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12. Integralrechnung

Als Abschluss der Analysis in einer Verdnderlichen wollen wir nach der Differentiation nun noch
die Integration betrachten. Wie auch schon im letzten Kapitel wollen wir uns dabei auf den reellen
Fall beschrinken, da sich die Integralrechnung iiber C ganz anders verhilt. In der Tat sind komplexe
Integrale (oder allgemein die komplexe Analysis) der wesentliche Inhalt der Vorlesung ,,Einfiihrung
in die Funktionentheorie®, die ihr im zweiten Studienjahr horen konnt.

Die Integralrechnung kann man auf zweierlei Arten motivieren. Ist f: [a,b] — R eine reelle Funk-
tion, so konnen wir die folgenden beiden Fragestellungen betrachten:

o (Flichenberechnung) Wie grof} ist die Fldche, die unter dem Graphen von f liegt (im Bild
unten links grau eingezeichnet) — oder allgemeiner, wie kann man den Flidcheninhalt ge-
kriimmter Flachen berechnen?

f@)
4 b 4 cx b

e (Umkehrung der Differentiation) Gibt es eine differenzierbare Funktion F: [a,b] — R, deren
Ableitung F’ gleich f ist — und wenn ja, wie kdnnen wir ein solches F bestimmen? Diese
Frage hat oft auch eine anschauliche Bedeutung: Beschreibt eine Funktion z. B. die Position
eines Gegenstandes in Abhingigkeit von der Zeit, so ist die Ableitung dieser Funktion, al-
so die lokale Positionsidnderung pro Zeiteinheit, natiirlich einfach die Geschwindigkeit des
Gegenstandes. Wenn wir von der Ableitung auf die urspriingliche Funktion zuriick schlie-
Ben wollen, mochten wir anschaulich also aus der Kenntnis der Geschwindigkeit zu jedem
Zeitpunkt die von dem Gegenstand zuriickgelegte Wegstrecke berechnen konnen.

Es ist leicht einzusehen, dass diese beiden Probleme sehr eng miteinander zusammenhéngen: Be-
zeichnen wir fiir ¢ € [a,b] mit F(c) die Fliche, die tiber dem Intervall [a, c] unter dem Graphen von
f liegt, so ist F(x) — F(c) fiir x € [a,b] natiirlich gerade die Fliche unter f zwischen ¢ und x (im
Bild oben rechts grau eingezeichnet). Fiir x nahe bei c ist dies niherungsweise eine Rechteckfldche
der Breite x — ¢ und Hohe f(c), d. h. es ist

F(x) = F(c)

F(x)—F(c)~ (x—c¢)- f(c), und damit o

~ f(e).
Im Grenzfall x — ¢ sollte also F' = f gelten, d.h. das Problem der Flichenberechnung unter dem
Graphen einer Funktion sollte automatisch auch zur Umkehrung der Differentiation fiihren.

Wir werden uns im Folgenden zunichst in Abschnitt 12.A mit dem ersten Problem der Fldchenbe-
rechnung beschiftigen, und daraufhin dann in Abschnitt 12.B den Zusammenhang zur Umkehrung
der Differentiation herstellen.

12.A Das Riemann-Integral

Um den Flicheninhalt unter dem Graphen einer Funktion f: [a,b] — R untersuchen zu kénnen,
miissen wir natiirlich zunéchst erst einmal mit einer exakten Definition dieses Konzepts beginnen.
Die Idee hierfiir ist einfach: Wir zerlegen das Intervall [a,b] in viele kleine (nicht notwendig gleich
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lange) Teilintervalle, und approximieren die Fliche unter dem Graphen von f durch Rechteckfld-
chen iiber diesen Teilintervallen, indem wir wie im Bild unten als Hohe der Rechtecke einmal das
Minimum und einmal das Maximum von f auf den betrachteten Teilintervallen wihlen. Auf diese
Art erhalten wir leicht zu berechnende Flidchen, die im Fall des Minimums etwas kleiner und im Fall
des Maximums etwas grofler als die gesuchte Fliche sind. Wenn wir die Zerlegung in die Teilinter-
valle immer feiner machen (wie z. B. im Bild unten rechts), sollten diese Flichen dann von unten
bzw. oben gegen den gesuchten Flidcheninhalt unter dem Graphen von f konvergieren.

f(x) fx) f(x)

: — X , — X : — X

a b a b a ) b

Untersumme Obersumme Verfeinerung der
Untersumme

Wir wollen diese Idee nun mathematisch exakt definieren. Um die Theorie moglichst allgemein zu
halten, wollen wir uns dabei nicht auf stetige Funktionen beschrianken. Dies heif3t natiirlich, dass f
auf den betrachteten Teilintervallen nicht mehr notwendig ein Minimum und Maximum hat (siehe
Satz 8.25), sondern dass wir im Allgemeinen nur ein Infimum und Supremum erhalten — und das
auch nur dann, wenn wir voraussetzen, dass f beschrinkt ist.

Definition 12.1 (Zerlegungen, Unter- und Obersummen). Es sei f: [a,b] — R eine beschriinkte
Funktion.

(a) Eine endliche Teilmenge Z = {xo,x,...,X,} von Punkten in [a,b] mit a,b € Z bezeichnen
wir als eine Zerlegung des Intervalls [a,b]. Wir vereinbaren, dass wir in dieser Schreibweise
die xo,...,x, immer so anordnen wollen, dass a = xo < x| < --- < x,, = b gilt. Sind Z,Z’
zwei Zerlegungen von [a,b] mit Z C Z', so nennen wir Z' eine Verfeinerung von Z.

(b) Ist Z = {xy,...,x,} eine Zerlegung von [a,b], so heift

US(f,Z): (xi —xj—1) -inf f([x;—1,x;]) die Untersumme, und analog

I
™=

Il
-

i
=

OS(f,Z): (xi —xi—1) -sup f([xi—1,x]) die Obersumme

von f beziiglich Z.

Beispiel 12.2. Wir betrachten die Funktion f: [0,1] — R, x+ x, und fiir
gegebenes n € Ny die Zerlegung Z, = {0, %, %, ..., 1}. Natiirlich ist das f(x) /
Supremum von f auf einem Teilintervall [, £] genau der Funktions-
wert ﬁ an der rechten Intervallgrenze, und damit ist die Obersumme von
f beziiglich Z, (also die fiir den Fall n = 5 im Bild rechts eingezeichnete

graue Flidche) gleich

Losiooi—1y i 1 & 331l onn+l) n+l
05<f7zn>=.2(“*)';:7212,72' 2 o | P
B 5

Analog miissen wir fiir die Untersumme jeweils den Funktionswert % an der linken Intervallgrenze
nehmen, und erhalten

ustrz) =X (-0 ) = R

n n.l

nl (n—1)n  n—1

. 1
i=—- )
n? 2 2n

™~

i=0
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Lemma 12.3 (Eigenschaften von Unter- und Obersummen). Es seien f: [a,b] — R eine beschrdnkte
Funktion und Z,Z' zwei Zerlegungen von |a,b]. Dann gilt:

(a) Ist Z' eine Verfeinerung von Z, so ist US(f,Z') > US(f,Z) und OS(f,Z') < OS(f,Z).

(b) US(f,2) <OS(f,Z).

Beweis.

(a) Da jede Verfeinerung von Z durch endliches Hinzufiigen von weiteren Unterteilungspunkten
entsteht, geniigt es, den Fall zu betrachten, dass Z’ durch Hinzufiigen eines weiteren Punktes
aus Z entsteht, also dass Z = {xo,...,x,} und Z' = {xp,x1,...,%_1,%, X, ..., %, } ist. Nach
Definition ist dann

US(f,Z') =Y (xi—xi—1) -inf f([xi—1,x])
i+k
+ (¢ = xg1) -inf f([re-1,2]) + (o —x) - inf ([, x]).
In dieser Summe sind nun die beiden Infima in der zweiten Zeile groBler oder gleich dem
Infimum der groBeren Menge f([xx_1,x¢]). Also erhalten wir wie gewiinscht

US(£,2') > Y (5 —xi1)-inf f([xio1,x]) + (i —xe1) -inf f((x1,x]) = US(£,Z).
i#k
Die Aussage liber die Obersumme beweist man natiirlich analog.
(b) Da ZUZ' eine gemeinsame Verfeinerung von Z und Z' ist, erhalten wir mit (a)
US(f.2) <US(f,2UZ') < 0S(f,ZUZ') < OS(f.Z),
wobei die mittlere Ungleichung gilt, weil das Infimum einer Menge immer kleiner oder

gleich dem Supremum ist. g

Aufgabe 12.4. Es scien f,g: [a,b] — R zwei beschrinkte Funktionen, Z eine Zerlegung von [a, b]
und ¢ € R>. Man zeige:

() OS(f +¢.Z) < OS(f,Z) +
(b) OS(Cf7 )*C OS(f, )
(c) OS(|f1,2) - US(|f1,2) < OS(f,Z) - US(f,Z).

05(¢,2);

Lemma 12.3 (b) besagt insbesondere, dass jede Obersumme eine obere Schranke fiir alle Unter-
summen ist. Die Menge aller Untersummen ist also nach oben beschrinkt. Wir kdnnen damit das
Supremum aller Untersummen (und genauso das Infimum aller Obersummen) bilden:

Definition 12.5 (Unter- und Oberintegral). Es sei f: [a,b] — R beschrinkt. Dann heift
UI(f) := sup {US(f,Z) : Z Zerlegung von [a,b]} das Unterintegral, und analog
OI(f) :=inf {OS(f,Z) : Z Zerlegung von [a,b]}  das Oberintegral

von f.

Anschaulich bedeutet dies im Fall des Unterintegrals einfach, dass wir — wie in der Einleitung zu
diesem Abschnitt erklédrt — versuchen, die Untersummen (durch fortgesetztes Verfeinern der Zerle-
gungen) moglichst grof} zu machen, so dass wir uns letztlich immer mehr dem eigentlich gesuchten
Flacheninhalt unter dem Graphen von f nidhern. Das Supremum dieser Untersummen, also das Un-
terintegral, sollte demnach bereits der gesuchte Flacheninhalt unter dem Graphen von f sein. Das
gleiche gilt natiirlich auch fiir das Oberintegral, so dass wir insgesamt erwarten wiirden, dass Unter-
und Oberintegral iibereinstimmen und gleich dem gesuchten Flidcheninhalt sind.

Leider ist dies unter den schwachen Voraussetzungen, die wir bisher an f gestellt haben, im Allge-
meinen nicht der Fall, wie wir gleich in Beispiel 12.9 (d) sehen werden. Fiir beliebiges f erhalten
wir zunéchst nur die folgende Ungleichung.

Lemma 12.6. Fiir jede beschrinkte Funktion f: [a,b] — R gilt UI(f) < OI(f).
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Beweis. Nach Lemma 12.3 (b) gilt US(f,Z) < OS(f,Z’) fiir alle Zerlegungen Z und Z’ von [a,b].
Damit ist jedes US(f,Z) eine untere Schranke fiir alle Obersummen. Da OI(f) die groBte untere
Schranke fiir alle Obersummen ist, ist also US(f,Z) < OI(f) fiir alle Z. Analog ist damit nun OI(f)
eine obere Schranke fiir alle Untersummen, und damit UI(f) < OI(f). O

Definition 12.7 (Integrierbarkeit). Es sei f: [a,b] — R beschrinkt. Gilt dann UI(f) = OI(f), so
nennen wir f (Riemann-)integrierbar, und definieren das Integral von f als diesen Wert

[ reax=ui) =on).

Bemerkung 12.8.

(a)

(b)

Die Schreibweise ff f(x) dx ist an die Differentialschreibweise aus Notation 10.14 angelehnt
und soll andeuten, dass man sich das Integral entsprechend unserer Konstruktion anschau-
lich als eine ,,unendliche Summe kleiner Rechteckflichen® vorstellen kann. Dabei steht das
Integralzeichen [ als stilisiertes S weiterhin fiir eine Summe, und die aufsummierten Recht-
ecke haben die Hohe f(x) und Breite dx (sieche Notation 10.14), also die Fliche f(x)dx. Die
Integrationsvariable x ist damit analog zur Laufvariablen in einer Summe und kann daher
auch durch einen anderen Buchstaben ersetzt werden, darf aber natiirlich nicht gleichzeitig
noch fiir etwas anderes (z. B. die Ober- oder Untergrenze) verwendet werden: Ein Ausdruck
z.B. der Form [ f(x)dx ergibt keinen Sinn, genauso wenig wie eine Summe Y\ _, aj,.

Es gibt mehrere Arten, den Fldcheninhalt unter dem Graphen einer Funktion zu definieren.
Neben der hier behandelten Riemannschen Integrationstheorie tiber Unter- und Obersum-
men, die wohl die einfachste Herangehensweise ist, ist eine weitere wichtige Moglichkeit
das sogenannte Lebesgue-Integral, das zwar komplizierter zu definieren ist, dafiir aber all-
gemeiner ist in dem Sinne, dass eine grofere Klasse von Funktionen integrierbar wird. Wir
werden in dieser Vorlesung jedoch nur die Riemannsche Integrationstheorie behandeln und
daher statt von Riemann-Integrierbarkeit einfach immer nur von Integrierbarkeit reden. Die
Lebesguesche Integrationstheorie konnt ihr im zweiten Studienjahr in der Vorlesung ,,MaB-
und Integrationstheorie* kennenlernen.

Beispiel 12.9.

()

(b)

Ist f(x) = ¢ (mit ¢ € R) eine konstante Funktion, so sind die Infima und Suprema von f
auf allen Teilintervallen gleich ¢. Damit ist dann US(f,Z) = OS(f,Z) = c¢(b — a) fiir alle
Unterteilungen Z und somit auch UI(f) = OI(f) = ¢ (b — a). Also ist f integrierbar mit
/ (f f(x)dx = c(b—a) (was natiirlich auch genau der Flécheninhalt fiir x € [a,b] unter dem
Graphen von f ist).

Wie in Beispiel 12.2 betrachten wir noch einmal die Funktion f: [0,1] — R, x — x mit den

Zerlegungen Z, = {0, %, ..., 1}. Da das Unterintegral nach Definition eine obere Schranke
fiir alle Untersummen (und analog das Oberintegral eine untere Schranke fiir alle Obersum-

men) ist, folgt aus der Rechnung von Beispiel 12.2 sowie Lemma 12.6

n—1 n+1
= US(£,2,) <UI() <OI(f) £OS(f.2,) = ",

und damit durch Grenzwertbildung n — oo nach Satz 5.24 (a)

< UI(f) < OI(f) <

N =
N —

d.h. UI(f) = OI(f) = 3. Also ist f integrierbar mit fol f(x)dx = } — was anschaulich ja
auch die Dreiecksfliche unter dem Graphen von f ist.
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(c) Essei f die (unstetige) Funktion f(x)

1 firx=0, le-
fi0,1] >R, x— ar

0 firx>0.
Fiir die gleiche Zerlegung Z, = {0, %, %, ..., 1} wie in (b) ist
diesmal US(f,Z,) = 0 und OS(f,Z,) = % (im Bild rechts ist
die Obersumme eingezeichnet). Also folgt wieder

o |
=

0=US(/,2,) < UI(f) < OI(f) < OS(.2,) = 1,
und damit wie in (b) durch Grenzwertbildung fiir n — oo
0<UI(f) <OI(f) <0 = UI(f) =0I(f)=0.

Damit ist f integrierbar mit fol f(x)dx =0 — was auch anschaulich einleuchtend ist, denn
unter dem einen Punkt, an dem der Funktionswert gleich 1 ist, liegt ja kein Fldcheninhalt
grofer als Null.

(d) Wir betrachten die Funktion

1 firxeQ@,

f: [O,l]—>R,xn—>{O firx g Q.

Da in jedem Teilintervall von [0, 1] nach Aufgabe 5.36 sowohl rationale als auch irrationale
Zahlen liegen, ist auf jedem solchen Teilintervall das Infimum von f gleich 0 und das Su-
premum gleich 1. Damit folgt US(f,Z) = 0 und OS(f,Z) = 1 fiir jede Zerlegung Z, d. h. es
ist auch UI(f) = 0 und OI(f) = 1. Also ist f nicht integrierbar — mit unseren Definitionen
konnen wir den Fldcheninhalt unter dem Graphen von f nicht sinnvoll definieren.

Aufgabe 12.10. Zeige durch eine explizite Berechnung von Ober- und Untersummen, dass

a a 1
(a) / fdx=¢e*—1 (b) / dx = ——a"*!
0 0 n+1

fur alle a € R+ und n € N. (Hinweis: Aufgabe 4.11 ist fiir (b) niitzlich.)

Bevor wir die wichtigsten Eigenschaften integrierbarer Funktionen untersuchen, wollen wir zunédchst
noch ein einfaches Kriterium fiir die Integrierbarkeit beweisen, das implizit auch bereits in unseren
Rechnungen von Beispiel 12.9 versteckt ist.

Lemma 12.11 (Riemannsches Integrabilitéitskriterium). Es sei f: [a,b] — R eine beschrinkte
Funktion.

(a) Die Funktion f ist genau dann integrierbar, wenn es zu jedem € > (0 eine Zerlegung Z von
[a,b] gibt mit OS(f,Z) —US(f,Z) < &.

(b) Die Funktion f ist genau dann integrierbar mit Integral fab S(x)dx = ¢, wenn es zu jedem
€ > 0 Zerlegungen Z und Z' von |a,b] gibt mit OS(f,Z) < c+ € und US(f,Z') > c—¢.

Beweis.

»=“: Es sei f integrierbar mit fahf(x) dx = UI(f) = OI(f) = ¢. Da OI(f) nach Definition die
groBite untere Schranke fiir die Obersummen von f ist, ist ¢+ % keine untere Schranke mehr,
d. h. es gibt eine Zerlegung Z von [a,b] mit OS(f,Z) < c+ §. Analog gibt es eine Zerlegung
Z' von [a,b] mit US(f,Z") > c— §, was bereits (b) zeigt. AuBerdem erfiillt die Zerlegung
ZUZ' dann auch die Eigenschaft von (a), denn nach Lemma 12.3 (a) ist

' / , € £ .
0S(f,ZUZ')—US(f,ZUZ') <0S(f,Z) — US(f,Z') < <c+§) - <c— E) —¢.
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,»<=": Fiir Teil (a) haben wir zu jedem € > 0 eine Zerlegung Z wie in der Voraussetzung, und damit
OI(f) - UI(f) <0OS(f,2) —US(f,Z) <&,

da das Ober- bzw. Unterintegral eine untere bzw. obere Schranke fiir die Ober- bzw. Unter-
summen sind. Nimmt man hier den Grenzwert fiir € — 0, so ergibt sich OI(f) — UI(f) <0,
mit Lemma 12.6 also OI(f) = UI(f). Damit ist f dann integrierbar.

Fiir Teil (b) gibt es stattdessen fiir jedes € > 0 Zerlegungen Z und Z’ von [a, b] mit
c—e <US(f,Z') <UI(f) <OI(f) <OS(f,Z) < c+e,

woraus im Grenzfall € — 0 die Ungleichungskette ¢ < UI(f) < OI(f) < ¢ folgt, d. h. f ist
integrierbar mit Integral c. 0

Als erste Anwendung dieses Kriteriums wollen wir nun untersuchen, wie die Integrierbarkeit mit
der Stetigkeit einer Funktion zusammenhingt. Dazu haben wir in Beispiel 12.9 (c) schon gesehen,
dass integrierbare Funktionen nicht notwendig stetig sein miissen. Die Umkehrung ist jedoch immer
richtig:

Satz 12.12. Ist f: [a,b] — R stetig, so ist f auch integrierbar auf |a,D).

Beweis. Nach Satz 8.23 ist f beschrinkt, so dass wir also die Begriffe dieses Kapitels anwenden
konnen. Wir zeigen die Integrierbarkeit von f mit dem Kriterium aus Lemma 12.11 (a).

Es sei also € > 0 gegeben. Da f auf dem abgeschlossenen Intervall [a, b] stetig ist, ist f dort nach Satz
8.50 sogar gleichmiBig stetig. Es gibt also ein & > 0, so dass |f(y) — f(z)| < ;% fiiralle y,z € [a,b]
mit [y — z| < 8. Wir withlen nun eine Zerlegung Z = {xo, ..., x,} von [a,b] mit x; — x;_; < 0 fiir alle

i, d. h. alle Teilintervalle sollen kiirzer als 6 sein. Dann gilt

OS(f,Z2)—US(f,2) = i (x;i —xi-1) - (sup f([xi—1,x]) —inf f([xi-1,x])).

i=1

Als stetige Funktion nimmt f auf jedem Teilintervall [x;_;,x;] nach Satz 8.25 an einer Stelle y; ein
Maximum und an einer Stelle z; ein Minimum an. Da y; und z; beide im Intervall [x;_;,x;] liegen,
dessen Linge ja kleiner als § ist, ist natiirlich auch |y; —z;| < 8 und damit |f(y;) — f(z;)| < 5% nach

Wahl von 6. Wir kdnnen oben also weiterrechnen und erhalten
n

OS(f,2) =US(f,Z) = ) (xi —xi-1) - (f () = f(@1)) <

i=1 i

€
b—a

woraus nun mit Lemma 12.11 (a) die Behauptung folgt. ]

-

Il
-

(xXi —xi-1) - =¢,

Als Nichstes wollen wir die wichtigsten elementaren Eigenschaften von integrierbaren Funktionen
herleiten.

Satz 12.13 (Eigenschaften des Integrals). Es seien f,g: [a,b] — R integrierbare Funktionen. Dann
gilt:

(a) Die Funktion f + g ist ebenfalls integrierbar auf a,b), und es gilt

b b b
[ +gendr= [ rwdc+ [ glxax
a a a
(b) Fiir alle ¢ € R ist ¢ f ebenfalls integrierbar auf [a,b], und es gilt

/abcf(x)dx:c-/abf(x)dx.

(c) Ist f < g d h f(x) < g(x) fiir alle x € [a,b], so ist /hf(x) dx < /hg(x) dx.

(d) Die Funktion |f| ist ebenfalls integrierbar auf [a,b), und es gilt die Dreiecksungleichung

[ reoasl < [l




12. Integralrechnung 145

Beweis. Wir verwenden das Riemannsche Integrabilitétskriterium aus Lemma 12.11.

()

(b)

(©

(d)

Da f und g integrierbar sind, gibt es fiir alle € > 0 nach Lemma 12.11 (b) Zerlegungen Z
und Z’ von [a, b] mit

b b
</ f(x)derg und OS(g,Z’)</ g(x)dx+§
a a

Nach Aufgabe 12.4 (a) und Lemma 12.3 (a) folgt daraus
OS(f+g,ZUZ') <0S(f,ZUZ')+0S(g,ZUZ') <OS(f,Z)+0S(g,Z')

< /abf(x)dx—i-/abg(x)dx—i—s.

Analog finden wir fiir die Untersummen Zerlegungen Z und Z’ mit

US(f +g,ZUZ') >/hf(x)dx+/bg(x)dx78.

Die Behauptung folgt nun aus Lemma 12.11 (b) angewendet auf f + g.

Fiir ¢ = 0 ist die Aussage trivial. Es sei nun ¢ > 0. Zu gegebenem € > 0 gibt es dann wieder
eine Zerlegung Z von [a,b] mit OS(f,Z) < fuh f(x)dx+ £. Damit folgt aus Aufgabe 12.4 (b)
dann

b
0S(c f,Z) = ¢-08(f,Z) < c-/ Fo)dx+e.
a
Eine analoge Abschitzung bekommen wir natiirlich auch wieder fiir die Untersummen. Da-
mit folgt die Behauptung fiir ¢ > 0 aus Lemma 12.11 (b).

Fiir ¢ < 0 ergibt sich die Behauptung genauso aus der analog zu zeigenden Aussage
OS(cf,Z)=c-US(f,2).

Aus f < g folgt sofort OS(f,Z) < 0S(g, Z) fiir jede Zerlegung Z, und damit durch Ubergang
zum Infimum iiber alle Z auch fah F(x)dx=0I(f) <OI(g) = f:g(x) dx

Wir zeigen zuniéchst die Integrierbarkeit von | f|. Dazu sei wieder € > 0 gegeben; nach Lem-
ma 12.11 (a) kénnen wir eine Zerlegung Z von [a,b] wihlen mit OS(f,Z) —US(f,Z) < €
Mit Aufgabe 12.4 (c) folgt dann aber auch

OS(|f],2) = US(|f,2) <OS(f,Z) - US(f,2) < e

und damit ist | f| nach Lemma 12.11 (a) integrierbar. Die Abschitzung des Integrals erhalten
wir nun aus (c): Wegen f < |f| und —f < |f] ist sowohl

/abf(x)dxg/ab|f(x)|dx als auch —/abf(x)dx@/:—f(x)dxg/ab|f(x)|dx,

woraus sich die Behauptung ergibt, da ] fab f(x) dx’ in jedem Fall eine dieser beiden linken
Seiten ist. U

Eine weitere sehr anschauliche Eigenschaft von Integralen ist die sogenannte Additivitit: fiir jede
Zwischenstelle ¢ € (a,b) ist die Fliche unter dem gesamten Graphen von f: [a,b] — R gleich der
Summe der Fldchen von a bis ¢ und von c¢ bis b.

Satz 12.14 (Additivitit des Integrals). Es seien f: [a,b] — R
eine Funktion und ¢ € (a,b). Ist f dann sowohl auf [a,c| als
auch auf [c,b] integrierbar, so auch auf [a,b], und es gilt

/f dx—/f dx+/f
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Beweis. Der Beweis ist sehr dhnlich zu dem von Satz 12.13 (a). Es sei € > 0 gegeben. Da f auf [a, c]
und [c, b] integrierbar ist, gibt es Zerlegungen Z bzw. Z’ dieser beiden Intervalle, so dass

OS(fla.)- 2 /f dx+f und OS(flje,),Z /f dx+—

Die Obersumme von f beziiglich der Zerlegung Z U Z’ ist dann offensichtlich gerade die Summe
dieser beiden Teilobersummen, d. h. wir haben

c b
0S(f,2UZ') = OS(fljq.c)-Z) + OS(flie,Z') < / F)dx+ / F)dxte,

und eine analoge Aussage auch genauso fiir die Untersummen. Damit folgt die Behauptung aus
Lemma 12.11 (b). O

Notation 12.15 (Integrale mit vertauschten Grenzen). Bisher haben wir Integrale | ab S (x)dx nur fiir
a < b definiert. Ist hingegen a > b, so vereinbaren wir die Notation

/ " fx)dui= — | reax )

wenn f auf [b,a] integrierbar ist. Dies hat den Vorteil, dass die Formel aus Satz 12.14 (im Fall der
Integrierbarkeit) dann nicht nur fiir a < ¢ < b, sondern fiir beliebige a,b,c gilt: Ist z.B. a < b < c,

so ist nach Satz 12.14
c b c
| r@ax= [ rwdx+ [ fwax
a a b

was (durch Subtraktion von [; f(x)dx auf beiden Seiten) mit der Konvention (x) wieder die gleiche

Form b ,
/af(x)dx:/acf(x)dx—&—/c F(x)dx

Beispiel 12.16 (Stiickweise stetige Funktionen). Es sei f: [a,b] — R eine Funktion. Wir nennen
einen Punkt ¢ € [a, D] eine Sprungstelle von f, wenn die drei Zahlen

wie in Satz 12.14 hat.

~ i f(x)

lim f(x), limf(x) und f(c) .

x<c x>c !
existieren, aber nicht alle gleich sind (falls ¢ einer der Randpunkte ! i !
des Intervalls ist, gibt es den Grenzwert natiirlich nur von einer ° :(_/QI '
der beiden Seiten). Man nennt f stiickweise stetig, wenn f wie . { ! X
im Bild rechts stetig bis auf endlich viele Sprungstellen ist. : \ ! DX
Eine solche stiickweise stetige Funktion ist stets integrierbar: a X1 X b

(a) Es seien a = xp < x1 < --- < x, = b die Sprungstellen und Randpunkte des Definitions-
intervalls. Auf jedem Teilintervall [x;_;,x;] fir i = 1,...,n ist f dann eine stetige Funktion
mit evtl. abgeédnderten Funktionswerten an den Réndern, also die Summe aus einer stetigen
Funktion und geeigneten Vielfachen der ,,Sprungfunktionen‘

1 firx=ux;_1, 1 fiirx =x;,

[x,'_l,x,'] — R, X
0 fiirx < x;.

und [xi_l,xi]—>]R,x»—>
0 firx>x_

Da eine stetige Funktion und diese Sprungfunktionen nach Satz 12.12 und Beispiel 12.9 (c)
integrierbar sind, ist nach Satz 12.13 (a) und (b) auch f |[x,-71,xi] integrierbar.

(b) Nach der Additivitit aus Satz 12.14 ist f damit auch auf [a, b] integrierbar.
Aufgabe 12.17. Zeige, dass die folgenden Funktionen integrierbar sind:

(a) eine beliebige monotone Funktion f: [a,b] — R;
sin % fiir x # 0,

(b) f: [—1,1]—>R,xe{0 fiir x — O:
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L fiir x € Q mit gekiirzter Darstellung x = g fiir p € Nund g € Ny,

] q
(© f: [0,1]_>va'_>{0 fir x € R\Q.

Aufgabe 12.18. Fiir eine Zerlegung Z = {xy, ..., x; } eines Intervalls [a, b] definieren wir die Feinheit

1(Z) als den groften Abstand max{x; —x;_; :i = 1,...,k} zwischen zwei benachbarten Punkten von

Z.

Es seien nun eine Folge (Z,) von Zerlegungen Z, = {xn0,...,Xnk, } von [a,b] mit lim [(Z,) =0
’ ' n—oo

sowie Zwischenpunkte &, ; € [x,;1,%,;] firn € Nund i = 1,... k, gegeben. Zeige, dass dann fiir

jede stetige Funktion f: [a,b] — R
b kn
/ FE)dx=Tim Y (ons—3ni 1) F(&nr)
a n—o0 i—1
gilt, also dass man das Integral statt mit Ober- und Untersummen auch mit einer beliebigen ,,Zwi-
schensumme** berechnen kann.

12.B  Stammfunktionen

Unsere bisherigen Ergebnisse erlauben es uns zwar, von vielen Funktionen die Integrierbarkeit nach-
zuweisen, aber noch nicht, den Wert des Integrals dann auch explizit zu berechnen. Wie wir in der
Einleitung dieses Kapitels schon motiviert haben, ist das zentrale Resultat fiir solche Berechnun-
gen die Aussage, dass die Integration die Umkehrung der Differentiation ist. Um dies zu zeigen,
benotigen wir zur Vorbereitung noch einen kleinen und sehr anschaulichen Hilfssatz.

Satz 12.19 (Mittelwertsatz der Integralrechnung). Es sei
S [a,b] — R eine stetige Funktion. Dann gibt es einen Punkt M
¢ € [a,b] mit

[ reoas=s0)- o 0] S

(d. h. die Fldche unter dem Graphen ist wie im Bild rechts gleich mt
der Fliiche eines Rechtecks, dessen Hohe ein Funktionswert f(c)
auf dem betrachteten Intervall ist).

B oo
ScF---—--=-d---
=

1
|
L
[
[
i

a

Beweis. Nach Satz 8.25 nimmt f als stetige Funktion auf einem abgeschlossenen Intervall ein Ma-
ximum M und Minimum m an. Also folgt aus Beispiel 12.9 (a) und Satz 12.13 (¢)

m(bfa):/abmdxg/abf(x)dxg/abde:M(bfa)7

und damit

1 4
< . <M.
m_b—a /a F(x)dx <

Da f stetig ist, gibt es nun nach dem Zwischenwertsatz 8.21 ein ¢ € [a, b] mit f(c) = 7 - jff(x) dx—

—a
was genau die Behauptung war. g

Bemerkung 12.20. Mit Notation 12.15 gilt die Gleichung [” f(x)dx = f(c) (b — a) fiir ein ¢ zwi-
schen a und b auch fiir den Fall a > b: Anwenden des Mittelwertsatzes 12.19 auf das Intervall [b,a]
liefert dann zunichst [;' f(x)dx = f(c) (a —b), woraus wir aber durch Multiplikation mit —1 wieder

die Form jf f(x)dx = f(c) (b— a) erhalten kénnen.

Satz 12.21 (Hauptsatz der Differential- und Integralrechnung). Es sei f: [a,b] — R eine stetige
Funktion. Dann ist die Funktion

F [a,b]—>R,xl—>/xf(t)dt

(bei der wir also das Integral von f berechnen und dabei die Obergrenze als Variable nehmen)
differenzierbar mit F' = f.
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Beweis. Wir zeigen die Differenzierbarkeit von F in einem Punkt ¢ € [a, b] mit dem Folgenkriterium.
Es sei also (x,), eine beliebige Folge in [a,b]\{c} mit x, — ¢. Dann gilt fiir alle n

Fo)~Fe)= [ fayar— [ pie)a

Xn
:/ f(o)dt (Satz 12.14 bzw. Notation 12.15)
c
= f(zn) (xp— ) (Satz 12.19 bzw. Bemerkung 12.20)

fiir ein z,, zwischen c und x,,. Beachte, dass wegen x, — ¢ auch z, — ¢ gilt, da z,, ja immer zwischen
c und x, liegt. Da f stetig ist, haben wir damit

tim ZO ) i) = £(0)

n—oo Xp—C n—oo

nach dem Folgenkriterium fiir Stetigkeit aus Satz 8.12 (b). Wiederum nach dem Folgenkriterium
gemal Satz 8.12 (a) bedeutet dies nun aber gerade wie gewiinscht

F'(¢c) =lim Fo=Fle) _ f(c). O

X—C X—C
Beispiel 12.22. Die Voraussetzung der Stetigkeit im Hauptsatz 12.21 ist wirklich notwendig: Be-
trachten wir z. B. noch einmal die unstetige Funktion

ron-r sy e
aus Beispiel 12.9 (c), so ist hier
Fx) = /Oxf(t) di=0 firallexe[0,1],
Diese Funktion ist zwar differenzierbar, hat als Ableitung jedoch die Nullfunktion und nicht f.

Fiir die Integralberechnung benétigen wir also Funktionen, deren Ableitung die urspriinglich gege-
bene Funktion ist. Wir geben solchen Funktionen daher einen besonderen Namen. Wegen Beispiel
12.22 beschrianken wir uns dabei auf stetige Funktionen.

Definition 12.23 (Stammfunktionen). Es seien D C R ein Intervall und f: D — R eine stetige Funk-
tion. Dann heiBt eine differenzierbare Funktion F: D — R mit F’ = f eine Stammfunktion von f.

Folgerung 12.24 (Integralberechnung mit Stammfunktionen). Es sei f: [a,b] — R eine stetige
Funktion. Dann gilt:

(a) Die Funktion f besitzt eine Stammfunktion.

(b) Sind F und G zwei Stammfunktionen von f, so unterscheiden sich diese nur um eine additive
Konstante, d. h. es gibt ein c c Rmit F — G =c.

(¢) Ist F eine Stammfunktion von f, so gilt

/abf(x)dx:F(b)—F(a).

Beweis.

(a) folgt unmittelbar aus Satz 12.21: Die dort angegebene Funktion x — [ f(r)dt ist eine
Stammfunktion von f.

(b) Nach Voraussetzung ist (F —G)' = F' — G = f — f = 0. Damit ist ¥ — G nach Folgerung
10.24 (c) konstant.

(c) Nach dem Hauptsatz 12.21 sind sowohl F als auch x — [ f(¢)dt Stammfunktionen von f.
Also gibt es nach (b) eine Konstante ¢ € R mit

F(x)—/:f(t)dt:c
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fiir alle x € [a, b]. Einsetzen von x = a liefert F(a) = ¢, und damit

/fdt

Fiir x = b ergibt sich nun die Behauptung. 0
Notation 12.25 (Unbestimmte Integrale). Man schreibt die Differenz F(b) — F(a) in Folgerung
12.24 (c) oft auch als [F (x)]f:: oder F(x )|b (wenn die Integrationsvariable aus dem Zusammen-

hang klar ist, auch als [F (x)] oder F(x | ), und die dortige Gleichung damit als

[ = [Fo

Da dies fiir beliebige Integrationsgrenzen a und b gilt, vereinfacht man diese Notation oft noch
weiter und schreibt gemal Folgerung 12.24 einfach

[ #0)dx=F(), )

fur die Aussage, dass F' eine Stammfunktion von f ist. Man bezeichnet dies dann auch als ein
unbestimmtes Integral. Beachte aber, dass (x) nur eine symbolische Schreibweise ist, die erst nach
dem Einsetzen von Grenzen zu einer echten Gleichheit in R wird! Dies kann man alleine schon
daran sehen, dass x von der Notation her auf der linken Seite eine Integrationsvariable ist, auf der
rechten Seite aber wie eine freie Variable aussieht (siehe Bemerkung 12.8 (a)). Aullerdem ist mit '
z.B. auch F + 1 eine Stammfunktion von f, d. h. wir kénnen sowohl

/f(x) dx=F(x) als auch /f Ydx=F(x)+

schreiben — was natiirlich sofort zum Widerspruch F(x) = F(x) + 1 fithren wiirde, wenn man dies
als echte Gleichungen von Funktionen betrachten diirfte.

Beispiel 12.26. Wir konnen nun viele Integrale konkret berechnen, indem wir vom Integranden eine
Stammfunktion suchen:

(@ Ist f: R—> R, x—x?fireina € R\{—1},soist F: R > R, x — #x““ nach Beispiel
10.28 (d) eine Stammfunktion von f, d. h. mit Notation 12.25 gilt

" 1
/x“dx: Jrlx“+l fiira # —1.
. a

Konkret konnen wir damit z. B. das Integral aus Beispiel 12.9 (b) auch ohne komplizierte
Berechnung von Ober- und Untersummen bestimmen: Es ist einfach

! 1,1 1 1 1
de=|=-x*| =--12—2.0"=_.
/oxx [2xL0 27 T2 2

(b) Fiir a = —1 ist die Formel aus (a) natiirlich nicht anwendbar. Wir haben aber gliicklicherwei-
se mit dem Logarithmus schon eine Funktion kennengelernt, deren Ableitung nach Beispiel
10.28 (c) gleich x — % ist. Es ist also

1
/ —dx =logx
by

fiir Integrationsintervalle in R+ (so dass der Logarithmus dort definiert ist). Falls das In-
tegrationsintervall in R liegt, kdnnen wir als Stammfunktion x — log(—x) nehmen, denn
auch die Ableitung dieser Funktion ist ja gleich x — % Insgesamt ist damit

"1
/fdx:10g|x|.
J X

(c) Durch die Ableitungen der speziellen Funktionen, die wir in Beispiel 10.28 berechnet haben,
sehen wir genauso z. B.

/e" dx =¢", /cosx dx = sinx und /sinx dx = —COSX.
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Nach der Einfithrung von Stammfunktionen wollen wir unseren Integralbegriff nun noch etwas er-
weitern. Bisher konnten wir Integrale nur fiir beschrinkte Funktionen auf abgeschlossenen Interval-
len definieren. Oft treten allerdings Félle auf, in denen eine oder beide Integrationsgrenzen entweder
nicht mehr im Definitionsbereich liegen oder aber gleich £oo sind. Auch in diesen Fillen kann man
durch eine einfache Grenzwertbildung das Integral definieren.

Definition 12.27 (Uneigentliche Integrale).

(a)

(b)

Es sei f: [a,b) — R eine reelle Funktion (wobei der Fall b = oo zugelassen ist). Wir nehmen
weiterhin an, dass f auf jedem abgeschlossenen Intervall [a,c] mit a < ¢ < b integrierbar ist.
Existiert dann der Grenzwert

b c
/ fWdxi=tlim [ f)dx  €RU{too),
a c—b Jg
c<b
so nennen wir ihn das uneigentliche Integral von f auf [a,b). Liegt dieser Grenzwert zusitz-

lich in R, so heiBt das uneigentliche Integral | f f(x)dx konvergent, andernfalls divergent.
Analog definiert man uneigentliche Integrale im Fall f: (a,b] — R.

Es sei nun f: (a,b) — R, wobei die Fille a = —oo bzw. b = o wieder zugelassen sind. Fiir
ein ¢ € (a,b) setzen wir dann

/ahf(x) dx = /acf(x)dx+/chf(x)dx,

sofern die rechte Summe (von zwei uneigentlichen Integralen gemiR (a)) in RU {+oo} exis-
tiert, also falls beide Einzelintegrale existieren und deren Summe nicht von der unbestimm-
ten Form oo — oo ist. Beachte, dass diese Summe dann wegen der Additivitit des Integrals
aus Satz 12.14 nicht von der Wahl des Zwischenpunktes ¢ abhéngt. Wie im Fall (a) spricht
man auch hier von einem (beidseitig) uneigentlichen Integral bzw. von der Konvergenz oder
Divergenz dieses Integrals.

Beispiel 12.28.

(a)

Fiir a € Roo\{1} ist

11 11
/ —dx =1im dx—lim{
0 x4 c—0.Jo x4 c—0

oo
xl_“} = lim (1 —¢'79)
c>0 c>0

- 1—a 0
c>0

1—a ¢

_ ﬁ fira <1,
RES fira > 1.

Das uneigentliche Integral konvergiert also genau fiir a < 1. Anschaulich bedeutet dies, dass
die Flache von 0 bis 1 unter dem Graphen von x — x%, in diesem Fall (wie im Bild unten
links fiir a = % dargestellt) endlich ist, obwohl sie nach oben eine unendliche Ausdehnung
hat.

() (b)



12. Integralrechnung 151

(b) Das uneigentliche Integral der Identitdt f(x) = x auf (—oo,00) existiert nicht, denn bei der
Wahl des Zwischenpunktes 0 erhalten wir den unbestimmten Ausdruck

C

oo 0 o0 0
/ xdx:/ xdx+/ xdx = lim xdx+ lim [ xdx
—oo —oo 0 c——o0 Jo

c— J0

R N I A R
= lim |=x"| +lim |=x =— lim —¢"+ = limc
2], 2

c——o0 c—roo 0 2 c——o c—roo

Auch anschaulich ist im Bild oben rechts ersichtlich, dass sich dieser Flicheninhalt aus einer
unendlich groen negativen und positiven Fldche zusammensetzt. Beachte, dass wir nicht das
gleiche Ergebnis erhalten hitten, wenn wir das uneigentliche Integral symmetrisch um die
vertikale Achse als

¢ 1,1 1
lim [ xdx= lim [4 = _lim(c*—¢*) =0
c—oo | Cc—o0 - c—o0

definiert hétten!

12.C Integrationsregeln

In Abschnitt 12.B haben wir alle Stammfunktionen zur Berechnung von Integralen letztlich ,,durch
Zufall*“ gefunden — also weil wir uns einfach an eine Funktion erinnern konnten, deren Ableitung
wir schon einmal berechnet haben und bei der fiir diese Ableitung dann die gegebene Funktion
herauskam. Daher miissen wir uns jetzt natiirlich fragen, wie man Stammfunktionen berechnen kann,
wenn man nicht gerade zufillig eine solche sieht. Gibt es analog zur Berechnung von Ableitungen
auch Regeln, mit denen man, wenn man die Stammfunktionen einiger spezieller Funktionen kennt,
auch die Stammfunktionen z. B. ihrer Produkte, Quotienten oder Verkettungen berechnen kann?

Leider gibt es keine solchen universellen Regeln. Dies ist auch der Grund dafiir, dass in mathemati-
schen Formelsammlungen oft seitenweise Tabellen von Stammfunktionen stehen, wihrend man fiir
das Differenzieren aufgrund der Produkt-, Quotienten- und Kettenregel keine derartigen Tabellen
benotigt. Es gibt jedoch auch fiir die Integration ein paar Regeln, mit denen man Integrale oft be-
rechnen kann — nur ist es je nach der betrachteten Funktion mehr oder weniger schwierig (oder evtl.
sogar unmdoglich), einen Weg zu finden, um mit diesen Regeln ans Ziel zu kommen.

Wir wollen nun die wichtigsten derartigen Regeln behandeln. Die erste ist im wesentlichen nur die
,2umgekehrte Richtung® der Produktregel der Differentiation:

Satz 12.29 (Partielle Integration bzw. Produktintegration). Es seien u,v: [a,b] — R stetig diffe-
renzierbare Funktionen. Dann gilt

b b
/a U (x)v(x) dx = [u(x)v(x)]l;—/u u(x)v'(x)dx
(bzw. als unbestimmtes Integral [ u/(x)v(x)dx = u(x)v(x) — [ u(x)V'(x)dx).

Beweis. Nach der Produktregel aus Satz 10.8 (b) ist uv eine Stammfunktion von (uv)’ = u'v+uv'.
Also ist fab (f (x)v(x) + u(x)V'(x))dx = [u(x)v(x)]z. Die Behauptung folgt dann durch Subtraktion
von [?u(x)v/(x)dx nach Satz 12.13. O

Beispiel 12.30. Die Regel aus Satz 12.29 nennt sich ,,partielle Integration®, weil bei der Berechnung
des Integrals auf der linken Seite mit Hilfe der rechten neben einem ,,ausintegrierten Anteil* noch
ein anderes Integral iibrig bleibt — ndmlich eines, bei dem wir von einem Faktor des urspriinglichen
Integrals die Ableitung und vom anderen eine Stammfunktion gebildet haben. Die Anwendung die-
ser Regel ist also vor allem dann sinnvoll, wenn dieses neue Integral bereits bekannt oder zumindest
einfacher als das urspriingliche ist. Hier sind zwei Beispiele dafiir.



152 Andreas Gathmann

(a) Zur Berechnung von [ x cosx dx setzen wir (mit den Notationen von Satz 12.29)
u(x) = sinx u'(x) = cosx
v(x) =x Vix)=1
und erhalten

/x cosx dx = xsinx — /sinx dx = x sinx -+ cosx.

Wir haben bei der Anwendung der partiellen Integration also den Faktor x differenziert und
den Faktor cosx integriert. Mochte man dies in der Rechnung deutlich machen (und die
Funktionen u, /, v, v/ nicht explizit hinschreiben), so notiert man dies auch oft als

/x CcOSX dx:xsinxf/sinx dx = x sinx + cosx.
U

Beachte, dass die umgekehrte Wahl hier nicht zum Ziel gefiihrt hitte: Die Rechnung

2 2
/x cosxdx = i cosx—i—/x— sinx dx
tol 2 2

ist zwar korrekt, aber das neue Integral ist hier komplizierter als das urspriingliche.

(b) Das Integral [logx dx lisst sich mit einem Trick ebenfalls durch partielle Integration be-
rechnen:

1
/logxdx:/l-logxdx:xlogx—/x~fdx:xlogx—x.
T *

Dieser Trick funktioniert hier, weil aus der (komplizierten) Logarithmusfunktion beim Ab-
leiten die sehr viel einfachere Funktion % entsteht. Auf die gleiche Art kann man iibrigens
auch die Integrale der Arkusfunktionen aus Definition 9.25 berechnen, da auch diese bei der
Differentiation sehr viel einfacher werden (siehe Beispiel 10.28 (c)).

Die zweite wichtige Integrationsregel ergibt sich analog aus der Kettenregel der Differentiation.
Satz 12.31 (Substitutionsregel). Es seien f: [a,b] — R eine stetig differenzierbare Funktion und
g: D — R eine stetige Funktion auf einer Teilmenge D C R mit f([a,b]) C D. Dann gilt
b , f(b)
[ st r@dr= [ ey
a

f(a)

Beweis. Nach Folgerung 8.26 ist f([a,b]) ein abgeschlossenes Intervall, und damit hat g nach
Folgerung 12.24 (a) dort eine Stammfunktion G. Die Kettenregel aus Satz 10.10 liefert dann
(Go f)(x) = g(f(x)) f'(x). Damit ist die linke Seite der zu beweisenden Gleichung

[ GoWdr= (60N, = 678~ GUr(@),

und die rechte Seite ebenfalls

[ "say =GO, = Grb) - Gif(a). 0
fla) ‘
Bemerkung 12.32. Die Substitutionsregel nimmt in der Differentialschreibweise aus Notation 10.14

eine besonders einfache Form an: Setzen wir y = f(x) und damit % = f’(x), und bezeichnen wir

die Integrationsgrenzen mit x; = a und x; = b bzw. y; = f(a) und y, = f(b), so schreibt sich die
Substitutionsregel als

X2 y2

dy
gy)—dx= [ g(y)dy,
s ()dx . )

oder analog zu Notation 12.25 einfach als

/g(y) %dx = /g(y) dy,
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wenn man darauf achtet, dass die Grenzen passend zur Integrationsvariablen gewéhlt werden. Die
Regel sieht dann also einfach wie ein ,,formales Erweitern mit dx* aus.

Beispiel 12.33. Die Substitutionsregel bietet sich natiirlich immer dann an, wenn die zu integrieren-
de Funktion eine Verkettung von zwei anderen Funktionen ist oder enthélt — und insbesondere dann,
wenn die Ableitung der inneren Funktion zusétzlich auch noch als Faktor im Integranden steht.

(a) Beim Integral [ xe® dx stellen wir fest, dass sich im Integranden eine verkettete Funktion
e” befindet, und dass die Ableitung 2x der inneren Funktion x> auch (bis auf die Konstante
2) zusitzlich noch als Faktor im Integranden steht. Wir substituieren also y = X2, so dass

dy = 2x in der Notation von Bemerkung 12.32 gilt. Damit folgt also

dy) 1211 o _1 I 2
/xedx—z/ dx dy=5e'=ze

Im Fall eines bestimmten Integrals hétten wir bel der Anwendung von Satz 12.31 die Gren-
zen mitsubstituieren miissen:
b dy 1231 1 1 »2 1 > 2
e dx = e’ dx yd:fey = — (¥ —e").
[refanmy [0 3 [o =5l =5 ()
Beachte, dass der Faktor x im Integranden bei diesem Beispiel ganz wesentlich dafiir war,
dass die Substitutionsregel zum Ziel gefiihrt hat: Ohne diesen Faktor hitten wir mit derselben

Substitution . |

/szdx: ? dfyeydx E 7dy
erhalten — was zwar auch richtig ist, aber nicht weiter hilft, weil das neue Integral auch
nicht einfacher als das urspriingliche zu berechnen ist. In der Tat kann man zeigen, dass sich
die Stammfunktion von e"2 nicht durch die uns bisher bekannten ,,speziellen Funktionen*
ausdriicken ldsst.

(b) Besonders einfach wird die Substitutionsregel im Fall der sogenannten linearen Substitution:
Ist f eine beliebige stetige Funktion, deren Stammfunktion F wir kennen, so konnen wir
damit immer auch die Stammfunktion von f(ax+ b) mit a,b € R und a # 0 bestimmen,
da die innere Ableitung hier eine Konstante ist: Substituieren wir y = ax + b, so ergibt sich

wegen Zy =a

[ravtnyas=2 [ o) Pax'2" L [ fo)av=2F0) = - Flaxtb)

Konkret ist also z. B.

1 1
dx= = log|2x+3
/2x—|—3 x= 5 log[2x43],
da x — log|x| nach Beispiel 12.26 (b) eine Stammfunktion von x — % ist.

Wir hatten in Beispiel 12.33 (a) bereits erwihnt, dass sich die Stammfunktionen von Funktionen,
die aus unseren speziellen Funktionen zusammengesetzt sind, manchmal nicht wieder auf diese Art
schreiben lassen. Fiir viele Klassen von Funktionen ist dies aber doch der Fall — z. B. fiir rationale
Funktionen der Form % fiir zwei Polynome p und g. Wir wollen dies hier nun zeigen, der Einfachheit
halber allerdings nur fiir den Fall, dass das Nennerpolynom g in verschiedene Linearfaktoren zerfallt
und groeren Grad als das Zihlerpolynom p hat. Der Trick besteht in diesem Fall darin, den Aus-
druck § als Summe von Briichen zu schreiben, die nur eine Konstante im Zahler und einen einzigen
Linearfaktor im Nenner haben. Derartige Funktionen der Form = lassen sich mit einer linearen
Substitution wie in Beispiel 12.33 (b) dann einfach zu ¢ log |x — a| integrieren.

Lemma 12.34 (Partialbruchzerlegung). Es seien n € Nvg und ay,...,a, € R verschieden. Ferner
sei p ein reelles Polynom mit deg p < n. Dann gilt
n ., .
P) =) S fir ci= plai)

(x—a1)--(x—ay) Sx—a (ai—ay)---(ai—ai—1)(ai—air1) - (a;i —an)
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fiir alle x e R\{ay,...,a,}.

Beweis. Offensichtlich ist
) =px) =Y cilx—ar)---(x—ai1)(x—air1) - (x—an) ()
i=1

ein Polynom mit deg f < n. Es hat aber jedes gy fiir k = 1,...,n als Nullstelle, denn nach der Defini-
tion von cy,...,c, im Lemma ist

flar) = plax) —crlax —ar) -+ (ax — ax—1) (@ — arv1) -+ (@ — an) =0,
wobei die erste Gleichung gilt, da nach Einsetzen von x = g in der Summe iiber i in (x) alle Terme
mit i # k einen Faktor 0 haben und damit verschwinden.

Nach Satz 3.19 (b) ist f also das Nullpolynom. Division von (%) durch (x —ay)--- (x —ay) liefert

damit wie behauptet
n

_ p(x) . Ci
O_(X—al)---(x—an) Sx—a; O

Bemerkung 12.35. Die Formel fiir die Koeffizienten ¢; in Lemma 12.34 ldsst sich leicht merken:
Man erhilt ¢;, indem man x = g; im urspriinglichen Ausdruck =an- (f 7(’;)) =) einsetzt — bis auf
den Linearfaktor x — a; im Nenner, den man dabei weglassen muss, da er ansonsten ja auch zu einem

Faktor 0 im Nenner fiihren wiirde.

Beispiel 12.36. Um das Integral [ m dx zu berechnen, fithren wir eine Partialbruchzerlegung
des Integranden durch: Mit x* 4+ 3x+2 = (x+1)(x+2) ist

X - C1 (&)
(x+1)(x+2) x+1 +x—|—2’
wobei sich ¢| = _Tl = —1 durch Einsetzen von x = —1 in Xjﬁ—z und ¢; = :—% = 2 durch Einsetzen von
x = —2in 77 ergibt. Also ist
X 1 1
/mdx:/(—H—l—FZm)dx:—10g|x—|—1|—|—210g\x—|—2|

nach einer linearen Substitution wie in Beispiel 12.33 (b).

Als letzte Rechenregel zur Bestimmung von Integralen wollen wir nun noch untersuchen, wie man
Integrale von Funktionen berechnen kann, die als Grenzwerte von Funktionenfolgen entstehen — also
z.B. von Potenzreihen. Die Situation ist hier sehr viel einfacher als sie es bei der Differentiation in
Satz 10.26 war.

Satz 12.37 (Vertauschbarkeit von Integration und Grenzwertbildung). Es seien f;,: [a,b] — R ste-
tige Funktionen, die gleichmdflig gegen eine (nach Satz 8.38 dann automatisch ebenfalls stetige)
Grenzfunktion f: [a,b] — R konvergieren. Dann gilt

b b b
/ (1im fu(2)) dx= / f(x)dx=lim [ fo(x)dx,
a \n—oo a n—oo [,
d. h. ,,Grenzwertbildung und Integration konnen vertauscht werden .

Beweis. Die erste behauptete Gleichheit ist natiirlich nichts weiter als die Definition von f. Fiir die

zweite sei € > 0 gegeben. Wegen der gleichmiBigen Konvergenz von (f},), gibt es ein ny € N, so
dass | f,(x) — f(x)| < ﬁ fiir alle x € [a,b] und n > ng. Damit ergibt sich nach Satz 12.13

[ e [ ras) = | [0~ reonar| < [ 10— swax< [ a4
€
=5 <&

Nach Definition des Grenzwerts bedeutet dies genau | f fa(x)dx — [ ab Sf(x)dx fiir n — oo, was zu
zeigen war. 0
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Bemerkung 12.38 (Integration von Potenzreihen). Insbesondere bedeutet Satz 12.37, dass Potenz-
reihen (die in jedem abgeschlossenen Intervall innerhalb des Konvergenzgebiets nach Satz 8.36 ja
gleichmiBig konvergieren) gliedweise integriert werden kénnen: Sind f(x) =Y, cx x* eine Potenz-
reihe und £, (x) = Y{_, cxx* ihre Partialsummen, so folgt

5 b
Ck_ et
£

k=0 p

b
/bf(x)dleim /‘bfn(x)dleim y G| 2
n—oo J, n—soo k=0k+1
a

Ja

(sofern [a, b] komplett im Konvergenzintervall der Potenzreihe liegt), d. h. als unbestimmtes Integral
geschrieben ist

—  Ck k4l
dx = .
[ r)as Yo
Dies zeigt noch einmal deutlich die besonders schonen Eigenschaften von Potenzreihen: Innerhalb
ihres Konvergenzgebiets kann man mit ihnen praktisch ,,wie mit Polynomen rechnen®, d. h.
e sie konnen wie erwartet addiert und multipliziert werden (Lemma 7.4 und Bemerkung 7.37);

e sie sind beliebig oft differenzierbar und ihre Ableitungen konnen gliedweise berechnet wer-
den (Folgerung 10.27 und Satz 11.8);

e Integrale konnen gliedweise berechnet werden;
e viele Funktionen* konnen als Potenzreihe (ndmlich als ihre Taylor-Reihe, siehe Kapitel 11)
geschrieben werden.
Beispiel 12.39.

(a) Wir betrachten die Funktion f: R.g — R, x — logx. Die Ableitung dieser Funktion ist
natiirlich f/(x) = % Nun konnen wir dies fiir |x — 1| < 1 mit Hilfe der geometrischen Reihe
(siehe Beispiel 7.3 (a)) als

B 1

I+ (x—1)

schreiben. Diese Potenzreihe kann jetzt aber nach Bemerkung 12.38 gliedweise integriert

werden, und darum ist

f'(x) D) (—1)2 = (=13 %

x—1)?% (x—1)72 (x-1)*
TSNS e
2 3 4
fiir |x — 1] < 1, also auf (0,2), eine Stammfunktion von f’. Nach Folgerung 12.24 (b) kann
sich diese von der urspriinglichen Funktion f nur um eine additive Konstante unterscheiden —

Einsetzen von x = 1 liefert aber auch sofort, dass diese Konstante gleich O ist. Also erhalten
wir die Darstellung

+...

=12 (=13 (=14
logx:(x—l)—( 21) -|-( 31) _( 41) +...

fiir alle x € (0,2) (die wir in Beispiel 11.15 (a) bereits fiir x € [1,2] bewiesen hatten).

(b) Eine analoge Rechnung kénnen wir auch mit der Funktion f: (—1,1) — R, x +— arctanx
durchfiihren: Hier ist die Ableitung

1
fx)= 2= - xt =+
und damit ist
3 5 7
x X x
AT AR A T
TT3Ts Ty

eine Stammfunktion von f”, die sich von f wiederum nur um eine additive Konstante unter-
scheiden kann. Auch hier ist diese Konstante wegen arctan0 = 0 wieder gleich 0, und wir
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erhalten auf (—1, 1) ohne irgendwelche komplizierte Rechnungen die Potenzreihendarstel-
lung der Arkustangens-Funktion

3 xS x!

t — x4 T 4l
arctanx = x 3+5 7

Aufgabe 12.40. Berechne die folgenden (z. T. unbestimmten bzw. uneigentlichen) Integrale:

-1 1 oo 3 2 1
@ / dx (b / PeFdx (o) / TIEE i
“1v/2x+3 0 X’ —Xx

e’ | (1 1 z
@ / Of lo;gxx dx @ / Tt dx ® /0 * sin® x cos? xdx
Aufgabe 12.41. Zeige mit Induktion iiber n € N, dass

.z w221 falls n gerade,
5503 = falls n ungerade.

Aufgabe 12.42 (Integralkriterium fiir Reihen). Es sei f: R>; — R>¢ eine stetige und monoton
fallende Funktion. Man zeige:

(a) Das uneigentliche Integral [,” f(x)dx hat das gleiche Konvergenzverhalten wie die Reihe
Yoo, f(n), d.h. es sind entweder beide konvergent oder beide divergent.

(b) Fiir a € R konvergiert die Reihe } >, a genau dann, wenn a > 1. (Dies ist eine Verallge-
meinerung von Beispiel 7.3 (c) und 7. 20 auf reelle Exponenten.)

Gilt die Aussage (a) auch ohne die Voraussetzung, dass f monoton fallend ist?
Aufgabe 12.43. Es sei f: [0,1] — R eine stetige Funktion. Man zeige:
: 1 n gy —
(a) }glolojo f)x"dx=0.
(b) Gilt f(x) = f(1 —x) firalle x € [0, 1], so ist [y x f(x)dx = § [} f(x)dx

Aufgabe 12.44. Es seien a,b € Roo und f: [0,a] — [0,D] eine bijektive, stetig differenzierbare
Funktion. Man zeige:

(a) Ist f monoton wachsend mit f(0) =0 und f(a) = b, dann gilt [ f(x dx+f0 (x)dx = ab.
(b) Ist f monoton fallend mit f(0) = b und f(a) = 0, dann gilt [ f(x)dx = fo (x)dx.
Was bedeuten diese Aussagen geometrisch?
Aufgabe 12.45 (Binomische Reihe). Fiir a € R definieren wir die verallgemeinerten Binomialko-
effizienten durch
a\ a-(a—1)----(a—n+1)
n n!
fiir alle n € N. Wir betrachten nun auf D = (—1,1) die Funktion f: D — R, f(x) = (1 +x)%. Man
zeige:

(a) Die Taylor-Reihe von f mit Entwicklungspunkt 0 ist gegeben durch Ty (x) = Y, (a) x*
und konvergiert auf D.

(b) Es gilt sogar (1 +x)% =Y (¢)x" fiir alle x € D, d.h. die Taylor-Reihe stellt wirklich die

urspriingliche Funktion dar. (Hinweis: Zeige zunichst, dass die Ableitung von 20 glelch 0
ist.)
(c) Die Funktion arcsin lisst sich auf D als Potenzreihe schreiben. Berechne diese Potenzreihe
explizit!
Was ergibt sich aus der binomischen Reihe in den Spezialfillen a € N bzw. a = —1?



