sehen, dass sich die lineare Algebra
wieder viel schoner verhilt und eine ganz explizite Beschreibung von Hom(V, W) erméglicht.

Im Sinne unserer Klassifikationsidee sollten wir dazu natiirlich V und W durch die dazu isomorphen
Vektorrdume K" und K™ ersetzen konnen. Wir betrachten daher jetzt zunichst einmal die Menge
Hom(K",K™) aller linearen Abbildungen von K" nach K™ und untersuchen anschliefend, wie der
allgemeine Fall darauf zuriickgefiihrt werden kann.

Im Fall des Start- und Zielraums K" bzw. K™ haben wir in Beispiel 16.3 (b) schon viele Morphismen
gesehen, namlich zu jeder Matrix A € K" die lineare Abbildung

fa: K" — K™, x— Ax.
Wir werden nun zeigen, dass in der Tat jede lineare Abbildung von K" nach K™ von dieser Form
ist — und zwar sogar mit einer eindeutig bestimmten Matrix A. In diesem Sinne sind lineare Abbil-
dungen in Hom(K", K™) und Matrizen in K"™*" also ,,im Prinzip dasselbe*. Wie ihr vielleicht schon

vermutet, wird dies dann exakt formuliert in der Sprechweise der linearen Algebra wieder heifen,
dass Hom(K",K™) und K"™*" isomorphe Vektorrdume sind.

Satz und Definition 16.23 (Lineare Abbildungen K" — K™ und Abbildungsmatrizen). Zu jeder
linearen Abbildung f: K" — K™ mit m,n € N gibt es genau eine Matrix A € K"™" mit f = fy wie
in Beispiel 16.3 (b), also mit

f(x)=Ax fiirallex € K",
néimlich A= (f(e1)| - | f(en)). Wir nennen sie die Abbildungsmatrix von f und bezeichnen sie mit
Ay,

Beweis. Die geforderte Bedingung legt nach Beispiel 15.6 (c) fiiralle j = 1,...,n die j-te Spalte von
A fest zu Aej = f(e;). Damit ist A eindeutig bestimmt als (f(e1)|--- | f(e,)). Da f linear ist, folgt
aus dieser Beziehung fiir die Einheitsvektoren aber auch fiir alle x € K" mit Koordinaten x1,...,x,

Fx) = flxier+---+xnen) =x1f(e1) + - +xuf(en) =x14e1 + -+ xpAe, = Ax. O
Folgerung 16.24. Fiir alle m,n € N gilt:
(a) Hom(K",K™) ist ein Unterraum von Abb(K",K™), und die Abbildung
K™ — Hom(K",K™), A+ f4
ist ein Isomorphismus mit Umkehrabbildung Hom(K",K™) — K™*", f — Ay.
Insbesondere ist also dimHom (K", K™) = m - n.

(b) Unter dem Isomorphismus aus (a) entspricht die Matrixmultiplikation der Verkettung von
Morphismen, d. h. fiir alle linearen Abbildungen f: K" — K™ und g: K™ — KP? gilt

Agos = Ag-Ay.
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Beweis.
(a) Die Abbildung K™*" — Abb(K",K™), A > f4 ist linear, denn fiir alle A,B € K™*" sowie
x€K"und A €K gilt
fatp(x) = (A+B)x =Ax+Bx = fa(x) + fp(x) und fi,(x) = (AA)x = A(Ax) = A fa(x),

und damit fa1p5 = fa + fp und fi4 = Af4. Nach Satz 16.23 ist diese Abbildung injek-
tiv mit Bild Hom(K",K™). Also ist Hom(K",K™) nach Lemma 16.6 (a) ein Unterraum
von Abb(K",K™), und die eingeschriankte Abbildung K”*" — Hom(K",K™), A — fy ist
ein Isomorphismus. Nach Definition der Abbildungsmatrix ist ihre Umkehrabbildung genau
Hom(K",K™) — K"™*", f+—Ay.

(b) Fiir alle x € K" gilt

(g0f)(x) = 8(f(x)) = 8(Af-x) = Ag- Ay -x,
d.h. Ag - Ay ist die Abbildungsmatrix von go f. d
Konstruktion 16.25 (Lineare Abbildungen zwischen endlich-dimensionalen Vektorrdumen). Wie

angekiindigt wollen wir die Ergebnisse von Satz 16.23 und Folgerung 16.24 jetzt auf Morphismen
zwischen beliebigen endlich-dimensionalen Vektorrdumen V und W {iibertragen.

Die Idee dazu ist im Diagramm rechts dargestellt: Wir wihlen Basen B und C f

von V bzw. W, die zu den vertikal eingezeichneten Koordinatenabbildungen Vz V‘j
$p: V= K"und &¢c: W — K™ mit n =dimV und m = dimW fiihren. Die Dy \CDC
Schlangen am Beginn dieser Pfeile deuten an, dass es sich dabei um Isomor-

phismen handelt. Mit ®p und ®¢ wollen wir nun Abbildungen f: V =W  gn K"

mit Abbildungen g: K" — K™ in Beziehung setzen. 8

Istz.B. f: V — W gegeben, so konnen wir daraus eine Abbildung g: K" — K™ konstruieren, indem
wir im Diagramm ,,den Umweg iiber f nehmen*, also durch

g:':IDCofocpl;1 bzw. f:CIDEIOgquB.

Genauso konnen wir mit diesen Gleichungen natiirlich auch umgekehrt f aus g konstruieren. Nach
Lemma 16.10 (b) ist f dabei genau dann ein Morphismus, wenn g einer ist. Da ein Morphismus
g: K" — K™ nun nach Satz 16.23 immer die Form x — Ax mit A € K"*" hat, erhalten wir daraus
den Morphismus

fiV =W, x @ (A @p(x), bzw.mit Pc(f(x)) =A Pp(x) firallex V.

Wir bezeichnen diesen Morphismus mit ff’c: V — W. Beachte, dass er sich von der bisherigen
Formel aus Satz 16.23 nur um die Koordinatenabbildungen unterscheidet: Wihrend wir die Matrix
A bisher direkt mit dem Startvektor multipliziert haben, um den Zielvektor zu erhalten, miissen wir
sie jetzt mit dem Koordinatenvektor des Startvektors multiplizieren, um den Koordinatenvektor des
Zielvektors zu erhalten. Im Fall V = K" und W = K™, und wenn B und C die Standardbasen sind,
sind die Koordinatenabbildungen natiirlich die Identitit, und wir erhalten genau die bisherige Formel
zuriick.

Die obigen Formeln erscheinen auf den ersten Blick vielleicht etwas uniibersichtlich. In der Praxis
ergibt sich ihre Anwendung aber oft ganz von selbst, da wir eine Matrix ja gar nicht mit einem
Vektor in einem allgemeinen Vektorraum V multiplizieren konnen und beim Matrixprodukt auch
kein Vektor eines allgemeinen Vektorraums W herauskommt — so dass klar ist, dass wir hier mit den
jeweiligen Koordinatenvektoren arbeiten miissen.

Mit dieser Konstruktion kdnnen wir nun wie gewiinscht Satz 16.23 und Folgerung 16.24 auf belie-
bige endlich-dimensionale Vektorrdume iibertragen:

Satz und Definition 16.26 (Lineare Abbildungen V — W und Abbildungsmatrizen). Es seien V
und W zwei endlich-dimensionale Vektorriume mit n :== dimV und m := dimW. Ferner wiihlen wir
Basen B = (x1,...,x,) und C = (y1,...,ym) von'V bzw. W.

36
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Dann gibt es zu jeder linearen Abbildung f: V — W genau eine Matrix A € K™*" mit f = ff’c wie
in Konstruktion 16.25, also mit

Pe(f(x)) =A-Pp(x) fiirallexeV,

néimlich A = (D¢ (f(x1))| -+ |Pc(f(x4))). Wir nennen sie die Abbildungsmatrix von f beziiglich B
und C und bezeichnen sie mit A i

Beweis. Wir verwenden die Bezeichnungen aus Konstruktion 16.25. Zu f gibt es dann zunichst
genau eine lineare Abbildung g: K" — K™ mit f = @ o go®p, und dazu dann genau eine Abbil-
dungsmatrix A wie in Satz 16.23, also mit

fx) =@ (A -dp(x)) & Dc(f(x)=A-DPp(x) firallexc V.
Wegen ®p(x;) = e fiir j=1,...,nist dabei die j-te Spalte von A wie behauptet gegeben durch
Aej:A-dDB(xj) :Cbc(f(xj')). O

Folgerung 16.27. Es seien wieder V und W zwei endlich-dimensionale Vektorrdume mit n := dimV
und m := dimW sowie Basen B = (x1,...,x,) bzw. C = (y1,...,Ym). Dann gilt:

(a) Hom(V,W) ist ein Unterraum von Abb(V, W), und die Abbildung
K™ — Hom(V,W), A s f2€
ist ein Isomorphismus mit Umkehrabbildung Hom(V,W) — K™*" f A?"C.

Insbesondere ist also dimHom(V,W) = dimV - dimW.

(b) Unter dem Isomorphismus aus (a) entspricht die Matrixmultiplikation der Verkettung von
Morphismen, d. h. ist f: V — W linear, so gilt fiir alle linearen Abbildungen g: W — Z in
einen weiteren Vektorraum Z mit gegebener Basis D

BD _ 4CD 4BC
Al =ASP-ATC.

Beweis.

(a) Wie im Beweis von Folgerung 16.24 (a) rechnet man auch hier wieder leicht nach, dass die
Abbildung K" — Abb(V, W), A f¥C linear ist. Da sie nach Satz 16.26 injektiv mit Bild
Hom(V, W) ist, folgt die Behauptung.

(b) Nach Definition 16.26 der Abbildungsmatrizen von f und g gilt
Dc(f(x)) =AFC - Dp(x) firallex eV
sowie ®p(g(y)) = Ag*D -O¢(y) firalleyeWw.

Setzen wir dies mit y = f(x) ineinander ein, so erhalten wir fiir allex € V
BC
Pp(g(f(x) =Ag? - Ap" - @p(x).

Dies bedeutet genau, dass Ag’D -A?‘C die Abbildungsmatrix von go f beziiglich der Startbasis
B und der Zielbasis D ist. ‘ O

Beispiel 16.28. Es seien V = Pol, (R, R) mit der Basis B = (1,x,x*) und W = Pol; (R, R) mit der Ba-
sis C = (1,x) (siehe Beispiel 14.5 (d)). Wir betrachten wie in Beispiel 16.3 (e) die lineare Abbildung
f: V=W, ¢~ ¢, diec einem Polynom seine Ableitung zuordnet.

(a) Um die Abbildungsmatrix A?’C zu bestimmen, miissen wir nach Definition 16.26 die Basis-
vektoren von B abbilden und das Ergebnis als Linearkombinationen der Basisvektoren von
C schreiben: Es ist

! =0 =0-140-x,
¥ =1 =1-140-x,
() =2x=0-14+2-x.

f(1)
f(x)
1)
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Die Koeffizienten dieser Linearkombinationen bilden wie iiblich die zugehorigen Koordina-
tenvektoren; wir schreiben sie in die Spalten der gesuchten Abbildungsmatrix und erhalten
SO

@)= (g ) 2l = (o) ectren=(3) = 4= (0 ¢ 3)-

(b) Auch die umgekehrte Richtung, aus der Abbildungsmatrix die Abbildung zu rekonstruieren,
ist nicht weiter schwierig, wenn man sich daran erinnert, dass die Matrix immer nur Koordi-
natenvektoren sieht. Angenommen, wir wollen f(¢) fiir ¢ = 2x? 4 3x +4, also letztlich die
Ableitung ¢, nur aus der Kenntnis der Abbildungsmatrix A?’C bestimmen. Dann brauchen
wir zunichst den Koordinatenvektor ®5(¢) und konnen diesen dann an die Abbildungsma-
trix multiplizieren: Wegen @ = 4-1+3-x+2-x7 ist

. o1 oy (* 3
@p(@)= (3|, unddamit A?C.an((p):(O 0 2). 3 :<4>.
2 2

Nach Satz 16.26 ist dies nun der Koordinatenvektor ®¢(f(¢)) des Bildes f(¢). Damit ist
f(@)=3-14+4-x=4x+3 (was in der Tat die Ableitung von ¢ ist).

Bemerkung 16.29 (Bild, Rang und Kern von Abbildungsmatrizen). In Ver-
allgemeinerung von Bemerkung 16.8 lassen sich Bild, Rang und Kern einer v f %

linearen Abbildung zwischen endlich-dimensionalen Vektorrdumen wie er- 2 1
wartet auf die zugehorigen Abbildungsmatrizen zuriickfiihren und so mit den &y \(Pc
Methoden aus Abschnitt 15.C auch leicht berechnen. Dazu betrachten wir

noch einmal das Diagramm rechts aus Konstruktion 16.25, in dem die Abbil- K" K™

dung g gegeben ist durch x — A?’C -x. Damit ist

Imf = f(V) =& (8(@p(V))) = D' (3(K")) = ¢! (Img) = &' (ImATC)
und Kerf = f~'({0}) = @' (g7 (@c({0}))) = @y (g7 ({0})) = @5 (Kerg) = Py (KerA}C).

Da Isomorphismen nach Lemma 16.17 (c¢) die Dimension erhalten, folgt damit auch rk f = rkA?’C.

Fiir die konkrete Abbildung f und die Basen B und C aus Beispiel 16.28 ist z. B. mit der dort
berechneten Abbildungsmatrix

mAZC =R?> = Imf=a: (R?) = Poli(R,R),
insbesondere ist also rk f = 2 und f ist surjektiv. Fiir den Kern der betrachteten Ableitungsabbildung
gilt
KerA?’C =Lin(e;) = Kerf=®y'(Lin(e;)) = Lin(1),
hier erhalten wir also erwartungsgemil den Unterraum aller konstanten Polynome.
Mit diesen Ergebnissen konnen wir nun alle unsere Ergebnisse zu Matrizen auf Morphismen zwi-

schen endlich-dimensionalen Vektorrdumen iibertragen. Hier sind ein paar sehr wichtige Beispiele
dafiir:

Folgerung 16.30. Fiir jede lineare Abbildung f: V — W zwischen endlich-dimensionalen Vektor-
raumen V und W gilt:

(@) rkf <dimV und rk f < dimW.

(b) Fiir jede weitere lineare Abbildung g: W — Z in einen endlich-dimensionalen Vektorraum
Z gilttk(go f) <1k f undrk(go f) <rkg.

(¢) (Dimensionsformel fiir Morphismen) dimIm f + dimKer f = dimV.
(d) IstV =W, so ist f genau dann surjektiv, wenn f injektiv ist.
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Beweis. Wir wihlen beliebige Basen der Vektorrdume V, W und Z und betrachten die Abbildungs-
matrizen A € K™*" und B € K"*P beziiglich dieser Basen (mitn =dimV,m =dimW und p = dimZ).
Nach Bemerkung 16.29 ergeben sich die Teile (a), (b) und (c) der Folgerung dann unmittelbar aus
den entsprechenden Resultaten fiir die Matrizen A und B aus Bemerkung 15.12 (b), Lemma 15.14
bzw. Satz 15.33 (a). So gilt z. B. fiir Teil (c)

16.29 15.33 (a)

dimIm f +dimKer f =" dimImA 4 dimKerA n=dimV.

Teil (d) folgt nun unmittelbar aus dieser Dimensionsformel (c), denn die Surjektivitdt von f ist
dquivalent zu dimIm f = dimW (also dimIm f = dimV’), und die Injektivitit von f nach Lemma
16.9 zu dimKer f = 0. O

Bemerkung 16.31. Folgerung 16.30 (d) sieht zwar vielleicht so aus, als ob die Dimension von V
hierbei keine Rolle spielt, ist aber fiir einen unendlich-dimensionalen Raum V falsch: Betrachten wir
z.B. mit dem Vektorraum V = Abb(N,R) aller reellen Zahlenfolgen die ,,Verschiebemorphismen*

f: V= V7 ()C(),)C17)C27 .. ) — (O,XO,)C],)CQ, . )
und g:V =V, (x0,x1,%2,...) — (x1,x2,%3,...),
so ist f injektiv aber nicht surjektiv, und g surjektiv aber nicht injektiv.
Als weitere einfache Konsequenz aus Folgerung 16.27 erhalten wir aulerdem, dass sich lineare Ab-

bildungen stets auf einer Basis des Startraums beliebig vorgeben lassen und dann eindeutig bestimmt
sind (siehe auch Aufgabe 16.5):

Folgerung 16.32. Es seien V und W endlich-dimensionale Vektorriiume, B = (xi,...,x,) eine Basis
von'V und (y1,...,yn) eine beliebige Familie (mit gleich vielen Elementen) in W.

Dann gibt es genau eine lineare Abbildung f: V — W mit f(x;) =y, fiirallei=1,...,n.

Beweis. Wihle eine Basis C von W und betrachte die Abbildungsmatrix A?’C der gesuchten Mor-

phismen, die nach Satz 16.26 die Form A?’C = (Pc(f(x1))] -+~ [Pc(f(xa))) hat. Die Bedingun-

gen f(x;) = y; fiir alle i sind offensichtlich #quivalent dazu, dass diese Abbildungsmatrix gleich

A?"C = (®c(y1)]| -+ | Dc(yn)) ist, und liefern damit genau einen solchen Morphismus. O

Aufgabe 16.33. Es sei V = Pol,(R,R) mit Basis B = (1,x,x?). Wir betrachten die Abbildung
F1V = Vmit f(@)(x) = ¢ (x+ 1) +x¢(1), wobei ¢’ die Ableitung von ¢ bezeichnet.

(a) Zeige, dass f eine lineare Abbildung ist.
(b) Berechne die Abbildungsmatrix A?’B.
(c) Berechne Ker f.

Aufgabe 16.34. Es seien

U:{x€R3:x1+xz+x3:0} und f:R3—>R3,x+—>Ax mit A =

— N O

2 1
1 0
0o 2
Zeige, dass f(U) C U gilt, bestimme eine Basis B von U, und berechne die Abbildungsmatrix der

eingeschriinkten Abbildung f|y : U — U beziiglich der Basis B im Start- und Zielraum.

Aufgabe 16.35. Bestimme die Dimension von Ker(go f), wenn f: K® — K eine surjektive und
g: K> — K eine injektive lineare Abbildung ist.

Aufgabe 16.36. Es seien V ein endlich-dimensionaler Vektorraum und f: V — V eine lineare Ab-
bildung mit f o f = f. Man zeige:

(a) ImfNKerf = {0}.
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(b) Es gibt eine Basis B von V, so dass die Abbildungsmatrix von f mit gleicher Start- und

Zielbasis B die Form
gs_( E |0
A= (ﬁ)

Aufgabe 16.37. Es sei A € K"*" eine Matrix vom Rang r := rkA. Zeige, dass A dann als Matrix-
produkt A = BC mit B € K”*" und C € K"*" geschrieben werden kann.

mit » = rk f hat.

(Hinweis: Betrachte zugehorige lineare Abbildungen und verwende Folgerung 16.27 (b).)

Nach Konstruktion hingen unsere gerade eingefiihrten Abbildungsmatrizen A?’C natiirlich von der
(letztlich willkiirlichen) Wahl der Basen B und C im Start- bzw. Zielraum der Abbildung f ab. Wir
wollen daher nun untersuchen, wie sich diese Abbildungsmatrizen indern, wenn man zu anderen
Basen tibergeht. Dazu bendtigen wir die sogenannten Basiswechselmatrizen, die einfach nur ein
Spezialfall von Abbildungsmatrizen sind.

Definition 16.38 (Basiswechselmatrizen). Es seien B= (x|,...,x,) und C = (y1,...,y,) zwei Basen
eines endlich-dimensionalen K-Vektorraums V. Dann heiflit die Abbildungsmatrix der Identitét idy
beziiglich der Startbasis B und Zielbasis C, nach Definition 16.26 also

ABC .= ABC — (@c(x)) |-+ |Dc(xn)) € K™,
die Basiswechselmatrix von B nach C.
Beispiel 16.39. Im Vektorraum Pol; (R, R) betrachten wir die beiden Basen
B=(1,x) und C=(x+2,-1).

Analog zu Beispiel 16.28 (a) schreiben wir die beiden Basisvektoren von B als Linearkombinationen
der Basisvektoren von C:

1=0-(x+2)+(=1)-(=1) und x=1-(x+2)+2-(—1).

Oc(1) = (_01) und ®¢(x) = (;) = ABC= (_01 é)

Bemerkung 16.40. Es sei V ein endlich-dimensionaler Vektorraum mit Basis B.

Damit ist

(a) Offensichtlich ist stets A3 = E.

(b) Ist f: V. — W ein Isomorphismus zwischen V und einem weiteren Vektorraum W mit Basis
C, so gilt nach Folgerung 16.27 (b)

ACR - ARC = aBE  —APECE,

Die Abbildungsmatrix A?’C zu einem Isomorphismus f ist also invertierbar mit inverser

Matrix A(]’:’_ﬁ. Insbesondere erhalten wir daraus fiir V. = W und f = idy, dass Basiswechsel-

matrizen immer invertierbar sind mit (A8€)~1 = ACB,

Umgekehrt sind invertierbare Matrizen in folgendem Sinne auch immer Basiswechselmatrizen:

Lemma 16.41. Es sei B eine Basis eines endlich erzeugten Vektorraums V. Ferner sei T € GL(n,K)
eine invertierbare Matrix mit n = dimV. Dann gilt:

(a) Es gibt eine Basis C von V mit ACB =T,
(b) Es gibt eine Basis C von 'V mit ABC =T.
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Beweis.

(a) Wir setzen y; = CIJE1 (Te;) firi=1,...,n. Da T invertierbar und CI:'gl ein Isomorphismus ist,
istauchK" =V, x— CIDgl (Tx) ein Isomorphismus, und bildet nach Lemma 16.17 (c¢) damit
die Standardbasis (e, ..., e,) auf eine Basis C := (y1,...,y,) von V ab.

Fiir i = 1,...,n ist die i-te Spalte der Basiswechselmatrix A% nun nach Definition 16.38
Pp(yi) = Pp(P3 ' (Ter) = Te;,
also die i-te Spalte von 7. Damit ist wie gewiinscht AC8 =T
(b) Ng(éh (a) gibt es eine Basis C von V mit ASB = 71 nach Bemerkung 16.40 (b) also mit
APC =T. O

Mit diesen Basiswechselmatrizen konnen wir nun konkret angeben, wie sich Abbildungsmatrizen
unter einem Basiswechsel transformieren.

Satz 16.42 (Verhalten von Abbildungsmatrizen unter Basiswechsel). Es sei f: V — W ein Mor-
phismus zwischen endlich erzeugten Vektorrdumen mit n := dimV und m := dimW sowie gegebenen
Basen B und C von'V bzw. W.
(a) Sind B' und C' zwei weitere Basen von'V bzw. W, so gilt
A?lvcl :AC.C/ -A?’C 'AB,’B.

(b) Sind umgekehrt S € GL(m,K) und T € GL(n,K) zwei invertierbare Matrizen, so gibt es
Basen B und C' von'V bzw. W, so dass ASC' = S und AB'B =T gilt, und damit

B.C B.C
Af fS~Af -T.

Beweis.
(a) Dies folgt sofort durch doppelte Anwendung von Folgerung 16.27 (b) auf den Morphismus
f=idwofoidy: V>V W W
mit den Basen B', B, C, C' in den vier Rdumen dieser Abbildungskette.
(b) Nach Lemma 16.41 existieren Basen B’ und C’ mit ACC = Sund AB'B = T; die behauptete
Formel fiir die Abbildungsmatrix ergibt sich dann aus (a). g
Beispiel 16.43. Es sei f: Poly(R,R) — Pol; (R,R), ¢ — ¢’ die Ableitungsabbildung wie in Bei-
spiel 16.28. Dort hatten wir die Abbildungsmatrix A?’C fiir die Basen B = (1,x,x%) und C = (1,x) im

Start- bzw. Zielraum berechnet. Wollen wir nun stattdessen die Abbildungsmatrix A?’C, fiir die Basis

C' = (x+2,-1) von Pol; (R, R) bestimmen, so konnen wir entweder wieder das gleiche Verfahren
wie in Beispiel 16.28 anwenden, oder die Formel aus Satz 16.42 (a) benutzen: Mit der in Beispiel
16.39 berechneten Basiswechselmatrix AC€ ist

BC _ ,cc 48Cc_ (0 1 01 0y (0 O 2
A =4 Af<—1 2)(0020—14'
Nach Satz 16.42 beschreiben zwei Matrizen derselben Grofie also genau dann die gleiche lineare
Abbildung — nur beziiglich evtl. verschiedener Basen — wenn sie durch Multiplikation mit invertier-

baren Matrizen von links und rechts auseinander hervorgehen. Es ist daher niitzlich, die folgende
Notation einzufiihren.

Definition 16.44 (Aquivalente Matrizen). Zwei Matrizen A,A’ € K™*" mit m,n € N heifen iquiva-
lent zueinander, wenn es invertierbare Matrizen § € GL(m,K) und T € GL(n,K) gibt mit A’ = SAT.

Bemerkung 16.45.

(a) Wie man leicht nachpriifen kann, ist die Aquivalenz von Matrizen in der Tat eine Aquiva-
lenzrelation im Sinne von Definition 2.31.
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(b) Nach Satz 16.42 sind zwei Matrizen genau dann dquivalent zueinander, wenn sie die gleiche
lineare Abbildung, nur beziiglich evtl. anderer Basen im Start- und Zielraum beschreiben.

Wir werden in Bemerkung 17.30 noch sehen, dass diese Bedingung sehr leicht iiberpriift
werden kann: Sie ist einfach dquivalent dazu, dass die beiden Matrizen denselben Rang
haben. Eine Richtung dieser Aussage konnen wir aber jetzt schon zeigen.

Folgerung 16.46 (Aquivalente Matrizen haben denselben Rang). Es seien m,n € N und A € K"™*".
Fiir alle S € GL(m,K) und T € GL(n,K) gilt dann tk(SAT) = rkA.

Beweis. Es sei f = fq: K" — K™. Fiir die Standardbasen B und C von K" bzw. K™ ist dann also
A€ = A. Nach Satz 16.42 (b) gibt es nun Basen B' und C' von K" bzw. K™ mit A7 " = SAT. Mit
Bemerkung 16.29 erhalten wir also wie behauptet rk(SAT) = rkA?/’C/ =1k f =rkA. O
Aufgabe 16.47. Wir betrachten die Basen

1 1 0

o= (o). (1) (1) e e= () (1)
0 0 1

von R3 bzw. R? sowie die lineare Abbildung f: R3 — R? mit

sc_ (2 -1 0
A —<4 0 2)'

Berechne die Abbildungsmatrix Ay von f beziiglich der Standardbasen von R? und R2.

Aufgabe 16.48. Zum Vektorraum V = Pol,(R,R) mit der Basis B = (1,x,x%) betrachten wir die
lineare Abbildung f: V — V mit f(@)(x) = @(x+ 1) firalle ¢ € V.

(a) Berechne die Abbildungsmatrix A?’B.

(b) Zeige, dass A?’B invertierbar ist, und berechne die inverse Matrix (A?’B) -

(c) Zeige, dass es zu jeder Basis C’ von V eine Basis C von V gibt mit A?‘Cl =FE.
/ 1 2 3
(d) Zeige, dass es zu keiner Basis C' von V eine Basis C von V gibt mit A?’C =14 5 6
7 8 9

Aufgabe 16.49 (Berechnung von Basiswechselmatrizen). Fiir ein n € N seien B = (xy,...,x,) und
C = (y1,...,ya) zwei Basen von K". Wir setzen A := (y;| -+ |y, |x1 |-+ |x,) € K>**" und bringen
die linke Hilfte dieser Matrix mit elementaren Zeilenumformungen in reduzierte Zeilenstufenform,
fiihren dabei aber alle Umformungen mit der gesamten Matrix durch.

Zeige, dass dann in der rechten Hilfte der Matrix genau die Basiswechselmatrix A% steht.



