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12. Integralrechnung

Als Abschluss der Analysis in einer Veränderlichen wollen wir nach der Differentiation nun noch
die Integration betrachten. Wie auch schon im letzten Kapitel wollen wir uns dabei auf den reellen
Fall beschränken, da sich die Integralrechnung über C ganz anders verhält. In der Tat sind komplexe
Integrale (oder allgemein die komplexe Analysis) der wesentliche Inhalt der Vorlesung „Einführung
in die Funktionentheorie“, die ihr im zweiten Studienjahr hören könnt.

Die Integralrechnung kann man auf zweierlei Arten motivieren. Ist f : [a,b]→ R eine reelle Funk-
tion, so können wir die folgenden beiden Fragestellungen betrachten:

• (Flächenberechnung) Wie groß ist die Fläche, die unter dem Graphen von f liegt (im Bild
unten links grau eingezeichnet) – oder allgemeiner, wie kann man den Flächeninhalt ge-
krümmter Flächen berechnen?

f (x)

x
a b a bxc

• (Umkehrung der Differentiation) Gibt es eine differenzierbare Funktion F : [a,b]→R, deren
Ableitung F ′ gleich f ist – und wenn ja, wie können wir ein solches F bestimmen? Diese
Frage hat oft auch eine anschauliche Bedeutung: Beschreibt eine Funktion z. B. die Position
eines Gegenstandes in Abhängigkeit von der Zeit, so ist die Ableitung dieser Funktion, al-
so die lokale Positionsänderung pro Zeiteinheit, natürlich einfach die Geschwindigkeit des
Gegenstandes. Wenn wir von der Ableitung auf die ursprüngliche Funktion zurück schlie-
ßen wollen, möchten wir anschaulich also aus der Kenntnis der Geschwindigkeit zu jedem
Zeitpunkt die von dem Gegenstand zurückgelegte Wegstrecke berechnen können.

Es ist leicht einzusehen, dass diese beiden Probleme sehr eng miteinander zusammenhängen: Be-
zeichnen wir für c ∈ [a,b] mit F(c) die Fläche, die über dem Intervall [a,c] unter dem Graphen von
f liegt, so ist F(x)−F(c) für x ∈ [a,b] natürlich gerade die Fläche unter f zwischen c und x (im
Bild oben rechts grau eingezeichnet). Für x nahe bei c ist dies näherungsweise eine Rechteckfläche
der Breite x− c und Höhe f (c), d. h. es ist

F(x)−F(c)≈ (x− c) · f (c), und damit
F(x)−F(c)

x− c
≈ f (c).

Im Grenzfall x→ c sollte also F ′ = f gelten, d. h. das Problem der Flächenberechnung unter dem
Graphen einer Funktion sollte automatisch auch zur Umkehrung der Differentiation führen.

Wir werden uns im Folgenden zunächst in Abschnitt 12.A mit dem ersten Problem der Flächenbe-
rechnung beschäftigen, und daraufhin dann in Abschnitt 12.B den Zusammenhang zur Umkehrung
der Differentiation herstellen.

12.A Das Riemann-Integral

Um den Flächeninhalt unter dem Graphen einer Funktion f : [a,b]→ R untersuchen zu können,
müssen wir natürlich zunächst erst einmal mit einer exakten Definition dieses Konzepts beginnen.
Die Idee hierfür ist einfach: Wir zerlegen das Intervall [a,b] in viele kleine (nicht notwendig gleich
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lange) Teilintervalle, und approximieren die Fläche unter dem Graphen von f durch Rechteckflä-
chen über diesen Teilintervallen, indem wir wie im Bild unten als Höhe der Rechtecke einmal das
Minimum und einmal das Maximum von f auf den betrachteten Teilintervallen wählen. Auf diese
Art erhalten wir leicht zu berechnende Flächen, die im Fall des Minimums etwas kleiner und im Fall
des Maximums etwas größer als die gesuchte Fläche sind. Wenn wir die Zerlegung in die Teilinter-
valle immer feiner machen (wie z. B. im Bild unten rechts), sollten diese Flächen dann von unten
bzw. oben gegen den gesuchten Flächeninhalt unter dem Graphen von f konvergieren.

f (x)

x
a b

Untersumme

f (x)

x
a b

Obersumme

f (x)

x
a b

Verfeinerung der
Untersumme

Wir wollen diese Idee nun mathematisch exakt definieren. Um die Theorie möglichst allgemein zu
halten, wollen wir uns dabei nicht auf stetige Funktionen beschränken. Dies heißt natürlich, dass f
auf den betrachteten Teilintervallen nicht mehr notwendig ein Minimum und Maximum hat (siehe
Satz 8.25), sondern dass wir im Allgemeinen nur ein Infimum und Supremum erhalten – und das
auch nur dann, wenn wir voraussetzen, dass f beschränkt ist.

Definition 12.1 (Zerlegungen, Unter- und Obersummen). Es sei f : [a,b]→ R eine beschränkte
Funktion.

(a) Eine endliche Teilmenge Z = {x0,x1, . . . ,xn} von Punkten in [a,b] mit a,b ∈ Z bezeichnen
wir als eine Zerlegung des Intervalls [a,b]. Wir vereinbaren, dass wir in dieser Schreibweise
die x0, . . . ,xn immer so anordnen wollen, dass a = x0 < x1 < · · · < xn = b gilt. Sind Z,Z′

zwei Zerlegungen von [a,b] mit Z ⊂ Z′, so nennen wir Z′ eine Verfeinerung von Z.

(b) Ist Z = {x0, . . . ,xn} eine Zerlegung von [a,b], so heißt

US( f ,Z) :=
n

∑
i=1

(xi− xi−1) · inf f ([xi−1,xi]) die Untersumme, und analog

OS( f ,Z) :=
n

∑
i=1

(xi− xi−1) · sup f ([xi−1,xi]) die Obersumme

von f bezüglich Z.

Beispiel 12.2. Wir betrachten die Funktion f : [0,1]→R, x 7→ x, und für
gegebenes n∈N>0 die Zerlegung Zn = {0, 1

n ,
2
n , . . . ,1}. Natürlich ist das

Supremum von f auf einem Teilintervall
[ i−1

n , i
n

]
genau der Funktions-

wert i
n an der rechten Intervallgrenze, und damit ist die Obersumme von

f bezüglich Zn (also die für den Fall n = 5 im Bild rechts eingezeichnete
graue Fläche) gleich

OS( f ,Zn) =
n

∑
i=1

( i
n
− i−1

n

)
· i

n
=

1
n2

n

∑
i=1

i 3.13
=

1
n2 ·

n(n+1)
2

=
n+1

2n
.
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Analog müssen wir für die Untersumme jeweils den Funktionswert i−1
n an der linken Intervallgrenze

nehmen, und erhalten

US( f ,Zn) =
n

∑
i=1

( i
n
− i−1

n

)
· i−1

n
=

1
n2

n

∑
i=1

(i−1) =
1
n2

n−1

∑
i=0

i =
1
n2 ·

(n−1)n
2

=
n−1

2n
.
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Lemma 12.3 (Eigenschaften von Unter- und Obersummen). Es seien f : [a,b]→R eine beschränkte
Funktion und Z,Z′ zwei Zerlegungen von [a,b]. Dann gilt:

(a) Ist Z′ eine Verfeinerung von Z, so ist US( f ,Z′)≥ US( f ,Z) und OS( f ,Z′)≤ OS( f ,Z).

(b) US( f ,Z)≤ OS( f ,Z′).

Beweis.

(a) Da jede Verfeinerung von Z durch endliches Hinzufügen von weiteren Unterteilungspunkten
entsteht, genügt es, den Fall zu betrachten, dass Z′ durch Hinzufügen eines weiteren Punktes
aus Z entsteht, also dass Z = {x0, . . . ,xn} und Z′ = {x0,x1, . . . ,xk−1,x′,xk, . . . ,xn} ist. Nach
Definition ist dann

US( f ,Z′) = ∑
i̸=k

(xi− xi−1) · inf f ([xi−1,xi])

+(x′− xk−1) · inf f ([xk−1,x′])+(xk− x′) · inf f ([x′,xk]).

In dieser Summe sind nun die beiden Infima in der zweiten Zeile größer oder gleich dem
Infimum der größeren Menge f ([xk−1,xk]). Also erhalten wir wie gewünscht

US( f ,Z′)≥∑
i̸=k

(xi− xi−1) · inf f ([xi−1,xi])+(xk− xk−1) · inf f ([xk−1,xk]) = US( f ,Z).

Die Aussage über die Obersumme beweist man natürlich analog.

(b) Da Z∪Z′ eine gemeinsame Verfeinerung von Z und Z′ ist, erhalten wir mit (a)

US( f ,Z)≤ US( f ,Z∪Z′)≤ OS( f ,Z∪Z′)≤ OS( f ,Z′),

wobei die mittlere Ungleichung gilt, weil das Infimum einer Menge immer kleiner oder
gleich dem Supremum ist. □

Aufgabe 12.4. Es seien f ,g : [a,b]→ R zwei beschränkte Funktionen, Z eine Zerlegung von [a,b]
und c ∈ R≥0. Man zeige:

(a) OS( f +g,Z)≤ OS( f ,Z)+OS(g,Z);

(b) OS(c f ,Z) = c ·OS( f ,Z);

(c) OS(| f |,Z)−US(| f |,Z)≤ OS( f ,Z)−US( f ,Z).

Lemma 12.3 (b) besagt insbesondere, dass jede Obersumme eine obere Schranke für alle Unter-
summen ist. Die Menge aller Untersummen ist also nach oben beschränkt. Wir können damit das
Supremum aller Untersummen (und genauso das Infimum aller Obersummen) bilden:

Definition 12.5 (Unter- und Oberintegral). Es sei f : [a,b]→ R beschränkt. Dann heißt

UI( f ) := sup {US( f ,Z) : Z Zerlegung von [a,b]} das Unterintegral, und analog

OI( f ) := inf {OS( f ,Z) : Z Zerlegung von [a,b]} das Oberintegral

von f .

Anschaulich bedeutet dies im Fall des Unterintegrals einfach, dass wir – wie in der Einleitung zu
diesem Abschnitt erklärt – versuchen, die Untersummen (durch fortgesetztes Verfeinern der Zerle-
gungen) möglichst groß zu machen, so dass wir uns letztlich immer mehr dem eigentlich gesuchten
Flächeninhalt unter dem Graphen von f nähern. Das Supremum dieser Untersummen, also das Un-
terintegral, sollte demnach bereits der gesuchte Flächeninhalt unter dem Graphen von f sein. Das
gleiche gilt natürlich auch für das Oberintegral, so dass wir insgesamt erwarten würden, dass Unter-
und Oberintegral übereinstimmen und gleich dem gesuchten Flächeninhalt sind.

Leider ist dies unter den schwachen Voraussetzungen, die wir bisher an f gestellt haben, im Allge-
meinen nicht der Fall, wie wir gleich in Beispiel 12.9 (d) sehen werden. Für beliebiges f erhalten
wir zunächst nur die folgende Ungleichung.

Lemma 12.6. Für jede beschränkte Funktion f : [a,b]→ R gilt UI( f )≤ OI( f ).
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Beweis. Nach Lemma 12.3 (b) gilt US( f ,Z) ≤ OS( f ,Z′) für alle Zerlegungen Z und Z′ von [a,b].
Damit ist jedes US( f ,Z) eine untere Schranke für alle Obersummen. Da OI( f ) die größte untere
Schranke für alle Obersummen ist, ist also US( f ,Z)≤OI( f ) für alle Z. Analog ist damit nun OI( f )
eine obere Schranke für alle Untersummen, und damit UI( f )≤ OI( f ). □

Definition 12.7 (Integrierbarkeit). Es sei f : [a,b]→ R beschränkt. Gilt dann UI( f ) = OI( f ), so
nennen wir f (Riemann-)integrierbar, und definieren das Integral von f als diesen Wert

∫ b

a
f (x)dx := UI( f ) = OI( f ).

Bemerkung 12.8.

(a) Die Schreibweise
∫ b

a f (x)dx ist an die Differentialschreibweise aus Notation 10.14 angelehnt
und soll andeuten, dass man sich das Integral entsprechend unserer Konstruktion anschau-
lich als eine „unendliche Summe kleiner Rechteckflächen“ vorstellen kann. Dabei steht das
Integralzeichen

∫
als stilisiertes S weiterhin für eine Summe, und die aufsummierten Recht-

ecke haben die Höhe f (x) und Breite dx (siehe Notation 10.14), also die Fläche f (x)dx. Die
Integrationsvariable x ist damit analog zur Laufvariablen in einer Summe und kann daher
auch durch einen anderen Buchstaben ersetzt werden, darf aber natürlich nicht gleichzeitig
noch für etwas anderes (z. B. die Ober- oder Untergrenze) verwendet werden: Ein Ausdruck
z. B. der Form

∫ x
a f (x)dx ergibt keinen Sinn, genauso wenig wie eine Summe ∑

n
n=1 an.

(b) Es gibt mehrere Arten, den Flächeninhalt unter dem Graphen einer Funktion zu definieren.
Neben der hier behandelten Riemannschen Integrationstheorie über Unter- und Obersum-
men, die wohl die einfachste Herangehensweise ist, ist eine weitere wichtige Möglichkeit
das sogenannte Lebesgue-Integral, das zwar komplizierter zu definieren ist, dafür aber all-
gemeiner ist in dem Sinne, dass eine größere Klasse von Funktionen integrierbar wird. Wir
werden in dieser Vorlesung jedoch nur die Riemannsche Integrationstheorie behandeln und
daher statt von Riemann-Integrierbarkeit einfach immer nur von Integrierbarkeit reden. Die
Lebesguesche Integrationstheorie könnt ihr im zweiten Studienjahr in der Vorlesung „Maß-
und Integrationstheorie“ kennenlernen.

Beispiel 12.9.

(a) Ist f (x) = c (mit c ∈ R) eine konstante Funktion, so sind die Infima und Suprema von f
auf allen Teilintervallen gleich c. Damit ist dann US( f ,Z) = OS( f ,Z) = c(b− a) für alle
Unterteilungen Z und somit auch UI( f ) = OI( f ) = c(b− a). Also ist f integrierbar mit∫ b

a f (x)dx = c(b− a) (was natürlich auch genau der Flächeninhalt für x ∈ [a,b] unter dem
Graphen von f ist).

(b) Wie in Beispiel 12.2 betrachten wir noch einmal die Funktion f : [0,1]→ R, x 7→ x mit den
Zerlegungen Zn = {0, 1

n , . . . ,1}. Da das Unterintegral nach Definition eine obere Schranke
für alle Untersummen (und analog das Oberintegral eine untere Schranke für alle Obersum-
men) ist, folgt aus der Rechnung von Beispiel 12.2 sowie Lemma 12.6

n−1
2n

= US( f ,Zn)≤ UI( f )≤ OI( f )≤ OS( f ,Zn) =
n+1

2n
,

und damit durch Grenzwertbildung n→ ∞ nach Satz 5.24 (a)

1
2
≤ UI( f )≤ OI( f )≤ 1

2
,

d. h. UI( f ) = OI( f ) = 1
2 . Also ist f integrierbar mit

∫ 1
0 f (x)dx = 1

2 – was anschaulich ja
auch die Dreiecksfläche unter dem Graphen von f ist.



12. Integralrechnung 143

(c) Es sei f die (unstetige) Funktion

f : [0,1]→ R, x 7→

{
1 für x = 0,
0 für x > 0.

Für die gleiche Zerlegung Zn = {0, 1
n ,

2
n , . . . ,1} wie in (b) ist

diesmal US( f ,Zn) = 0 und OS( f ,Zn) =
1
n (im Bild rechts ist

die Obersumme eingezeichnet). Also folgt wieder

1

x

f (x)

11
n

0 = US( f ,Zn)≤ UI( f )≤ OI( f )≤ OS( f ,Zn) =
1
n
,

und damit wie in (b) durch Grenzwertbildung für n→ ∞

0≤ UI( f )≤ OI( f )≤ 0 ⇒ UI( f ) = OI( f ) = 0.

Damit ist f integrierbar mit
∫ 1

0 f (x)dx = 0 – was auch anschaulich einleuchtend ist, denn
unter dem einen Punkt, an dem der Funktionswert gleich 1 ist, liegt ja kein Flächeninhalt
größer als Null.

(d) Wir betrachten die Funktion

f : [0,1]→ R, x 7→

{
1 für x ∈Q,
0 für x /∈Q.

.

Da in jedem Teilintervall von [0,1] nach Aufgabe 5.36 sowohl rationale als auch irrationale
Zahlen liegen, ist auf jedem solchen Teilintervall das Infimum von f gleich 0 und das Su-
premum gleich 1. Damit folgt US( f ,Z) = 0 und OS( f ,Z) = 1 für jede Zerlegung Z, d. h. es
ist auch UI( f ) = 0 und OI( f ) = 1. Also ist f nicht integrierbar – mit unseren Definitionen
können wir den Flächeninhalt unter dem Graphen von f nicht sinnvoll definieren.

Aufgabe 12.10. Zeige durch eine explizite Berechnung von Ober- und Untersummen, dass

(a)
∫ a

0
ex dx = ea−1 (b)

∫ a

0
xn dx =

1
n+1

an+1

für alle a ∈ R>0 und n ∈ N. (Hinweis: Aufgabe 4.11 ist für (b) nützlich.)

Bevor wir die wichtigsten Eigenschaften integrierbarer Funktionen untersuchen, wollen wir zunächst
noch ein einfaches Kriterium für die Integrierbarkeit beweisen, das implizit auch bereits in unseren
Rechnungen von Beispiel 12.9 versteckt ist.

Lemma 12.11 (Riemannsches Integrabilitätskriterium). Es sei f : [a,b]→ R eine beschränkte
Funktion.

(a) Die Funktion f ist genau dann integrierbar, wenn es zu jedem ε > 0 eine Zerlegung Z von
[a,b] gibt mit OS( f ,Z)−US( f ,Z)< ε .

(b) Die Funktion f ist genau dann integrierbar mit Integral
∫ b

a f (x)dx = c, wenn es zu jedem
ε > 0 Zerlegungen Z und Z′ von [a,b] gibt mit OS( f ,Z)< c+ ε und US( f ,Z′)> c− ε .

Beweis.

„⇒“: Es sei f integrierbar mit
∫ b

a f (x)dx = UI( f ) = OI( f ) = c. Da OI( f ) nach Definition die
größte untere Schranke für die Obersummen von f ist, ist c+ ε

2 keine untere Schranke mehr,
d. h. es gibt eine Zerlegung Z von [a,b] mit OS( f ,Z)< c+ ε

2 . Analog gibt es eine Zerlegung
Z′ von [a,b] mit US( f ,Z′) > c− ε

2 , was bereits (b) zeigt. Außerdem erfüllt die Zerlegung
Z∪Z′ dann auch die Eigenschaft von (a), denn nach Lemma 12.3 (a) ist

OS( f ,Z∪Z′)−US( f ,Z∪Z′)≤ OS( f ,Z)−US( f ,Z′)<
(

c+
ε

2

)
−
(

c− ε

2

)
= ε.
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„⇐“: Für Teil (a) haben wir zu jedem ε > 0 eine Zerlegung Z wie in der Voraussetzung, und damit

OI( f )−UI( f )≤ OS( f ,Z)−US( f ,Z)< ε,

da das Ober- bzw. Unterintegral eine untere bzw. obere Schranke für die Ober- bzw. Unter-
summen sind. Nimmt man hier den Grenzwert für ε → 0, so ergibt sich OI( f )−UI( f )≤ 0,
mit Lemma 12.6 also OI( f ) = UI( f ). Damit ist f dann integrierbar.

Für Teil (b) gibt es stattdessen für jedes ε > 0 Zerlegungen Z und Z′ von [a,b] mit

c− ε < US( f ,Z′)≤ UI( f )≤ OI( f )≤ OS( f ,Z)< c+ ε,

woraus im Grenzfall ε → 0 die Ungleichungskette c ≤ UI( f ) ≤ OI( f ) ≤ c folgt, d. h. f ist
integrierbar mit Integral c. □26

Als erste Anwendung dieses Kriteriums wollen wir nun untersuchen, wie die Integrierbarkeit mit
der Stetigkeit einer Funktion zusammenhängt. Dazu haben wir in Beispiel 12.9 (c) schon gesehen,
dass integrierbare Funktionen nicht notwendig stetig sein müssen. Die Umkehrung ist jedoch immer
richtig:

Satz 12.12. Ist f : [a,b]→ R stetig, so ist f auch integrierbar auf [a,b].

Beweis. Nach Satz 8.23 ist f beschränkt, so dass wir also die Begriffe dieses Kapitels anwenden
können. Wir zeigen die Integrierbarkeit von f mit dem Kriterium aus Lemma 12.11 (a).

Es sei also ε > 0 gegeben. Da f auf dem abgeschlossenen Intervall [a,b] stetig ist, ist f dort nach Satz
8.50 sogar gleichmäßig stetig. Es gibt also ein δ > 0, so dass | f (y)− f (z)|< ε

b−a für alle y,z ∈ [a,b]
mit |y− z|< δ . Wir wählen nun eine Zerlegung Z = {x0, . . . ,xn} von [a,b] mit xi− xi−1 < δ für alle
i, d. h. alle Teilintervalle sollen kürzer als δ sein. Dann gilt

OS( f ,Z)−US( f ,Z) =
n

∑
i=1

(xi− xi−1) ·
(

sup f ([xi−1,xi])− inf f ([xi−1,xi])
)
.

Als stetige Funktion nimmt f auf jedem Teilintervall [xi−1,xi] nach Satz 8.25 an einer Stelle yi ein
Maximum und an einer Stelle zi ein Minimum an. Da yi und zi beide im Intervall [xi−1,xi] liegen,
dessen Länge ja kleiner als δ ist, ist natürlich auch |yi−zi|< δ und damit | f (yi)− f (zi)|< ε

b−a nach
Wahl von δ . Wir können oben also weiterrechnen und erhalten

OS( f ,Z)−US( f ,Z) =
n

∑
i=1

(xi− xi−1) · ( f (yi)− f (zi))<
n

∑
i=1

(xi− xi−1) ·
ε

b−a
= ε,

woraus nun mit Lemma 12.11 (a) die Behauptung folgt. □

Als Nächstes wollen wir die wichtigsten elementaren Eigenschaften von integrierbaren Funktionen
herleiten.

Satz 12.13 (Eigenschaften des Integrals). Es seien f ,g : [a,b]→ R integrierbare Funktionen. Dann
gilt:

(a) Die Funktion f +g ist ebenfalls integrierbar auf [a,b], und es gilt∫ b

a
( f (x)+g(x))dx =

∫ b

a
f (x)dx+

∫ b

a
g(x)dx.

(b) Für alle c ∈ R ist c f ebenfalls integrierbar auf [a,b], und es gilt∫ b

a
c f (x)dx = c ·

∫ b

a
f (x)dx.

(c) Ist f ≤ g, d. h. f (x)≤ g(x) für alle x ∈ [a,b], so ist
∫ b

a
f (x)dx≤

∫ b

a
g(x)dx.

(d) Die Funktion | f | ist ebenfalls integrierbar auf [a,b], und es gilt die Dreiecksungleichung∣∣∣∣∫ b

a
f (x)dx

∣∣∣∣≤ ∫ b

a
| f (x)|dx.
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Beweis. Wir verwenden das Riemannsche Integrabilitätskriterium aus Lemma 12.11.

(a) Da f und g integrierbar sind, gibt es für alle ε > 0 nach Lemma 12.11 (b) Zerlegungen Z
und Z′ von [a,b] mit

OS( f ,Z)<
∫ b

a
f (x)dx+

ε

2
und OS(g,Z′)<

∫ b

a
g(x)dx+

ε

2
.

Nach Aufgabe 12.4 (a) und Lemma 12.3 (a) folgt daraus

OS( f +g,Z∪Z′)≤ OS( f ,Z∪Z′)+OS(g,Z∪Z′)≤ OS( f ,Z)+OS(g,Z′)

<
∫ b

a
f (x)dx+

∫ b

a
g(x)dx+ ε.

Analog finden wir für die Untersummen Zerlegungen Z̃ und Z̃′ mit

US( f +g, Z̃∪ Z̃′)>
∫ b

a
f (x)dx+

∫ b

a
g(x)dx− ε.

Die Behauptung folgt nun aus Lemma 12.11 (b) angewendet auf f +g.

(b) Für c = 0 ist die Aussage trivial. Es sei nun c > 0. Zu gegebenem ε > 0 gibt es dann wieder
eine Zerlegung Z von [a,b] mit OS( f ,Z)<

∫ b
a f (x)dx+ ε

c . Damit folgt aus Aufgabe 12.4 (b)
dann

OS(c f ,Z) = c ·OS( f ,Z)< c ·
∫ b

a
f (x)dx+ ε.

Eine analoge Abschätzung bekommen wir natürlich auch wieder für die Untersummen. Da-
mit folgt die Behauptung für c > 0 aus Lemma 12.11 (b).

Für c < 0 ergibt sich die Behauptung genauso aus der analog zu zeigenden Aussage
OS(c f ,Z) = c ·US( f ,Z).

(c) Aus f ≤ g folgt sofort OS( f ,Z)≤OS(g,Z) für jede Zerlegung Z, und damit durch Übergang
zum Infimum über alle Z auch

∫ b
a f (x)dx = OI( f )≤ OI(g) =

∫ b
a g(x)dx.

(d) Wir zeigen zunächst die Integrierbarkeit von | f |. Dazu sei wieder ε > 0 gegeben; nach Lem-
ma 12.11 (a) können wir eine Zerlegung Z von [a,b] wählen mit OS( f ,Z)−US( f ,Z) < ε .
Mit Aufgabe 12.4 (c) folgt dann aber auch

OS(| f |,Z)−US(| f |,Z)≤ OS( f ,Z)−US( f ,Z)< ε,

und damit ist | f | nach Lemma 12.11 (a) integrierbar. Die Abschätzung des Integrals erhalten
wir nun aus (c): Wegen f ≤ | f | und − f ≤ | f | ist sowohl∫ b

a
f (x)dx≤

∫ b

a
| f (x)|dx als auch −

∫ b

a
f (x)dx

(b)
=
∫ b

a
− f (x)dx≤

∫ b

a
| f (x)|dx,

woraus sich die Behauptung ergibt, da
∣∣∫ b

a f (x)dx
∣∣ in jedem Fall eine dieser beiden linken

Seiten ist. □

Eine weitere sehr anschauliche Eigenschaft von Integralen ist die sogenannte Additivität: für jede
Zwischenstelle c ∈ (a,b) ist die Fläche unter dem gesamten Graphen von f : [a,b]→ R gleich der
Summe der Flächen von a bis c und von c bis b.

Satz 12.14 (Additivität des Integrals). Es seien f : [a,b]→ R
eine Funktion und c ∈ (a,b). Ist f dann sowohl auf [a,c] als
auch auf [c,b] integrierbar, so auch auf [a,b], und es gilt∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx.

a c b

f∫ c

a
f (x)dx ∫ b

c
f (x)dx
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Beweis. Der Beweis ist sehr ähnlich zu dem von Satz 12.13 (a). Es sei ε > 0 gegeben. Da f auf [a,c]
und [c,b] integrierbar ist, gibt es Zerlegungen Z bzw. Z′ dieser beiden Intervalle, so dass

OS( f |[a,c],Z)<
∫ c

a
f (x)dx+

ε

2
und OS( f |[c,b],Z′)<

∫ b

c
f (x)dx+

ε

2
.

Die Obersumme von f bezüglich der Zerlegung Z ∪ Z′ ist dann offensichtlich gerade die Summe
dieser beiden Teilobersummen, d. h. wir haben

OS( f ,Z∪Z′) = OS( f |[a,c],Z)+OS( f |[c,b],Z′)<
∫ c

a
f (x)dx+

∫ b

c
f (x)dx+ ε,

und eine analoge Aussage auch genauso für die Untersummen. Damit folgt die Behauptung aus
Lemma 12.11 (b). □

Notation 12.15 (Integrale mit vertauschten Grenzen). Bisher haben wir Integrale
∫ b

a f (x)dx nur für
a≤ b definiert. Ist hingegen a > b, so vereinbaren wir die Notation∫ b

a
f (x)dx :=−

∫ a

b
f (x)dx, (∗)

wenn f auf [b,a] integrierbar ist. Dies hat den Vorteil, dass die Formel aus Satz 12.14 (im Fall der
Integrierbarkeit) dann nicht nur für a ≤ c ≤ b, sondern für beliebige a,b,c gilt: Ist z. B. a < b < c,
so ist nach Satz 12.14 ∫ c

a
f (x)dx =

∫ b

a
f (x)dx+

∫ c

b
f (x)dx,

was (durch Subtraktion von
∫ c

b f (x)dx auf beiden Seiten) mit der Konvention (∗) wieder die gleiche
Form ∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx

wie in Satz 12.14 hat.

Beispiel 12.16 (Stückweise stetige Funktionen). Es sei f : [a,b]→ R eine Funktion. Wir nennen
einen Punkt c ∈ [a,b] eine Sprungstelle von f , wenn die drei Zahlen

lim
x→c
x<c

f (x), lim
x→c
x>c

f (x) und f (c)

existieren, aber nicht alle gleich sind (falls c einer der Randpunkte
des Intervalls ist, gibt es den Grenzwert natürlich nur von einer
der beiden Seiten). Man nennt f stückweise stetig, wenn f wie
im Bild rechts stetig bis auf endlich viele Sprungstellen ist.

Eine solche stückweise stetige Funktion ist stets integrierbar:

f (x)

a bx1 x2

x

(a) Es seien a = x0 < x1 < · · · < xn = b die Sprungstellen und Randpunkte des Definitions-
intervalls. Auf jedem Teilintervall [xi−1,xi] für i = 1, . . . ,n ist f dann eine stetige Funktion
mit evtl. abgeänderten Funktionswerten an den Rändern, also die Summe aus einer stetigen
Funktion und geeigneten Vielfachen der „Sprungfunktionen“

[xi−1,xi]→ R, x 7→

{
1 für x = xi−1,
0 für x > xi−1

und [xi−1,xi]→ R, x 7→

{
1 für x = xi,
0 für x < xi.

Da eine stetige Funktion und diese Sprungfunktionen nach Satz 12.12 und Beispiel 12.9 (c)
integrierbar sind, ist nach Satz 12.13 (a) und (b) auch f |[xi−1,xi] integrierbar.

(b) Nach der Additivität aus Satz 12.14 ist f damit auch auf [a,b] integrierbar.

Aufgabe 12.17. Zeige, dass die folgenden Funktionen integrierbar sind:

(a) eine beliebige monotone Funktion f : [a,b]→ R;

(b) f : [−1,1]→ R, x 7→

{
sin 1

x für x ̸= 0,
0 für x = 0;
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(c) f : [0,1]→R, x 7→

{
1
q für x ∈Q mit gekürzter Darstellung x = p

q für p ∈ N und q ∈ N>0,

0 für x ∈ R\Q.

Aufgabe 12.18. Für eine Zerlegung Z = {x0, . . . ,xk} eines Intervalls [a,b] definieren wir die Feinheit
l(Z) als den größten Abstand max{xi−xi−1 : i = 1, . . . ,k} zwischen zwei benachbarten Punkten von
Z.

Es seien nun eine Folge (Zn) von Zerlegungen Zn = {xn,0, . . . ,xn,kn} von [a,b] mit lim
n→∞

l(Zn) = 0

sowie Zwischenpunkte ξn,i ∈ [xn,i−1,xn,i] für n ∈ N und i = 1, . . . ,kn gegeben. Zeige, dass dann für
jede stetige Funktion f : [a,b]→ R∫ b

a
f (x)dx = lim

n→∞

kn

∑
i=1

(xn,i− xn,i−1) f (ξn,i)

gilt, also dass man das Integral statt mit Ober- und Untersummen auch mit einer beliebigen „Zwi-
schensumme“ berechnen kann.

12.B Stammfunktionen

Unsere bisherigen Ergebnisse erlauben es uns zwar, von vielen Funktionen die Integrierbarkeit nach-
zuweisen, aber noch nicht, den Wert des Integrals dann auch explizit zu berechnen. Wie wir in der
Einleitung dieses Kapitels schon motiviert haben, ist das zentrale Resultat für solche Berechnun-
gen die Aussage, dass die Integration die Umkehrung der Differentiation ist. Um dies zu zeigen,
benötigen wir zur Vorbereitung noch einen kleinen und sehr anschaulichen Hilfssatz.

Satz 12.19 (Mittelwertsatz der Integralrechnung). Es sei
f : [a,b]→ R eine stetige Funktion. Dann gibt es einen Punkt
c ∈ [a,b] mit ∫ b

a
f (x)dx = f (c) · (b−a)

(d. h. die Fläche unter dem Graphen ist wie im Bild rechts gleich
der Fläche eines Rechtecks, dessen Höhe ein Funktionswert f (c)
auf dem betrachteten Intervall ist).

f (c)

x
a bc

f (x)
M

m

Beweis. Nach Satz 8.25 nimmt f als stetige Funktion auf einem abgeschlossenen Intervall ein Ma-
ximum M und Minimum m an. Also folgt aus Beispiel 12.9 (a) und Satz 12.13 (c)

m(b−a) =
∫ b

a
mdx≤

∫ b

a
f (x)dx≤

∫ b

a
M dx = M (b−a),

und damit

m≤ 1
b−a

·
∫ b

a
f (x)dx≤M.

Da f stetig ist, gibt es nun nach dem Zwischenwertsatz 8.21 ein c∈ [a,b] mit f (c)= 1
b−a ·

∫ b
a f (x)dx –

was genau die Behauptung war. □

Bemerkung 12.20. Mit Notation 12.15 gilt die Gleichung
∫ b

a f (x)dx = f (c)(b− a) für ein c zwi-
schen a und b auch für den Fall a > b: Anwenden des Mittelwertsatzes 12.19 auf das Intervall [b,a]
liefert dann zunächst

∫ a
b f (x)dx = f (c)(a−b), woraus wir aber durch Multiplikation mit−1 wieder

die Form
∫ b

a f (x)dx = f (c)(b−a) erhalten können.

Satz 12.21 (Hauptsatz der Differential- und Integralrechnung). Es sei f : [a,b]→R eine stetige
Funktion. Dann ist die Funktion

F : [a,b]→ R, x 7→
∫ x

a
f (t)dt

(bei der wir also das Integral von f berechnen und dabei die Obergrenze als Variable nehmen)
differenzierbar mit F ′ = f .
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Beweis. Wir zeigen die Differenzierbarkeit von F in einem Punkt c∈ [a,b] mit dem Folgenkriterium.
Es sei also (xn)n eine beliebige Folge in [a,b]\{c} mit xn→ c. Dann gilt für alle n

F(xn)−F(c) =
∫ xn

a
f (t)dt−

∫ c

a
f (t)dt

=
∫ xn

c
f (t)dt (Satz 12.14 bzw. Notation 12.15)

= f (zn)(xn− c) (Satz 12.19 bzw. Bemerkung 12.20)

für ein zn zwischen c und xn. Beachte, dass wegen xn→ c auch zn→ c gilt, da zn ja immer zwischen
c und xn liegt. Da f stetig ist, haben wir damit

lim
n→∞

F(xn)−F(c)
xn− c

= lim
n→∞

f (zn) = f (c)

nach dem Folgenkriterium für Stetigkeit aus Satz 8.12 (b). Wiederum nach dem Folgenkriterium
gemäß Satz 8.12 (a) bedeutet dies nun aber gerade wie gewünscht

F ′(c) = lim
x→c

F(x)−F(c)
x− c

= f (c). □

Beispiel 12.22. Die Voraussetzung der Stetigkeit im Hauptsatz 12.21 ist wirklich notwendig: Be-
trachten wir z. B. noch einmal die unstetige Funktion

f : [0,1]→ R, x 7→

{
1 für x = 0,
0 für x > 0

aus Beispiel 12.9 (c), so ist hier

F(x) =
∫ x

0
f (t)dt = 0 für alle x ∈ [0,1].

Diese Funktion ist zwar differenzierbar, hat als Ableitung jedoch die Nullfunktion und nicht f .

Für die Integralberechnung benötigen wir also Funktionen, deren Ableitung die ursprünglich gege-
bene Funktion ist. Wir geben solchen Funktionen daher einen besonderen Namen. Wegen Beispiel
12.22 beschränken wir uns dabei auf stetige Funktionen.

Definition 12.23 (Stammfunktionen). Es seien D⊂R ein Intervall und f : D→R eine stetige Funk-
tion. Dann heißt eine differenzierbare Funktion F : D→ R mit F ′ = f eine Stammfunktion von f .

Folgerung 12.24 (Integralberechnung mit Stammfunktionen). Es sei f : [a,b] → R eine stetige
Funktion. Dann gilt:

(a) Die Funktion f besitzt eine Stammfunktion.

(b) Sind F und G zwei Stammfunktionen von f , so unterscheiden sich diese nur um eine additive
Konstante, d. h. es gibt ein c ∈ R mit F−G = c.

(c) Ist F eine Stammfunktion von f , so gilt∫ b

a
f (x)dx = F(b)−F(a).

Beweis.

(a) folgt unmittelbar aus Satz 12.21: Die dort angegebene Funktion x 7→
∫ x

a f (t)dt ist eine
Stammfunktion von f .

(b) Nach Voraussetzung ist (F −G)′ = F ′−G′ = f − f = 0. Damit ist F −G nach Folgerung
10.24 (c) konstant.

(c) Nach dem Hauptsatz 12.21 sind sowohl F als auch x 7→
∫ x

a f (t)dt Stammfunktionen von f .
Also gibt es nach (b) eine Konstante c ∈ R mit

F(x)−
∫ x

a
f (t)dt = c
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für alle x ∈ [a,b]. Einsetzen von x = a liefert F(a) = c, und damit

F(x)−F(a) =
∫ x

a
f (t)dt.

Für x = b ergibt sich nun die Behauptung. □

Notation 12.25 (Unbestimmte Integrale). Man schreibt die Differenz F(b)− F(a) in Folgerung
12.24 (c) oft auch als

[
F(x)

]b
x=a oder F(x)

∣∣b
x=a (wenn die Integrationsvariable aus dem Zusammen-

hang klar ist, auch als
[
F(x)

]b
a oder F(x)

∣∣b
a), und die dortige Gleichung damit als∫ b

a
f (x)dx =

[
F(x)

]b
a.

Da dies für beliebige Integrationsgrenzen a und b gilt, vereinfacht man diese Notation oft noch
weiter und schreibt gemäß Folgerung 12.24 einfach∫

f (x)dx = F(x), (∗)

für die Aussage, dass F eine Stammfunktion von f ist. Man bezeichnet dies dann auch als ein
unbestimmtes Integral. Beachte aber, dass (∗) nur eine symbolische Schreibweise ist, die erst nach
dem Einsetzen von Grenzen zu einer echten Gleichheit in R wird! Dies kann man alleine schon
daran sehen, dass x von der Notation her auf der linken Seite eine Integrationsvariable ist, auf der
rechten Seite aber wie eine freie Variable aussieht (siehe Bemerkung 12.8 (a)). Außerdem ist mit F
z. B. auch F +1 eine Stammfunktion von f , d. h. wir können sowohl∫

f (x)dx = F(x) als auch
∫

f (x)dx = F(x)+1

schreiben – was natürlich sofort zum Widerspruch F(x) = F(x)+ 1 führen würde, wenn man dies
als echte Gleichungen von Funktionen betrachten dürfte.

Beispiel 12.26. Wir können nun viele Integrale konkret berechnen, indem wir vom Integranden eine
Stammfunktion suchen:

(a) Ist f : R→ R, x 7→ xa für ein a ∈ R\{−1}, so ist F : R→ R, x 7→ 1
a+1 xa+1 nach Beispiel

10.28 (d) eine Stammfunktion von f , d. h. mit Notation 12.25 gilt∫
xa dx =

1
a+1

xa+1 für a ̸=−1.

Konkret können wir damit z. B. das Integral aus Beispiel 12.9 (b) auch ohne komplizierte
Berechnung von Ober- und Untersummen bestimmen: Es ist einfach∫ 1

0
xdx =

[
1
2

x2
]1

x=0
=

1
2
·12− 1

2
·02 =

1
2
.

(b) Für a =−1 ist die Formel aus (a) natürlich nicht anwendbar. Wir haben aber glücklicherwei-
se mit dem Logarithmus schon eine Funktion kennengelernt, deren Ableitung nach Beispiel
10.28 (c) gleich x 7→ 1

x ist. Es ist also ∫ 1
x

dx = logx

für Integrationsintervalle in R>0 (so dass der Logarithmus dort definiert ist). Falls das In-
tegrationsintervall in R<0 liegt, können wir als Stammfunktion x 7→ log(−x) nehmen, denn
auch die Ableitung dieser Funktion ist ja gleich x 7→ 1

x . Insgesamt ist damit∫ 1
x

dx = log |x|.

(c) Durch die Ableitungen der speziellen Funktionen, die wir in Beispiel 10.28 berechnet haben,
sehen wir genauso z. B.∫

ex dx = ex,
∫

cosx dx = sinx und
∫

sinx dx =−cosx.
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27
Nach der Einführung von Stammfunktionen wollen wir unseren Integralbegriff nun noch etwas er-
weitern. Bisher konnten wir Integrale nur für beschränkte Funktionen auf abgeschlossenen Interval-
len definieren. Oft treten allerdings Fälle auf, in denen eine oder beide Integrationsgrenzen entweder
nicht mehr im Definitionsbereich liegen oder aber gleich ±∞ sind. Auch in diesen Fällen kann man
durch eine einfache Grenzwertbildung das Integral definieren.

Definition 12.27 (Uneigentliche Integrale).

(a) Es sei f : [a,b)→R eine reelle Funktion (wobei der Fall b = ∞ zugelassen ist). Wir nehmen
weiterhin an, dass f auf jedem abgeschlossenen Intervall [a,c] mit a≤ c < b integrierbar ist.
Existiert dann der Grenzwert∫ b

a
f (x)dx := lim

c→b
c<b

∫ c

a
f (x)dx ∈ R∪{±∞},

so nennen wir ihn das uneigentliche Integral von f auf [a,b). Liegt dieser Grenzwert zusätz-
lich in R, so heißt das uneigentliche Integral

∫ b
a f (x)dx konvergent, andernfalls divergent.

Analog definiert man uneigentliche Integrale im Fall f : (a,b]→ R.

(b) Es sei nun f : (a,b)→ R, wobei die Fälle a = −∞ bzw. b = ∞ wieder zugelassen sind. Für
ein c ∈ (a,b) setzen wir dann∫ b

a
f (x)dx :=

∫ c

a
f (x)dx+

∫ b

c
f (x)dx,

sofern die rechte Summe (von zwei uneigentlichen Integralen gemäß (a)) in R∪{±∞} exis-
tiert, also falls beide Einzelintegrale existieren und deren Summe nicht von der unbestimm-
ten Form ∞−∞ ist. Beachte, dass diese Summe dann wegen der Additivität des Integrals
aus Satz 12.14 nicht von der Wahl des Zwischenpunktes c abhängt. Wie im Fall (a) spricht
man auch hier von einem (beidseitig) uneigentlichen Integral bzw. von der Konvergenz oder
Divergenz dieses Integrals.

Beispiel 12.28.

(a) Für a ∈ R>0\{1} ist∫ 1

0

1
xa dx = lim

c→0
c>0

∫ 1

c

1
xa dx = lim

c→0
c>0

[
1

1−a
x1−a

]1

c
=

1
1−a

lim
c→0
c>0

(1− c1−a)

=

{
1

1−a für a < 1,
∞ für a > 1.

Das uneigentliche Integral konvergiert also genau für a < 1. Anschaulich bedeutet dies, dass
die Fläche von 0 bis 1 unter dem Graphen von x 7→ 1

xa in diesem Fall (wie im Bild unten
links für a = 1

2 dargestellt) endlich ist, obwohl sie nach oben eine unendliche Ausdehnung
hat.

(a) (b)
1 2 3

1

1

1

2

3 f (x) = x
f (x) = 1

x1/2 = 1√
x
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(b) Das uneigentliche Integral der Identität f (x) = x auf (−∞,∞) existiert nicht, denn bei der
Wahl des Zwischenpunktes 0 erhalten wir den unbestimmten Ausdruck∫

∞

−∞

xdx =
∫ 0

−∞

xdx+
∫

∞

0
xdx = lim

c→−∞

∫ 0

c
xdx+ lim

c→∞

∫ c

0
xdx

= lim
c→−∞

[
1
2

x2
]0

c
+ lim

c→∞

[
1
2

x2
]c

0
=

1
2

lim
c→−∞

−c2 +
1
2

lim
c→∞

c2

=−∞+∞.

Auch anschaulich ist im Bild oben rechts ersichtlich, dass sich dieser Flächeninhalt aus einer
unendlich großen negativen und positiven Fläche zusammensetzt. Beachte, dass wir nicht das
gleiche Ergebnis erhalten hätten, wenn wir das uneigentliche Integral symmetrisch um die
vertikale Achse als

lim
c→∞

∫ c

−c
xdx = lim

c→∞

[
1
2

x2
]c

−c
=

1
2

lim
c→∞

(c2− c2) = 0

definiert hätten!

12.C Integrationsregeln

In Abschnitt 12.B haben wir alle Stammfunktionen zur Berechnung von Integralen letztlich „durch
Zufall“ gefunden – also weil wir uns einfach an eine Funktion erinnern konnten, deren Ableitung
wir schon einmal berechnet haben und bei der für diese Ableitung dann die gegebene Funktion
herauskam. Daher müssen wir uns jetzt natürlich fragen, wie man Stammfunktionen berechnen kann,
wenn man nicht gerade zufällig eine solche sieht. Gibt es analog zur Berechnung von Ableitungen
auch Regeln, mit denen man, wenn man die Stammfunktionen einiger spezieller Funktionen kennt,
auch die Stammfunktionen z. B. ihrer Produkte, Quotienten oder Verkettungen berechnen kann?

Leider gibt es keine solchen universellen Regeln. Dies ist auch der Grund dafür, dass in mathemati-
schen Formelsammlungen oft seitenweise Tabellen von Stammfunktionen stehen, während man für
das Differenzieren aufgrund der Produkt-, Quotienten- und Kettenregel keine derartigen Tabellen
benötigt. Es gibt jedoch auch für die Integration ein paar Regeln, mit denen man Integrale oft be-
rechnen kann – nur ist es je nach der betrachteten Funktion mehr oder weniger schwierig (oder evtl.
sogar unmöglich), einen Weg zu finden, um mit diesen Regeln ans Ziel zu kommen.

Wir wollen nun die wichtigsten derartigen Regeln behandeln. Die erste ist im wesentlichen nur die
„umgekehrte Richtung“ der Produktregel der Differentiation:

Satz 12.29 (Partielle Integration bzw. Produktintegration). Es seien u,v : [a,b]→ R stetig diffe-
renzierbare Funktionen. Dann gilt∫ b

a
u′(x)v(x)dx =

[
u(x)v(x)

]b
a−

∫ b

a
u(x)v′(x)dx

(bzw. als unbestimmtes Integral
∫

u′(x)v(x)dx = u(x)v(x)−
∫

u(x)v′(x)dx).

Beweis. Nach der Produktregel aus Satz 10.8 (b) ist uv eine Stammfunktion von (uv)′ = u′v+ uv′.
Also ist

∫ b
a (u

′(x)v(x)+ u(x)v′(x))dx =
[
u(x)v(x)

]b
a. Die Behauptung folgt dann durch Subtraktion

von
∫ b

a u(x)v′(x)dx nach Satz 12.13. □

Beispiel 12.30. Die Regel aus Satz 12.29 nennt sich „partielle Integration“, weil bei der Berechnung
des Integrals auf der linken Seite mit Hilfe der rechten neben einem „ausintegrierten Anteil“ noch
ein anderes Integral übrig bleibt – nämlich eines, bei dem wir von einem Faktor des ursprünglichen
Integrals die Ableitung und vom anderen eine Stammfunktion gebildet haben. Die Anwendung die-
ser Regel ist also vor allem dann sinnvoll, wenn dieses neue Integral bereits bekannt oder zumindest
einfacher als das ursprüngliche ist. Hier sind zwei Beispiele dafür.
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(a) Zur Berechnung von
∫

x cosx dx setzen wir (mit den Notationen von Satz 12.29)

u(x) = sinx u′(x) = cosx
v(x) = x v′(x) = 1

und erhalten ∫
x cosx dx = x sinx−

∫
sinx dx = x sinx+ cosx.

Wir haben bei der Anwendung der partiellen Integration also den Faktor x differenziert und
den Faktor cosx integriert. Möchte man dies in der Rechnung deutlich machen (und die
Funktionen u, u′, v, v′ nicht explizit hinschreiben), so notiert man dies auch oft als∫

x
↓

cosx
↑

dx = x sinx−
∫

sinx dx = x sinx+ cosx.

Beachte, dass die umgekehrte Wahl hier nicht zum Ziel geführt hätte: Die Rechnung∫
x
↑

cosx
↓

dx =
x2

2
cosx+

∫ x2

2
sinx dx

ist zwar korrekt, aber das neue Integral ist hier komplizierter als das ursprüngliche.

(b) Das Integral
∫

logx dx lässt sich mit einem Trick ebenfalls durch partielle Integration be-
rechnen: ∫

logx dx =
∫

1
↑
· logx
↓

dx = x logx−
∫

x · 1
x

dx = x logx− x.

Dieser Trick funktioniert hier, weil aus der (komplizierten) Logarithmusfunktion beim Ab-
leiten die sehr viel einfachere Funktion 1

x entsteht. Auf die gleiche Art kann man übrigens
auch die Integrale der Arkusfunktionen aus Definition 9.25 berechnen, da auch diese bei der
Differentiation sehr viel einfacher werden (siehe Beispiel 10.28 (c)).

Die zweite wichtige Integrationsregel ergibt sich analog aus der Kettenregel der Differentiation.

Satz 12.31 (Substitutionsregel). Es seien f : [a,b]→ R eine stetig differenzierbare Funktion und
g : D→ R eine stetige Funktion auf einer Teilmenge D⊂ R mit f ([a,b])⊂ D. Dann gilt∫ b

a
g( f (x)) f ′(x)dx =

∫ f (b)

f (a)
g(y)dy.

Beweis. Nach Folgerung 8.26 ist f ([a,b]) ein abgeschlossenes Intervall, und damit hat g nach
Folgerung 12.24 (a) dort eine Stammfunktion G. Die Kettenregel aus Satz 10.10 liefert dann
(G◦ f )′(x) = g( f (x)) f ′(x). Damit ist die linke Seite der zu beweisenden Gleichung∫ b

a
(G◦ f )′(x)dx =

[
G( f (x))

]b
x=a = G( f (b))−G( f (a)),

und die rechte Seite ebenfalls∫ f (b)

f (a)
g(y)dy =

[
G(y)

] f (b)
y= f (a) = G( f (b))−G( f (a)). □

Bemerkung 12.32. Die Substitutionsregel nimmt in der Differentialschreibweise aus Notation 10.14
eine besonders einfache Form an: Setzen wir y = f (x) und damit dy

dx = f ′(x), und bezeichnen wir
die Integrationsgrenzen mit x1 = a und x2 = b bzw. y1 = f (a) und y2 = f (b), so schreibt sich die
Substitutionsregel als ∫ x2

x1

g(y)
dy
dx

dx =
∫ y2

y1

g(y)dy,

oder analog zu Notation 12.25 einfach als∫
g(y)

dy
dx

dx =
∫

g(y)dy,
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wenn man darauf achtet, dass die Grenzen passend zur Integrationsvariablen gewählt werden. Die
Regel sieht dann also einfach wie ein „formales Erweitern mit dx“ aus.

Beispiel 12.33. Die Substitutionsregel bietet sich natürlich immer dann an, wenn die zu integrieren-
de Funktion eine Verkettung von zwei anderen Funktionen ist oder enthält – und insbesondere dann,
wenn die Ableitung der inneren Funktion zusätzlich auch noch als Faktor im Integranden steht.

(a) Beim Integral
∫

xex2
dx stellen wir fest, dass sich im Integranden eine verkettete Funktion

ex2
befindet, und dass die Ableitung 2x der inneren Funktion x2 auch (bis auf die Konstante

2) zusätzlich noch als Faktor im Integranden steht. Wir substituieren also y = x2, so dass
dy
dx = 2x in der Notation von Bemerkung 12.32 gilt. Damit folgt also∫

xex2
dx =

1
2

∫ dy
dx

ey dx 12.31
=

1
2

∫
ey dy =

1
2

ey =
1
2

ex2
.

Im Fall eines bestimmten Integrals hätten wir bei der Anwendung von Satz 12.31 die Gren-
zen mitsubstituieren müssen:∫ b

a
xex2

dx =
1
2

∫ b

a

dy
dx

ey dx 12.31
=

1
2

∫ b2

a2
ey dy =

1
2
[
ey]b2

y=a2 =
1
2
(
eb2 − ea2)

.

Beachte, dass der Faktor x im Integranden bei diesem Beispiel ganz wesentlich dafür war,
dass die Substitutionsregel zum Ziel geführt hat: Ohne diesen Faktor hätten wir mit derselben
Substitution ∫

ex2
dx =

∫ 1
2x
· dy

dx
ey dx =

1
2

∫ ey

√
y

dy

erhalten – was zwar auch richtig ist, aber nicht weiter hilft, weil das neue Integral auch
nicht einfacher als das ursprüngliche zu berechnen ist. In der Tat kann man zeigen, dass sich
die Stammfunktion von ex2

nicht durch die uns bisher bekannten „speziellen Funktionen“
ausdrücken lässt.

(b) Besonders einfach wird die Substitutionsregel im Fall der sogenannten linearen Substitution:
Ist f eine beliebige stetige Funktion, deren Stammfunktion F wir kennen, so können wir
damit immer auch die Stammfunktion von f (ax+ b) mit a,b ∈ R und a ̸= 0 bestimmen,
da die innere Ableitung hier eine Konstante ist: Substituieren wir y = ax+b, so ergibt sich
wegen dy

dx = a∫
f (ax+b)dx =

1
a

∫
f (y)

dy
dx

dx 12.31
=

1
a

∫
f (y)dy =

1
a

F(y) =
1
a

F(ax+b).

Konkret ist also z. B. ∫ 1
2x+3

dx =
1
2

log |2x+3|,

da x 7→ log |x| nach Beispiel 12.26 (b) eine Stammfunktion von x 7→ 1
x ist.

Wir hatten in Beispiel 12.33 (a) bereits erwähnt, dass sich die Stammfunktionen von Funktionen,
die aus unseren speziellen Funktionen zusammengesetzt sind, manchmal nicht wieder auf diese Art
schreiben lassen. Für viele Klassen von Funktionen ist dies aber doch der Fall – z. B. für rationale
Funktionen der Form p

q für zwei Polynome p und q. Wir wollen dies hier nun zeigen, der Einfachheit
halber allerdings nur für den Fall, dass das Nennerpolynom q in verschiedene Linearfaktoren zerfällt
und größeren Grad als das Zählerpolynom p hat. Der Trick besteht in diesem Fall darin, den Aus-
druck p

q als Summe von Brüchen zu schreiben, die nur eine Konstante im Zähler und einen einzigen
Linearfaktor im Nenner haben. Derartige Funktionen der Form c

x−a lassen sich mit einer linearen
Substitution wie in Beispiel 12.33 (b) dann einfach zu c log |x−a| integrieren.

Lemma 12.34 (Partialbruchzerlegung). Es seien n ∈ N>0 und a1, . . . ,an ∈ R verschieden. Ferner
sei p ein reelles Polynom mit deg p < n. Dann gilt

p(x)
(x−a1) · · ·(x−an)

=
n

∑
i=1

ci

x−ai
für ci :=

p(ai)

(ai−a1) · · ·(ai−ai−1)(ai−ai+1) · · ·(ai−an)
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für alle x ∈ R\{a1, . . . ,an}.

Beweis. Offensichtlich ist

f (x) := p(x)−
n

∑
i=1

ci(x−a1) · · ·(x−ai−1)(x−ai+1) · · ·(x−an) (∗)

ein Polynom mit deg f < n. Es hat aber jedes ak für k = 1, . . . ,n als Nullstelle, denn nach der Defini-
tion von c1, . . . ,cn im Lemma ist

f (ak) = p(ak)− ck(ak−a1) · · ·(ak−ak−1)(ak−ak+1) · · ·(ak−an) = 0,

wobei die erste Gleichung gilt, da nach Einsetzen von x = ak in der Summe über i in (∗) alle Terme
mit i ̸= k einen Faktor 0 haben und damit verschwinden.

Nach Satz 3.19 (b) ist f also das Nullpolynom. Division von (∗) durch (x− a1) · · ·(x− an) liefert
damit wie behauptet

0 =
p(x)

(x−a1) · · ·(x−an)
−

n

∑
i=1

ci

x−ai
. □

Bemerkung 12.35. Die Formel für die Koeffizienten ci in Lemma 12.34 lässt sich leicht merken:
Man erhält ci, indem man x = ai im ursprünglichen Ausdruck p(x)

(x−a1)···(x−ai)···(x−an)
einsetzt – bis auf

den Linearfaktor x−ai im Nenner, den man dabei weglassen muss, da er ansonsten ja auch zu einem
Faktor 0 im Nenner führen würde.

Beispiel 12.36. Um das Integral
∫ x

x2+3x+2 dx zu berechnen, führen wir eine Partialbruchzerlegung
des Integranden durch: Mit x2 +3x+2 = (x+1)(x+2) ist

x
(x+1)(x+2)

=
c1

x+1
+

c2

x+2
,

wobei sich c1 =
−1
1 =−1 durch Einsetzen von x =−1 in x

x+2 und c2 =
−2
−1 = 2 durch Einsetzen von

x =−2 in x
x+1 ergibt. Also ist∫ x

x2 +3x+2
dx =

∫ (
− 1

x+1
+2

1
x+2

)
dx =− log |x+1|+2 log |x+2|

nach einer linearen Substitution wie in Beispiel 12.33 (b).

Als letzte Rechenregel zur Bestimmung von Integralen wollen wir nun noch untersuchen, wie man
Integrale von Funktionen berechnen kann, die als Grenzwerte von Funktionenfolgen entstehen – also
z. B. von Potenzreihen. Die Situation ist hier sehr viel einfacher als sie es bei der Differentiation in
Satz 10.26 war.

Satz 12.37 (Vertauschbarkeit von Integration und Grenzwertbildung). Es seien fn : [a,b]→ R ste-
tige Funktionen, die gleichmäßig gegen eine (nach Satz 8.38 dann automatisch ebenfalls stetige)
Grenzfunktion f : [a,b]→ R konvergieren. Dann gilt∫ b

a

(
lim
n→∞

fn(x)
)

dx =
∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx,

d. h. „Grenzwertbildung und Integration können vertauscht werden“.

Beweis. Die erste behauptete Gleichheit ist natürlich nichts weiter als die Definition von f . Für die
zweite sei ε > 0 gegeben. Wegen der gleichmäßigen Konvergenz von ( fn)n gibt es ein n0 ∈ N, so
dass | fn(x)− f (x)|< ε

2(b−a) für alle x ∈ [a,b] und n≥ n0. Damit ergibt sich nach Satz 12.13∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣∣∣∣= ∣∣∣∣∫ b

a
( fn(x)− f (x))dx

∣∣∣∣≤ ∫ b

a
| fn(x)− f (x)|dx≤

∫ b

a

ε

2(b−a)
dx

=
ε

2
< ε.

Nach Definition des Grenzwerts bedeutet dies genau
∫ b

a fn(x)dx→
∫ b

a f (x)dx für n→ ∞, was zu
zeigen war. □
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Bemerkung 12.38 (Integration von Potenzreihen). Insbesondere bedeutet Satz 12.37, dass Potenz-
reihen (die in jedem abgeschlossenen Intervall innerhalb des Konvergenzgebiets nach Satz 8.36 ja
gleichmäßig konvergieren) gliedweise integriert werden können: Sind f (x) =∑

∞
k=0 ck xk eine Potenz-

reihe und fn(x) = ∑
n
k=0 ck xk ihre Partialsummen, so folgt

∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx = lim

n→∞

[
n

∑
k=0

ck

k+1
xk+1

]b

a

=

[
∞

∑
k=0

ck

k+1
xk+1

]b

a

(sofern [a,b] komplett im Konvergenzintervall der Potenzreihe liegt), d. h. als unbestimmtes Integral
geschrieben ist ∫

f (x)dx =
∞

∑
k=0

ck

k+1
xk+1.

Dies zeigt noch einmal deutlich die besonders schönen Eigenschaften von Potenzreihen: Innerhalb
ihres Konvergenzgebiets kann man mit ihnen praktisch „wie mit Polynomen rechnen“, d. h.

• sie können wie erwartet addiert und multipliziert werden (Lemma 7.4 und Bemerkung 7.37);

• sie sind beliebig oft differenzierbar und ihre Ableitungen können gliedweise berechnet wer-
den (Folgerung 10.27 und Satz 11.8);

• Integrale können gliedweise berechnet werden;

• „viele Funktionen“ können als Potenzreihe (nämlich als ihre Taylor-Reihe, siehe Kapitel 11)
geschrieben werden.

Beispiel 12.39.

(a) Wir betrachten die Funktion f : R>0 → R, x 7→ logx. Die Ableitung dieser Funktion ist
natürlich f ′(x) = 1

x . Nun können wir dies für |x−1|< 1 mit Hilfe der geometrischen Reihe
(siehe Beispiel 7.3 (a)) als

f ′(x) =
1

1+(x−1)
= 1− (x−1)+(x−1)2− (x−1)3±·· ·

schreiben. Diese Potenzreihe kann jetzt aber nach Bemerkung 12.38 gliedweise integriert
werden, und darum ist

(x−1)− (x−1)2

2
+

(x−1)3

3
− (x−1)4

4
±·· ·

für |x−1| < 1, also auf (0,2), eine Stammfunktion von f ′. Nach Folgerung 12.24 (b) kann
sich diese von der ursprünglichen Funktion f nur um eine additive Konstante unterscheiden –
Einsetzen von x = 1 liefert aber auch sofort, dass diese Konstante gleich 0 ist. Also erhalten
wir die Darstellung

logx = (x−1)− (x−1)2

2
+

(x−1)3

3
− (x−1)4

4
±·· ·

für alle x ∈ (0,2) (die wir in Beispiel 11.15 (a) bereits für x ∈ [1,2] bewiesen hatten).

(b) Eine analoge Rechnung können wir auch mit der Funktion f : (−1,1)→ R, x 7→ arctanx
durchführen: Hier ist die Ableitung

f ′(x) =
1

1+ x2 = 1− x2 + x4− x6±·· · ,

und damit ist

x− x3

3
+

x5

5
− x7

7
±·· ·

eine Stammfunktion von f ′, die sich von f wiederum nur um eine additive Konstante unter-
scheiden kann. Auch hier ist diese Konstante wegen arctan0 = 0 wieder gleich 0, und wir
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erhalten auf (−1,1) ohne irgendwelche komplizierte Rechnungen die Potenzreihendarstel-
lung der Arkustangens-Funktion

arctanx = x− x3

3
+

x5

5
− x7

7
±·· · .

Aufgabe 12.40. Berechne die folgenden (z. T. unbestimmten bzw. uneigentlichen) Integrale:

(a)
∫ 1

−1

1√
2x+3

dx (b)
∫

∞

0
x2 e−2x dx (c)

∫ x3 + x2 +1
x3− x

dx

(d)
∫ e2

e

log(logx)
x logx

dx (e)
∫ 1

1+ ex dx (f)
∫ π

2

0
sin8 x cos3 xdx

Aufgabe 12.41. Zeige mit Induktion über n ∈ N, dass∫ π
2

− π
2

cosn xdx =

{
π · 1

2 ·
3
4 ·

5
6 · · · · ·

n−1
n falls n gerade,

2 · 2
3 ·

4
5 ·

6
7 · · · · ·

n−1
n falls n ungerade.

Aufgabe 12.42 (Integralkriterium für Reihen). Es sei f : R≥1 → R≥0 eine stetige und monoton
fallende Funktion. Man zeige:

(a) Das uneigentliche Integral
∫

∞

1 f (x)dx hat das gleiche Konvergenzverhalten wie die Reihe
∑

∞
n=1 f (n), d. h. es sind entweder beide konvergent oder beide divergent.

(b) Für a ∈ R konvergiert die Reihe ∑
∞
n=1

1
na genau dann, wenn a > 1. (Dies ist eine Verallge-

meinerung von Beispiel 7.3 (c) und 7.20 auf reelle Exponenten.)

Gilt die Aussage (a) auch ohne die Voraussetzung, dass f monoton fallend ist?

Aufgabe 12.43. Es sei f : [0,1]→ R eine stetige Funktion. Man zeige:

(a) lim
n→∞

∫ 1
0 f (x)xn dx = 0.

(b) Gilt f (x) = f (1− x) für alle x ∈ [0,1], so ist
∫ 1

0 x f (x)dx = 1
2
∫ 1

0 f (x)dx.

Aufgabe 12.44. Es seien a,b ∈ R>0 und f : [0,a]→ [0,b] eine bijektive, stetig differenzierbare
Funktion. Man zeige:

(a) Ist f monoton wachsend mit f (0)= 0 und f (a)= b, dann gilt
∫ a

0 f (x)dx+
∫ b

0 f−1(x)dx= ab.

(b) Ist f monoton fallend mit f (0) = b und f (a) = 0, dann gilt
∫ a

0 f (x)dx =
∫ b

0 f−1(x)dx.

Was bedeuten diese Aussagen geometrisch?

Aufgabe 12.45 (Binomische Reihe). Für a ∈ R definieren wir die verallgemeinerten Binomialko-
effizienten durch (

a
n

)
:=

a · (a−1) · · · · · (a−n+1)
n!

für alle n ∈ N. Wir betrachten nun auf D = (−1,1) die Funktion f : D→ R, f (x) = (1+ x)a. Man
zeige:

(a) Die Taylor-Reihe von f mit Entwicklungspunkt 0 ist gegeben durch Tf ,0(x) = ∑
∞
n=0
(a

n

)
xn

und konvergiert auf D.

(b) Es gilt sogar (1+ x)a = ∑
∞
n=0
(a

n

)
xn für alle x ∈ D, d. h. die Taylor-Reihe stellt wirklich die

ursprüngliche Funktion dar. (Hinweis: Zeige zunächst, dass die Ableitung von Tf ,0
f gleich 0

ist.)

(c) Die Funktion arcsin lässt sich auf D als Potenzreihe schreiben. Berechne diese Potenzreihe
explizit!

Was ergibt sich aus der binomischen Reihe in den Spezialfällen a ∈ N bzw. a =−1?
28


