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11. Anwendungen der Differentialrechnung

Im letzten Kapitel haben wir gesehen, wie wir von ,,nahezu allen* Funktionen ihre Ableitung berech-
nen konnen und welche elementaren Eigenschaften der Funktion man daran ablesen kann. In diesem
Kapitel wollen wir nun zwei weitere Anwendungen vorstellen, die sich aus der Differentialrechnung
ergeben. Der Einfachheit halber beschrinken wir uns dabei auf reelle Funktionen.

11.A Die Regel von de I’Hopital

Als Erstes wollen wir eine einfache Regel vorstellen, mit der man oft Grenzwerte berechnen kann,

die anders nur schwer zu bestimmen wiren: namlich Grenzwerte der Form lim %, bei denen die
X—a

normalen Grenzwertsétze aus Satz 8.14 bzw. Bemerkung 8.20 nicht anwendbar sind, weil sich die
unbestimmten Quotienten ,,8“ oder ,,%“ ergeben wiirden.

Es gibt viele Varianten dieser Regel, je nachdem, bei welchen der im folgenden Satz vorkommenden
Grenzwerten auch uneigentliche Grenzwerte tco zugelassen sind. In der Praxis treten alle diese Va-
rianten auch oft auf. Um die Beweisidee des Satzes klar herauszustellen, beschrinken wir uns hier
aber zunichst (wie auch bei unseren bisherigen Beweisen von Rechenregeln fiir Grenzwerte) auf den
Fall, in dem keine uneigentlichen Grenzwerte vorkommen, und geben die moglichen Verallgemei-

nerungen dann in der anschliefenden Bemerkung 11.2 an.

Satz 11.1 (Regel von de I’Hépital, Grundversion). Es seien f,g: (a,b) — R differenzierbare Funk-
tionen mit g'(x) # 0 fiir alle x € (a,b). Wir nehmen ferner an, dass

lim f(x) = lim g(x) = 0

(so dass der Grenzwert lim % also formal von der unbestimmten Form ,, % “ist). Existiert dann der
X—a
Grenzwert lim A ,/<x) in R, so auch lim @, und es gilt
x—a 8'() x—a &)
/
tim £ — i £

x—ag(x) x—ag(x)
Beweis. Wegen lim f(x) = lim g(x) = 0 konnen wir f und g durch f(a) := g(a) := 0 stetig nach
xX—a xX—a
[a,b) fortsetzen. Beachte auBerdem, dass g auf (a,b) nirgends gleich 0 sein kann, denn sonst giibe es
im Widerspruch zur Voraussetzung nach dem Satz 10.22 von Rolle zwischen a und dieser Nullstelle
von g eine Nullstelle von g’.

fx)

Wir zeigen nun den Grenzwert lim Fe) mit dem Folgenkriterium. Es sei also (x,), eine Folge in
xX—a

(a,b) mit x, — a. Nach dem Mittelwertsatz 10.23 (b) gibt es dann fiir alle n € N ein ¢, € (a,x,) mit

/ / fGan) _ f'(cn)

f'en) - (8(xn) —g(a)) = g'(ca) - (f(xa) — f(a)), also o) 2(en)

wegen f(a) = g(a) = 0 und der Nullstellenfreiheit von g und g’. Nun konvergiert wegen a < ¢, < x,
mit (x,), aber auch (c,), gegen a, und damit ergibt sich

lim f(xn) — lim f/(cn) — lim f/(x)

nee g(xy)  nmeegl(cn)  xa gl (x)

was die Behauptung mit dem Folgenkriterium zeigt. O

b

Bemerkung 11.2 (Regel von de ’'Hépital, Varianten). Der Satz 11.1 von de I’Hopital hat die fol-
genden Varianten, die wir im Folgenden ebenfalls verwenden werden. Die Beweise sollen hier nicht
gegeben werden — sie lassen sich mit analogen, allerdings oft technisch etwas aufwendigeren Me-
thoden fiihren.
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(a) Die Regel gilt auch, wenn 1131 f(x) und 1131 g(x) beide im uneigentlichen Sinne gleich +oo
X—a X—a
fx)

sind, wir also beim Grenzwert lim el den unbestimmten Ausdruck ,,%“ haben.
X—a

(b) Statt einer Anndherung von rechts an die Grenze der Definitionsmenge (in unserem Fall
also an den Punkt ¢ am Rand des Intervalls (a,b)) ist natiirlich auch eine Anniherung von
links oder eine beidseitige Anndherung moglich. Dabei sind die Fille a = —co und b = oo
zugelassen.

!
(c) Die Regel gilt auch, wenn der Grenzwert von g /8 nur im uneigentlichen Sinne existiert,

also gleich oo ist.

Existiert der Grenzwert von fgf :g; dagegen auch im uneigentlichen Sinne nicht, so macht die Re-
gel von de I’Hopital keine Aussage — wir konnen daraus dann also nicht schlieflen, dass auch der

urspriingliche Grenzwert von % nicht existiert!

Beispiel 11.3.

(a) Fiir jedes n € N ist der Grenzwert lim l?% von der Form ,,Z*. Um ihn mit der Regel von
X—>00
de 1’Hopital (mit f(x) = logx und g(x) = x) zu bestimmen, differenzieren wir also Zhler

und Nenner separat und erhalten den Bruch g : g)) = ni,{f

x > 0 nirgends gleich O ist und der Grenzwert
1/x .1

lim =lim — =0
x—eo g1 x—e0 pxt

r. Da der Nenner dieses Bruchs fiir

existiert, folgt mit Satz 11.1 (bzw. der Verallgemeinerung aus Bemerkung 11.2) also auch

1 200 l
lim 08X Lo X

x—oo X x—o0 pxt—1

(%)

Analog zu Bemerkung 5.15 zur Anwendung von Grenzwertsétzen schreibt man dabei die
Anwendung der Regel von de I’Hopital oftmals gleich wie in der oben in (x) mit ,,=* be-

zeichneten Gleichung, und iiberpriift erst nachtréglich, dass der neu entstandene Bruch einen
(evtl. uneigentlichen) Grenzwert hat und sein Nenner stets ungleich 0 ist.

(b) Analog erhilt man
logx T 1/x X"

lim x"* logx = lim = lim———=lim-— =0,
x—0 x—0 X" x—0 —nx~— "~ =0 n

da der nach dem Differenzieren entstandene Nenner —nx~"~! fiir x > 0 ungleich 0 ist. Zu-
sammen mit (a) sehen wir in diesem Sinne also, dass ,,der Logarithmus fiir x — 0 oder x — oo
schwicher ist als jede Potenz“ — in den beiden betrachteten Grenzwerten setzt sich jeweils
die Funktion x" durch. Dies ist natiirlich ganz analog zu der Aussage von Bemerkung 9.3 (a),
dass die Exponentialfunktion schneller als jede Potenz wéchst. Beachte auch, dass wir in der
zweiten Rechnung oben gesehen haben, dass es sich auch bei einem urspriinglichen Aus-
druck der Form ,,0 - (d-00)* lohnen kann, ihn kiinstlich als Bruch umzuschreiben, um dann
die Regel von de I’Hopital anwenden zu kénnen.

(c) Falls sich nach einmaliger Anwendung von Satz 11.1 immer noch ein Bruch der Form ,,%“

oder ,,E“ ergibt, kann man den Satz natiirlich auch mehrfach hintereinander anwenden, wie
z.B. in dem Grenzwert

f“ f“
2 9% 00 9% 00
Loxr . 2x 0y .2
Iim— = lim— = lim—=0
x—yoo X x—oo X x—yoo X

(wegen e* # 0 fiir alle x), den wir aber natiirlich auch schon aus Satz 9.1 (c) kannten.
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Bemerkung 11.4 (Die Regel von de I’Hopital fiir Folgengrenzwerte). Manchmal kann man auch
den Grenzwert einer reellen Folge (a,), mit der Regel von de I’'Hdpital berechnen. Kann man die
Folge nimlich — betrachtet als Abbildung N — R — zu einer Abbildung R — R fortsetzen, also auch
fiir reelles n betrachten, und existiert dann der Grenzwert fiir reelle n — oo, so existiert er dann
natiirlich auch fiir natiirliche n — oo, und hat denselben Wert. Fiir die Berechnung des Grenzwerts
fiir reelle n haben wir dann aber wieder die Regel von de 1’Hopital zur Verfiigung.

Betrachten wir als Beispiel hierfiir einmal fiir gegebenes x € R den Grenzwert lim (1 + %)", den
n—soo
wir in Aufgabe 7.34 mit viel Aufwand zu e* berechnet haben. Da wir Potenzen inzwischen auch fiir
reelle n definiert haben, konnen wir den Ausdruck (1 + %)" nun aber auch als Funktion einer reellen
Variablen n auffassen und seinen Grenzwert fiir n — oo mit der Regel von de 1’Hopital berechnen:
Es ist
. X\ . X ..
lim <1 + 7) = lim exp (n log (1 + 7)) (Definition 9.7)
n n—eo n

n—yoo

= exp (}gr;n log (1+ %)) (Stetigkeit von exp, Satz 8.16)

log(1+2

n—oo n_l

(1_ —x/n* 1
=exp( lim —— -
Pl 1+2 —1/n?

. X
= exp ( lim )

n—oo 1+§

) (,,8“, Differenzieren nach n, beachte — nLZ #* O)

= expX.

Aufgabe 11.5. Berechne die folgenden Grenzwerte:

log(tan(2x)) . 1 1 )
@ )lcgl((:) log(tan(3x)) () )lcgl} (xf 1 logx) © )16133) *
x> x>

Aufgabe 11.6. Es sei f: [a,b] — R stetig und auf (a,b) differenzierbar, so dass lim f’(x) existiert.
X—a

Zeige, dass f dann auch in a differenzierbar ist und f’(a) = li_r)n S (x) gilt.
X—a

11.B Taylor-Entwicklung

Als weitere Anwendung der Differentialrechnung wollen wir nun unsere urspriingliche Idee der li-
nearen Approximation einer Funktion f: D — R mit D C R in einem Punkt a € D erweitern und uns
fragen, ob wir vielleicht noch bessere Ndherungen bekommen kénnen, wenn wir als Ndherungsfunk-
tion statt einer linearen Funktion eine Polynomfunktion von hoherem Grad verwenden. Betrachten
wir z. B. statt unserer bisherigen Néherung vom Anfang von Kapitel 10

fx)=co+ci(x—a)
mit co = f(a) und ¢; = f'(a) den Ansatz

F(x)=co+cy (xfa)Jrcz(x—a)z,

bei dem wir auch einen quadratischen Term zulassen (den wir proportional zu (x —a)? statt zu x>

wihlen, damit er am Niherungspunkt a selbst verschwindet), so konnen wir wie im Bild unten
erwarten, dass wir eine viel bessere Niherung erhalten, da die Niherungsfunktion ja jetzt eine qua-
dratische Parabel ist und damit auch ein wenig die Kriimmung von f an der Stelle a nachbilden kann.
Natiirlich konnen wir dies dann auch noch weiter treiben und Polynomfunktionen hoheren Grades
zulassen: Wenn wir fiir ein n» € N einen Ansatz

F~ Y li—al
k=0
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machen und dabei die Koeffizienten c; geschickt wéhlen, sollte die Ndherung mit wachsendem n
immer besser werden. Wir konnen sogar versuchen, den Grenziibergang n — oo zu machen und uns
fragen, ob wir mit einer Potenzreihe

i cx(x—a)k
k=0

im Grenzfall vielleicht nicht nur eine ganz besonders gute Ndherung, sondern sogar genau die Funk-
tion f zuriick erhalten, also ob wir f letztlich als Potenzreihe in x — a schreiben konnen — schlieBlich
haben wir ja auch wie z. B. die Exponentialfunktion schon einige Funktionen gesehen, die wir von
vornherein bereits als Potenzreihe geschrieben haben.

fx) fx) »— quadratische
Niherung

>~ lineare
Niaherung

/ | / |

a a

Um diese Idee zu verfolgen, wollen wir nun als Erstes untersuchen, welche Koeffizienten c; wir
in den obigen Polynomen bzw. Reihen wihlen sollten. Da wir bereits wissen, dass der lineare Ko-
effizient ¢; gerade die Ableitung f’ (@) ist, sollte es nicht iiberraschen, dass wir fiir die hoheren
Koeffizienten c; mit k > 1 hohere Ableitungen benétigen. Diese wollen wir daher jetzt einfiithren.

Definition 11.7 (Hohere Ableitungen). Es seien f: D — R eine Funktion und n € N.

(a) Die Funktion f heiit n-mal differenzierbar auf D, wenn alle fortgesetzten Ableitungen
FO = f, f D= @ = = (1Y, L, ) = (DY existieren.
(b) Die Funktion f heiBt n-mal stetig differenzierbar auf D, wenn zusitzlich /") stetig ist.

(c) Existieren die hoheren Ableitungen f () fiir alle n, so heiBt f unendlich oft differenzierbar
auf D.

Die Menge aller n-mal stetig differenzierbaren Funktionen auf D wird mit C" (D) bezeichnet (der
Buchstabe C kommt vom englischen Wort ,,continuous* fiir ,,stetig*). Inbesondere ist also CO(D) die
Menge aller stetigen und C*(D) die Menge aller unendlich oft differenzierbaren Funktionen auf D.

Wie diese hoheren Ableitungen die oben betrachteten Koeffizienten c; bestimmen, sieht man am
besten wie im folgenden Satz am Beispiel von Potenzreihen, die ja bereits in einer derartigen Form
geschrieben sind. (Beachte, dass dies auch noch einmal die Aussage aus Aufgabe 8.43 zeigt, dass
die Koeffizienten einer Potenzreihe mit Konvergenzradius ungleich O durch die durch sie definierte
Funktion bereits eindeutig bestimmt sind.)

Satz 11.8 (Taylor-Formel fiir Potenzreihen). Es seien a € Rund f(x) = Y5 cx (x—a)* eine reelle
Potenzreihe in x — a mit Konvergenzradius r > 0, so dass wir f also als Funktion f: (a—r,a+7r) =R
auffassen konnen.

Dann ist f auf (a—r,a+r) unendlich oft differenzierbar, und fiir die Koeffizienten c der Potenzreihe
gilt

(k)
- kf“) fiir alle k € N.
Mit anderen Worten ist also -
oo (k) / 11
10 = Y D = )+ D ey LD (et

k=0
fiiralle x € (a—r,a+r).
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Beweis. Nach Folgerung 10.27 ist jede Potenzreihe in ihrem Konvergenzgebiet differenzierbar, und
ihre Ableitung ist wieder eine Potenzreihe (mit demselben Konvergenzradius), die sich durch glied-
weises Differenzieren berechnen lédsst. Insbesondere ist f damit also unendlich oft differenzierbar,
und die hoheren Ableitungen sind

oo

fOx) =Y k(k=1)-- (k—n+1)cx (x—a)*™"

k=n

fiir alle n € N. Setzen wir hier nun x = a ein, so ist (x —a)*™" gleich O fiir k > 7 und 1 fiir k = n. In
der obigen Summe bleibt dann also nur der Term fiir k = n librig, und wir erhalten wie behauptet

FPa)=n(n—1)---(n—n+1)c, = nlcy. O

Beispiel 11.9. Wir betrachten die Funktion f: R — R, f(x) = ﬁ und mochten die 10. Ableitung

f(10>(0) im Nullpunkt berechnen. Natiirlich konnte man jetzt mit Hilfe der Regeln von Satz 10.8
alle fortgesetzten Ableitungen von f berechnen und schlieBlich in dem so gefundenen Ausdruck fiir
U9 den Wert x = 0 einsetzen — dies wiire aber sehr zeitaufwendig. Viel schneller geht es mit der
Taylor-Formel: Nach der geometrischen Reihe konnen wir f ja fiir |x| < 1 gemiR

1
flx) = 1+2

1 v 2y _ 2, 4_6,.8 10
1—(—x2)_2(_x) =1—x"4x"—x"4x"—x £
n=0

als Potenzreihe in x schreiben. Satz 11.8 mit a = 0 und k£ = 10 sagt uns also fiir den Koeffizienten
von x!'% in dieser Reihe, der ja offensichtlich gleich —1 ist, dass
(10)(0
= 105 ), und damit ~ f19(0) = —101.

Wir sehen an diesem Beispiel schon, dass die Taylor-Formel fiir Potenzreihen auch dann niitzlich
ist, wenn die Funktion f urspriinglich gar nicht als Potenzreihe gegeben ist, sondern wir nur wissen,
dass es eine solche Darstellung als Potenzreihe gibt. In der Tat benutzt die Taylor-Formel in der
Form

= (04
0=y e ap e

ja auch gar nicht mehr die Koeffizienten der urspriinglichen Reihe, sondern nur noch die Tatsache,
dass sich f tiberhaupt irgendwie als Potenzreihe schreiben ldsst. Gilt die Formel (x) also vielleicht
sogar fiir jede unendlich oft differenzierbare Funktion f?

Leider ist (wie wir gleich sehen werden) die Antwort auf diese Frage nein. Fiir viele in der Praxis
vorkommende Funktionen ist die Antwort allerdings auch ja — und daher lohnt es sich, die Sache
doch noch weiter zu verfolgen. Wir geben der rechten Seite von (x), bzw. den Partialsummen dieser
Reihe, daher zundchst einen Namen.

Definition 11.10 (Taylor-Polynom und Taylor-Reihe). Es seien D C R, f: D — R eine Funktion,
sowie a € D ein fest gewihlter Punkt.

(a) Die Funktion f sei n-mal differenzierbar fiir ein n € N. Dann heif8t die Polynomfunktion

n p(k) a
f ( ) (x_a)k

T/,:D—R, x— Y k!
das n-te Taylor-Polynom von f mit Entwicklungspunkt a; offensichtlich ist deg 77’ , < n.

k=0

(b) Ist f unendlich oft differenzierbar, so heifit die Potenzreihe in x — a

T = ) (a) k
Tralw)i= Jim () = 1 5 =

die Taylor-Reihe von f mit Entwicklungspunkt a. Beachte, dass zunéchst nicht klar ist, ob
diese Potenzreihe einen Konvergenzradius grofler als O hat, also ob sie iiberhaupt in irgend-
einem Punkt x (auBer a) konvergiert — und dass, selbst wenn sie konvergiert, nicht klar ist,

ob sie als Funktion im Konvergenzgebiet mit f {ibereinstimmt.
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Beispiel 11.11.

(a) Lisst sich eine Funktion f auf einem Intervall (¢ —r,a+r) mit @ € R und r > 0 als Po-
tenzreihe in x — a (mit Konvergenzradius mindestens r) schreiben, so besagt Satz 11.8 ge-
rade, dass die Taylor-Reihe Ty ,(x) genau diese Reihe ist, also dass Ty ,(x) = f(x) fiir alle
x € (a—ra+r) gilt.

(b) Wir betrachten die Funktion
f:iRyo—= R, x+—logx

und bestimmen ihre Taylor-Reihe mit Entwicklungspunkt a = 1. Die Ableitungen von f sind
einfach zu berechnen: Wegen f’(x) = x~ ! ist

F9) = (<1): (=2) o+ (= (k= D) = (<D (k= Dt

und damit f®)(1) = (=1)¥'- (k— 1)! fiir alle k > 0. Die Taylor-Reihe von f mit Entwick-
lungspunkt 1 ist damit

< (1)1 (k— o 1\k—1
1) =tog1 + § et = 3 S ey
= : =1
- (k=12 | (x—1)}
_(x—l)_ 5 3 Fee.

Wie in Beispiel 7.30 (a) hat diese Potenzreihe in x — 1 den Konvergenzradius 1, sie konver-
giert also fiir |x— 1| < 1, d. h. fiir x € (0,2), und divergiert fiir [x — 1| > 1, also fiir x < 0 oder
x > 2. Damit ist schon einmal klar, dass die Taylor-Reihe 7 (x) fiir x > 2 sicher nicht die
urspriingliche Funktion f(x) = logx darstellt, da sie dort ja nicht einmal konvergiert. Aber
auch fiir x € (0,2) ist noch nicht klar, dass wirklich Ty (x) = f(x) gilt: Das folgende Bei-
spiel zeigt, dass eine Taylor-Reihe auch im Fall der Konvergenz nicht mit der urspriinglichen
Funktion iibereinstimmen muss.

Aufgabe 11.12. Es sei

exp(—xiz) fiir x # 0,

fTR=R x—
0 fiir x = 0.

Zeige, dass f unendlich oft differenzierbar ist, und dass die Taylor-Reihe Tr o die Nullfunktion ist
(also insbesondere zwar iiberall konvergiert, aber auler im Nullpunkt nirgends mit f tibereinstimmt).
Skizziere auch den Graphen von f.

(Hinweis: Man zeige mit vollstandiger Induktion, dass alle Ableitungen von f in O gleich O und fiir

(x)

x # 0 von der Form % exp(— XLZ) fiir gewisse Polynomfunktionen p und ¢ sind.)

Wir bendtigen also ein Kriterium, mit dem wir eine Funktion f mit ihren Taylor-Polynomen 77,
bzw. ihrer Taylor-Reihe Ty, vergleichen knnen, so dass wir letztlich nachpriifen konnen, ob eine
(konvergierende) Taylor-Reihe auch wirklich gleich der urspriinglichen Funktion ist. Dies liefert der
folgende Satz:

Satz 11.13 (Taylor-Formel). Es seien n € N, D C R ein Intervall, und f: D — R eine (n+ 1)-mal
differenzierbare Funktion. Ferner seien a,x € D. Dann gibt es ein ¢ zwischen a und x mit

(nt1) (o
) =Tl ) = T gy,

(n+1)!
Man bezeichnet f(x) — T ,(x) auch als das Restglied des n-ten Taylor-Polynoms und schreibt es als
R% (x).
fa

Beweis. Fiir den Fall x = a ist die Aussage trivial, da dann beide Seiten der zu zeigenden For-
mel gleich O sind. Fiir x # a behaupten wir, dass die Aussage unmittelbar aus dem Mittelwertsatz
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10.23 (b) angewendet auf die beiden Funktionen

/ 1 (n)
F:D—>R,t»—>T;'J(x):f(t)+fl('t)(x—t)+f2(|t)(x 12+ +fn'(t)(x )"
und G:D =R, 1+ (x—1)"!
folgt. In der Tat sind F und G dann differenzierbar mit
£ it SUVO
+(_(nf1)!(x_t> D) )
(n+1)
0

n!
und G'(t) =—(n+1)(x—1)"

sowie F(x) — F(a) = f(x) = T} ,(x) = R} ,(x) und G(x) — G(a) = —(x — a)"*!. Der Mittelwertsatz
10.23 (b) liefert also ein ¢ zwischen a und x mit

(n+1)
7fn7'(c)(x—c)"~(xfa)"+l =—(n+1)(x—c)"-R} ,(x),
d. h. wie behauptet R}, ,(x) = % (x—a)*. =

Bemerkung 11.14.

(a) Fiirn=0ist Satz 11.13 wegen T?,(x) = f(a) exakt der Mittelwertsatz 10.23 (a). Wir kbnnen
die Taylor-Formel also auch als eine Verallgemeinerung des Mittelwertsatzes auffassen.

(b) Setzen wir in der Formel aus Satz 11.13 noch den Ausdruck aus Definition 11.10 (a) ein, so
erhalten wir fiir jede (n+ 1)-mal differenzierbare Funktion f
f'(a) f"(a)

f(x):f(aH—i(x_a)+"'+T(x—a)”+

(n+1)
1! ) (x—a)y"!

(n+1)!

=77, (%) =R} ,(x)

fiir ein ¢ zwischen a und x. Das Restglied des n-ten Taylor-Polynoms hat also genau die Form
des (n+ 1)-ten Gliedes der Taylor-Reihe — bis auf den Unterschied, dass man die Ableitung
dort an einer Zwischenstelle ¢ anstatt am Entwicklungspunkt a nehmen muss.

(c) Offensichtlich gilt fiir eine unendlich oft differenzierbare Funktion f nach Satz 11.13 genau
dann Ty ,(x) = f(x), wenn lim R} (x) = 0. Wenn man die Taylor-Reihe oder die Taylor-
n—oo Jo
Polynome mit der urspriinglichen Funktion vergleichen mochte, muss man also in irgendei-
ner Form das Restglied abschitzen. Hier sind zwei Beispiele dafiir.

Beispiel 11.15 (Restgliedabschitzung).

(a) Wenden wir Satz 11.13 auf die Taylor-Reihe der Funktion f: Ry — R, x + logx mit Ent-
wicklungspunkt @ = 1 aus Beispiel 11.11 (b) an, so erhalten wir mit den dort berechneten
Ableitungen £+ (x) = (—1)" 24 fiir jedes x € R

(1) (1!

() =00 =T () = 2

fiir ein ¢, zwischen 1 und x (wir haben den Zwischenwert hier mit ¢, statt ¢ bezeichnet, da
es natiirlich fiir jedes n ein anderer sein wird). Ist nun x € [1,2], so ist aber stets ¢, > 1 und
|x — 1| < 1, und wir erhalten die Abschétzung

1
n+1

)

R (x)] <
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was mit n — oo gegen 0 konvergiert. Also konvergieren die Taylor-Polynome fiir n — oo
zumindest auf [1,2] wirklich gegen die Funktion f: Es gilt

= (—1)F! k "
logx = —(x—1 fiir alle x € [1,2]. *
gr=) el [1,2] ()
Insbesondere ergibt sich damit fiir x = 2 der Wert der alternierenden harmonischen Reihe zu
= (—1)kt 1 1 1
log2=) ——=1—-+4+-—-=%
o8 ,;1 k 27371

Wir werden spiter in Beispiel 12.39 (a) iibrigens noch sehen, dass die Gleichung (x) sogar
fiir alle x € (0,2] gilt (also fiir alle x, fiir die die Taylor-Reihe iiberhaupt konvergiert), aber
mit unserer bisherigen Formel fiir das Restglied aus Satz 11.13 konnen wir das noch nicht
beweisen.

(b) Wenn wir als Ndherung einer Funktion nur an einem bestimmten Taylor-Polynom (und nicht
an der kompletten Reihe) interessiert sind, kann uns Satz 11.13 sagen, wie grof3 der Fehler
ist, den wir dabei machen. Betrachten wir z. B. die Sinusfunktion f: R — R, x > sinx, so
ist am Entwicklungspunkt O

x3

Tfo(x) =x— 3
(wie man aus Lemma 9.13 (b) sofort abliest, denn nach Satz 11.8 ist ja jede Potenzreihe ihre
eigene Taylor-Reihe). Wegen f (5) (x) = cosx besagt Satz 11.13 fiir n = 4 nun fiir alle x € R
3

R} o(x) = sinx— (x— %) C(;S'c X

fiir ein ¢ zwischen 0 und x. Wenn wir nun z. B. nur an Werten x € R mit |x| < % interessiert
sind, so konnen wir diesen Ausdruck wegen |cosc| < 1 abschitzen zu
) _ 1

1
2 = —
5! 3840’
x3

d.h. wenn wir fiir |x| < % den Sinus durch sein viertes Taylor-Polynom x — % ersetzen,

4
IR} o(x)] <

machen wir dabei einen Fehler von hochstens ﬁ ~ 0,0003.

Aufgabe 11.16.
(a) Berechne das Taylor-Polynom szl fiir die Funktion f(x) = /x und zeige die Restgliedab-
schitzung |f(x) — sz_’1 (x)] < 5 fiiralle x € [§,3].

_ cos(x)
o120

(b) Berechne f!%(0) sowie das Taylor-Polynom 7} fiir die Funktion f(x)

Aufgabe 11.17. Es sei f: R — R eine zweimal differenzierbare Funktion mit f” = f sowie
f(0) = f(0) = 1. Berechne die Taylor-Reihe von f mit Entwicklungspunkt O und zeige durch eine
Restgliedabschitzung, dass f = exp die Exponentialfunktion ist.

Als weitere Anwendung der Taylor-Formel wollen wir nun noch ein einfaches hinreichendes Kri-
terium fiir lokale Extrema geben. Wir hatten bisher ja nur in Lemma 10.20 gesehen, dass an einem
lokalen Extremum, das nicht am Rand der Definitionsmenge liegt, ein kritischer Punkt vorliegen,
also die erste Ableitung verschwinden muss — dass diese Bedingung aber nicht fiir ein lokales Extre-
mum ausreicht. Mit Hilfe hoherer Ableitungen und der Taylor-Formel konnen wir nun ein Kriterium
angeben, das nahezu immer und ohne allzu groBen Aufwand entscheiden kann, ob wirklich ein lo-
kales Extremum vorliegt oder nicht:

Satz 11.18 (Extremwertkriterium). Es seien n € Nyg und f: D — R eine n-mal stetig dif-
ferenzierbare Funktion auf einem offenen Intervall D C R. Weiterhin sei a € D ein Punkt mit

f(@) = f"(a) == F*"D(a) = 0 und £ (@) 0.

(a) Ist n gerade und £ (a) >0, so hat f in a ein isoliertes lokales Minimum.
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(b) Ist n gerade und (a) <0, so hat f in a ein isoliertes lokales Maximum.

(c) Ist nungerade, so hat f in a kein lokales Extremum.

Beweis. Es sei ohne Beschriinkung der Allgemeinheit f)(a) > 0 (der Fall £ (a) < 0 ist analog).
Da f (") nach Voraussetzung stetig ist, konnen wir nach Bemerkung 8.8 nach eventuellem Verklei-
nern von D auf eine geeignete £-Umgebung von a annehmen, dass ") auf ganz D positiv ist. Die
Taylor-Formel aus Satz 11.13 besagt nun, dass es fiir alle x € D ein ¢ zwischen a und x gibt mit

(n)
10 -17 00 = T (e
Nach der Voraussetzung f'(a) = f"(a) = --- = f""1(a) = 0 ist aber T;a_l(x) = f(a), und damit
also
(n)
10~ ) =T (e

Wegen ) (c) > 0 ist dieser Term fiir x € D\{a} nun ...

e immer grofer als O falls n gerade ist; in diesem Fall hat f dann also ein isoliertes lokales
Minimum in a;

e grofer als O fiir x > a und kleiner als Null fiir x < a wenn n ungerade ist; in diesem Fall hat
f also kein lokales Extremum in a. U

Bemerkung 11.19. Anschaulich kann man die Idee von Satz 11.18 kurz so zusammenfassen: Es
sei f eine Funktion, von der wir an einer Stelle a wissen wollen, ob ein lokales Extremum vorliegt.
Ist nun die n-te Ableitung von f die erste, die am Punkt a nicht verschwindet, so enthilt das Tay-
lor-Polynom 77, nur den konstanten Term und den vom Grad n — und damit sagt uns die Idee der
Taylor-Nahemng, dass in der Nédhe von a
(n)
10~ 17, = fla) + T ey

gelten sollte. Da der Ausdruck auf der rechten Seite eine einfache Potenzfunktion ist, sieht man ihm
aber natiirlich sofort sein Verhalten um den Punkt a herum an: Fiir gerades n gibt es je nach Vorzei-
chen von f' <”)(a) ein isoliertes lokales Minimum oder Maximum, und fiir ungerades n kein lokales
Extremum. Mit dieser Idee lésst sich iibrigens auch die Aussage des Satzes sehr leicht merken!

Aufgabe 11.20. Zeige, dass fiir jede zweimal stetig differenzierbare Funktion f: R — R die folgen-
den drei Bedingungen dquivalent sind:

(a) Fiir alle x € R gilt /" (x) >0
(b) Fiir alle x,y € R gilt f(y) > f(x)+ f(x) - (y —x).
(c) Firallex,ycRund A €[0,1] gilt (1 —A)f(x)+Af(y) > f((1—=2A)x+Ay).

Eine Funktion, die diese Bedingungen erfiillt, heifit konvex. Was bedeuten die drei Bedingungen
anschaulich?



