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11. Anwendungen der Differentialrechnung

Im letzten Kapitel haben wir gesehen, wie wir von „nahezu allen“ Funktionen ihre Ableitung berech-
nen können und welche elementaren Eigenschaften der Funktion man daran ablesen kann. In diesem
Kapitel wollen wir nun zwei weitere Anwendungen vorstellen, die sich aus der Differentialrechnung
ergeben. Der Einfachheit halber beschränken wir uns dabei auf reelle Funktionen.

11.A Die Regel von de l’Hôpital
Als Erstes wollen wir eine einfache Regel vorstellen, mit der man oft Grenzwerte berechnen kann,
die anders nur schwer zu bestimmen wären: nämlich Grenzwerte der Form lim

x→a
f (x)
g(x) , bei denen die

normalen Grenzwertsätze aus Satz 8.14 bzw. Bemerkung 8.20 nicht anwendbar sind, weil sich die
unbestimmten Quotienten „ 0

0 “ oder „±∞

±∞
“ ergeben würden.

Es gibt viele Varianten dieser Regel, je nachdem, bei welchen der im folgenden Satz vorkommenden
Grenzwerten auch uneigentliche Grenzwerte ±∞ zugelassen sind. In der Praxis treten alle diese Va-
rianten auch oft auf. Um die Beweisidee des Satzes klar herauszustellen, beschränken wir uns hier
aber zunächst (wie auch bei unseren bisherigen Beweisen von Rechenregeln für Grenzwerte) auf den
Fall, in dem keine uneigentlichen Grenzwerte vorkommen, und geben die möglichen Verallgemei-
nerungen dann in der anschließenden Bemerkung 11.2 an.

Satz 11.1 (Regel von de l’Hôpital, Grundversion). Es seien f ,g : (a,b)→R differenzierbare Funk-
tionen mit g′(x) ̸= 0 für alle x ∈ (a,b). Wir nehmen ferner an, dass

lim
x→a

f (x) = lim
x→a

g(x) = 0

(so dass der Grenzwert lim
x→a

f (x)
g(x) also formal von der unbestimmten Form „ 0

0 “ ist). Existiert dann der

Grenzwert lim
x→a

f ′(x)
g′(x) in R, so auch lim

x→a
f (x)
g(x) , und es gilt

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

Beweis. Wegen lim
x→a

f (x) = lim
x→a

g(x) = 0 können wir f und g durch f (a) := g(a) := 0 stetig nach

[a,b) fortsetzen. Beachte außerdem, dass g auf (a,b) nirgends gleich 0 sein kann, denn sonst gäbe es
im Widerspruch zur Voraussetzung nach dem Satz 10.22 von Rolle zwischen a und dieser Nullstelle
von g eine Nullstelle von g′.

Wir zeigen nun den Grenzwert lim
x→a

f (x)
g(x) mit dem Folgenkriterium. Es sei also (xn)n eine Folge in

(a,b) mit xn→ a. Nach dem Mittelwertsatz 10.23 (b) gibt es dann für alle n ∈ N ein cn ∈ (a,xn) mit

f ′(cn) · (g(xn)−g(a)) = g′(cn) · ( f (xn)− f (a)), also
f (xn)

g(xn)
=

f ′(cn)

g′(cn)

wegen f (a) = g(a) = 0 und der Nullstellenfreiheit von g und g′. Nun konvergiert wegen a < cn < xn
mit (xn)n aber auch (cn)n gegen a, und damit ergibt sich

lim
n→∞

f (xn)

g(xn)
= lim

n→∞

f ′(cn)

g′(cn)
= lim

x→a

f ′(x)
g′(x)

,

was die Behauptung mit dem Folgenkriterium zeigt. □

Bemerkung 11.2 (Regel von de l’Hôpital, Varianten). Der Satz 11.1 von de l’Hôpital hat die fol-
genden Varianten, die wir im Folgenden ebenfalls verwenden werden. Die Beweise sollen hier nicht
gegeben werden – sie lassen sich mit analogen, allerdings oft technisch etwas aufwendigeren Me-
thoden führen.
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(a) Die Regel gilt auch, wenn lim
x→a

f (x) und lim
x→a

g(x) beide im uneigentlichen Sinne gleich ±∞

sind, wir also beim Grenzwert lim
x→a

f (x)
g(x) den unbestimmten Ausdruck „±∞

±∞
“ haben.

(b) Statt einer Annäherung von rechts an die Grenze der Definitionsmenge (in unserem Fall
also an den Punkt a am Rand des Intervalls (a,b)) ist natürlich auch eine Annäherung von
links oder eine beidseitige Annäherung möglich. Dabei sind die Fälle a = −∞ und b = ∞

zugelassen.

(c) Die Regel gilt auch, wenn der Grenzwert von f ′(x)
g′(x) nur im uneigentlichen Sinne existiert,

also gleich ±∞ ist.

Existiert der Grenzwert von f ′(x)
g′(x) dagegen auch im uneigentlichen Sinne nicht, so macht die Re-

gel von de l’Hôpital keine Aussage – wir können daraus dann also nicht schließen, dass auch der
ursprüngliche Grenzwert von f (x)

g(x) nicht existiert!

Beispiel 11.3.

(a) Für jedes n ∈ N>0 ist der Grenzwert lim
x→∞

logx
xn von der Form „ ∞

∞
“. Um ihn mit der Regel von

de l’Hôpital (mit f (x) = logx und g(x) = xn) zu bestimmen, differenzieren wir also Zähler
und Nenner separat und erhalten den Bruch f ′(x)

g′(x) =
1/x

nxn−1 . Da der Nenner dieses Bruchs für
x > 0 nirgends gleich 0 ist und der Grenzwert

lim
x→∞

1/x
nxn−1 = lim

x→∞

1
nxn = 0

existiert, folgt mit Satz 11.1 (bzw. der Verallgemeinerung aus Bemerkung 11.2) also auch

lim
x→∞

logx
xn

„ ∞

∞
“
↓
= lim

x→∞

1/x
nxn−1 = 0. (∗)

Analog zu Bemerkung 5.15 zur Anwendung von Grenzwertsätzen schreibt man dabei die
Anwendung der Regel von de l’Hôpital oftmals gleich wie in der oben in (∗) mit „ ∞

∞
“ be-

zeichneten Gleichung, und überprüft erst nachträglich, dass der neu entstandene Bruch einen
(evtl. uneigentlichen) Grenzwert hat und sein Nenner stets ungleich 0 ist.

(b) Analog erhält man

lim
x→0

xn logx = lim
x→0

logx
x−n

„−∞

∞
“

↓
= lim

x→0

1/x
−nx−n−1 = lim

x→0
−xn

n
= 0,

da der nach dem Differenzieren entstandene Nenner −nx−n−1 für x > 0 ungleich 0 ist. Zu-
sammen mit (a) sehen wir in diesem Sinne also, dass „der Logarithmus für x→ 0 oder x→∞

schwächer ist als jede Potenz“ – in den beiden betrachteten Grenzwerten setzt sich jeweils
die Funktion xn durch. Dies ist natürlich ganz analog zu der Aussage von Bemerkung 9.3 (a),
dass die Exponentialfunktion schneller als jede Potenz wächst. Beachte auch, dass wir in der
zweiten Rechnung oben gesehen haben, dass es sich auch bei einem ursprünglichen Aus-
druck der Form „0 · (±∞)“ lohnen kann, ihn künstlich als Bruch umzuschreiben, um dann
die Regel von de l’Hôpital anwenden zu können.

(c) Falls sich nach einmaliger Anwendung von Satz 11.1 immer noch ein Bruch der Form „ 0
0 “

oder „±∞

±∞
“ ergibt, kann man den Satz natürlich auch mehrfach hintereinander anwenden, wie

z. B. in dem Grenzwert

lim
x→∞

x2

ex

„ ∞

∞
“
↓
= lim

x→∞

2x
ex

„ ∞

∞
“
↓
= lim

x→∞

2
ex = 0

(wegen ex ̸= 0 für alle x), den wir aber natürlich auch schon aus Satz 9.1 (c) kannten.
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Bemerkung 11.4 (Die Regel von de l’Hôpital für Folgengrenzwerte). Manchmal kann man auch
den Grenzwert einer reellen Folge (an)n mit der Regel von de l’Hôpital berechnen. Kann man die
Folge nämlich – betrachtet als Abbildung N→R – zu einer Abbildung R→R fortsetzen, also auch
für reelles n betrachten, und existiert dann der Grenzwert für reelle n→ ∞, so existiert er dann
natürlich auch für natürliche n→ ∞, und hat denselben Wert. Für die Berechnung des Grenzwerts
für reelle n haben wir dann aber wieder die Regel von de l’Hôpital zur Verfügung.

Betrachten wir als Beispiel hierfür einmal für gegebenes x ∈ R den Grenzwert lim
n→∞

(
1+ x

n

)n, den
wir in Aufgabe 7.34 mit viel Aufwand zu ex berechnet haben. Da wir Potenzen inzwischen auch für
reelle n definiert haben, können wir den Ausdruck

(
1+ x

n

)n nun aber auch als Funktion einer reellen
Variablen n auffassen und seinen Grenzwert für n→ ∞ mit der Regel von de l’Hôpital berechnen:
Es ist

lim
n→∞

(
1+

x
n

)n
= lim

n→∞
exp
(

n log
(
1+

x
n

))
(Definition 9.7)

= exp
(

lim
n→∞

n log
(
1+

x
n

))
(Stetigkeit von exp, Satz 8.16)

= exp
(

lim
n→∞

log(1+ x
n )

n−1

)
= exp

(
lim
n→∞

−x/n2

1+ x
n
· 1
−1/n2

) (
„ 0

0 “, Differenzieren nach n, beachte − 1
n2 ̸= 0

)
= exp

(
lim
n→∞

x
1+ x

n

)
= expx.

Aufgabe 11.5. Berechne die folgenden Grenzwerte:

(a) lim
x→0
x>0

log(tan(2x))
log(tan(3x))

(b) lim
x→1

( 1
x−1

− 1
logx

)
(c) lim

x→0
x>0

xx

Aufgabe 11.6. Es sei f : [a,b]→ R stetig und auf (a,b) differenzierbar, so dass lim
x→a

f ′(x) existiert.

Zeige, dass f dann auch in a differenzierbar ist und f ′(a) = lim
x→a

f ′(x) gilt.

11.B Taylor-Entwicklung

Als weitere Anwendung der Differentialrechnung wollen wir nun unsere ursprüngliche Idee der li-
nearen Approximation einer Funktion f : D→R mit D⊂R in einem Punkt a∈D erweitern und uns
fragen, ob wir vielleicht noch bessere Näherungen bekommen können, wenn wir als Näherungsfunk-
tion statt einer linearen Funktion eine Polynomfunktion von höherem Grad verwenden. Betrachten
wir z. B. statt unserer bisherigen Näherung vom Anfang von Kapitel 10

f (x)≈ c0 + c1 (x−a)

mit c0 = f (a) und c1 = f ′(a) den Ansatz

f (x)≈ c0 + c1 (x−a)+ c2 (x−a)2,

bei dem wir auch einen quadratischen Term zulassen (den wir proportional zu (x− a)2 statt zu x2

wählen, damit er am Näherungspunkt a selbst verschwindet), so können wir wie im Bild unten
erwarten, dass wir eine viel bessere Näherung erhalten, da die Näherungsfunktion ja jetzt eine qua-
dratische Parabel ist und damit auch ein wenig die Krümmung von f an der Stelle a nachbilden kann.
Natürlich können wir dies dann auch noch weiter treiben und Polynomfunktionen höheren Grades
zulassen: Wenn wir für ein n ∈ N einen Ansatz

f (x)≈
n

∑
k=0

ck (x−a)k
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machen und dabei die Koeffizienten ck geschickt wählen, sollte die Näherung mit wachsendem n
immer besser werden. Wir können sogar versuchen, den Grenzübergang n→ ∞ zu machen und uns
fragen, ob wir mit einer Potenzreihe

∞

∑
k=0

ck (x−a)k

im Grenzfall vielleicht nicht nur eine ganz besonders gute Näherung, sondern sogar genau die Funk-
tion f zurück erhalten, also ob wir f letztlich als Potenzreihe in x−a schreiben können – schließlich
haben wir ja auch wie z. B. die Exponentialfunktion schon einige Funktionen gesehen, die wir von
vornherein bereits als Potenzreihe geschrieben haben.

x

f (x)

a
x

f (x)

a

lineare
Näherung

quadratische
Näherung

Um diese Idee zu verfolgen, wollen wir nun als Erstes untersuchen, welche Koeffizienten ck wir
in den obigen Polynomen bzw. Reihen wählen sollten. Da wir bereits wissen, dass der lineare Ko-
effizient c1 gerade die Ableitung f ′(a) ist, sollte es nicht überraschen, dass wir für die höheren
Koeffizienten ck mit k > 1 höhere Ableitungen benötigen. Diese wollen wir daher jetzt einführen.

Definition 11.7 (Höhere Ableitungen). Es seien f : D→ R eine Funktion und n ∈ N.

(a) Die Funktion f heißt n-mal differenzierbar auf D, wenn alle fortgesetzten Ableitungen
f (0) := f , f (1) := f ′, f (2) := f ′′ := ( f ′)′, . . . , f (n) := ( f (n−1))′ existieren.

(b) Die Funktion f heißt n-mal stetig differenzierbar auf D, wenn zusätzlich f (n) stetig ist.

(c) Existieren die höheren Ableitungen f (n) für alle n, so heißt f unendlich oft differenzierbar
auf D.

Die Menge aller n-mal stetig differenzierbaren Funktionen auf D wird mit Cn(D) bezeichnet (der
Buchstabe C kommt vom englischen Wort „continuous“ für „stetig“). Inbesondere ist also C0(D) die
Menge aller stetigen und C∞(D) die Menge aller unendlich oft differenzierbaren Funktionen auf D.

Wie diese höheren Ableitungen die oben betrachteten Koeffizienten ck bestimmen, sieht man am
besten wie im folgenden Satz am Beispiel von Potenzreihen, die ja bereits in einer derartigen Form
geschrieben sind. (Beachte, dass dies auch noch einmal die Aussage aus Aufgabe 8.43 zeigt, dass
die Koeffizienten einer Potenzreihe mit Konvergenzradius ungleich 0 durch die durch sie definierte
Funktion bereits eindeutig bestimmt sind.)

Satz 11.8 (Taylor-Formel für Potenzreihen). Es seien a∈R und f (x) =∑
∞
k=0 ck (x−a)k eine reelle

Potenzreihe in x−a mit Konvergenzradius r > 0, so dass wir f also als Funktion f : (a−r,a+r)→R
auf fassen können.

Dann ist f auf (a−r,a+r) unendlich oft differenzierbar, und für die Koeffizienten ck der Potenzreihe
gilt

ck =
f (k)(a)

k!
für alle k ∈ N.

Mit anderen Worten ist also

f (x) =
∞

∑
k=0

f (k)(a)
k!

(x−a)k = f (a)+
f ′(a)
1!

(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·

für alle x ∈ (a− r,a+ r).
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Beweis. Nach Folgerung 10.27 ist jede Potenzreihe in ihrem Konvergenzgebiet differenzierbar, und
ihre Ableitung ist wieder eine Potenzreihe (mit demselben Konvergenzradius), die sich durch glied-
weises Differenzieren berechnen lässt. Insbesondere ist f damit also unendlich oft differenzierbar,
und die höheren Ableitungen sind

f (n)(x) =
∞

∑
k=n

k(k−1) · · ·(k−n+1)ck (x−a)k−n

für alle n ∈ N. Setzen wir hier nun x = a ein, so ist (x−a)k−n gleich 0 für k > n und 1 für k = n. In
der obigen Summe bleibt dann also nur der Term für k = n übrig, und wir erhalten wie behauptet

f (n)(a) = n(n−1) · · ·(n−n+1)cn = n!cn. □
24

Beispiel 11.9. Wir betrachten die Funktion f : R→R, f (x) = 1
1+x2 und möchten die 10. Ableitung

f (10)(0) im Nullpunkt berechnen. Natürlich könnte man jetzt mit Hilfe der Regeln von Satz 10.8
alle fortgesetzten Ableitungen von f berechnen und schließlich in dem so gefundenen Ausdruck für
f (10) den Wert x = 0 einsetzen – dies wäre aber sehr zeitaufwendig. Viel schneller geht es mit der
Taylor-Formel: Nach der geometrischen Reihe können wir f ja für |x|< 1 gemäß

f (x) =
1

1+ x2 =
1

1− (−x2)
=

∞

∑
n=0

(−x2)n = 1− x2 + x4− x6 + x8− x10±·· ·

als Potenzreihe in x schreiben. Satz 11.8 mit a = 0 und k = 10 sagt uns also für den Koeffizienten
von x10 in dieser Reihe, der ja offensichtlich gleich −1 ist, dass

−1 =
f (10)(0)

10!
, und damit f (10)(0) =−10!.

Wir sehen an diesem Beispiel schon, dass die Taylor-Formel für Potenzreihen auch dann nützlich
ist, wenn die Funktion f ursprünglich gar nicht als Potenzreihe gegeben ist, sondern wir nur wissen,
dass es eine solche Darstellung als Potenzreihe gibt. In der Tat benutzt die Taylor-Formel in der
Form

f (x) =
∞

∑
k=0

f (k)(a)
k!

(x−a)k (∗)

ja auch gar nicht mehr die Koeffizienten der ursprünglichen Reihe, sondern nur noch die Tatsache,
dass sich f überhaupt irgendwie als Potenzreihe schreiben lässt. Gilt die Formel (∗) also vielleicht
sogar für jede unendlich oft differenzierbare Funktion f ?
Leider ist (wie wir gleich sehen werden) die Antwort auf diese Frage nein. Für viele in der Praxis
vorkommende Funktionen ist die Antwort allerdings auch ja – und daher lohnt es sich, die Sache
doch noch weiter zu verfolgen. Wir geben der rechten Seite von (∗), bzw. den Partialsummen dieser
Reihe, daher zunächst einen Namen.

Definition 11.10 (Taylor-Polynom und Taylor-Reihe). Es seien D ⊂ R, f : D→ R eine Funktion,
sowie a ∈ D ein fest gewählter Punkt.

(a) Die Funktion f sei n-mal differenzierbar für ein n ∈ N. Dann heißt die Polynomfunktion

T n
f ,a : D→ R, x 7→

n

∑
k=0

f (k)(a)
k!

(x−a)k

das n-te Taylor-Polynom von f mit Entwicklungspunkt a; offensichtlich ist degT n
f ,a ≤ n.

(b) Ist f unendlich oft differenzierbar, so heißt die Potenzreihe in x−a

Tf ,a(x) := lim
n→∞

T n
f ,a(x) =

∞

∑
k=0

f (k)(a)
k!

(x−a)k

die Taylor-Reihe von f mit Entwicklungspunkt a. Beachte, dass zunächst nicht klar ist, ob
diese Potenzreihe einen Konvergenzradius größer als 0 hat, also ob sie überhaupt in irgend-
einem Punkt x (außer a) konvergiert – und dass, selbst wenn sie konvergiert, nicht klar ist,
ob sie als Funktion im Konvergenzgebiet mit f übereinstimmt.
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Beispiel 11.11.

(a) Lässt sich eine Funktion f auf einem Intervall (a− r,a+ r) mit a ∈ R und r > 0 als Po-
tenzreihe in x− a (mit Konvergenzradius mindestens r) schreiben, so besagt Satz 11.8 ge-
rade, dass die Taylor-Reihe Tf ,a(x) genau diese Reihe ist, also dass Tf ,a(x) = f (x) für alle
x ∈ (a− r,a+ r) gilt.

(b) Wir betrachten die Funktion

f : R>0→ R, x 7→ logx

und bestimmen ihre Taylor-Reihe mit Entwicklungspunkt a = 1. Die Ableitungen von f sind
einfach zu berechnen: Wegen f ′(x) = x−1 ist

f (k)(x) = (−1) · (−2) · · ·(−(k−1)) · x−k = (−1)k−1 · (k−1)! · x−k

und damit f (k)(1) = (−1)k−1 · (k−1)! für alle k > 0. Die Taylor-Reihe von f mit Entwick-
lungspunkt 1 ist damit

Tf ,1(x) = log1+
∞

∑
k=1

(−1)k−1 · (k−1)!
k!

(x−1)k =
∞

∑
k=1

(−1)k−1

k
(x−1)k

= (x−1)− (x−1)2

2
+

(x−1)3

3
∓·· · .

Wie in Beispiel 7.30 (a) hat diese Potenzreihe in x−1 den Konvergenzradius 1, sie konver-
giert also für |x−1|< 1, d. h. für x ∈ (0,2), und divergiert für |x−1|> 1, also für x < 0 oder
x > 2. Damit ist schon einmal klar, dass die Taylor-Reihe Tf ,1(x) für x > 2 sicher nicht die
ursprüngliche Funktion f (x) = logx darstellt, da sie dort ja nicht einmal konvergiert. Aber
auch für x ∈ (0,2) ist noch nicht klar, dass wirklich Tf ,1(x) = f (x) gilt: Das folgende Bei-
spiel zeigt, dass eine Taylor-Reihe auch im Fall der Konvergenz nicht mit der ursprünglichen
Funktion übereinstimmen muss.

Aufgabe 11.12. Es sei

f : R→ R, x 7→

{
exp
(
− 1

x2

)
für x ̸= 0,

0 für x = 0.

Zeige, dass f unendlich oft differenzierbar ist, und dass die Taylor-Reihe Tf ,0 die Nullfunktion ist
(also insbesondere zwar überall konvergiert, aber außer im Nullpunkt nirgends mit f übereinstimmt).
Skizziere auch den Graphen von f .

(Hinweis: Man zeige mit vollständiger Induktion, dass alle Ableitungen von f in 0 gleich 0 und für
x ̸= 0 von der Form p(x)

q(x) exp(− 1
x2 ) für gewisse Polynomfunktionen p und q sind.)

Wir benötigen also ein Kriterium, mit dem wir eine Funktion f mit ihren Taylor-Polynomen T n
f ,a

bzw. ihrer Taylor-Reihe Tf ,a vergleichen können, so dass wir letztlich nachprüfen können, ob eine
(konvergierende) Taylor-Reihe auch wirklich gleich der ursprünglichen Funktion ist. Dies liefert der
folgende Satz:

Satz 11.13 (Taylor-Formel). Es seien n ∈ N, D⊂ R ein Intervall, und f : D→ R eine (n+1)-mal
differenzierbare Funktion. Ferner seien a,x ∈ D. Dann gibt es ein c zwischen a und x mit

f (x)−T n
f ,a(x) =

f (n+1)(c)
(n+1)!

(x−a)n+1.

Man bezeichnet f (x)−T n
f ,a(x) auch als das Restglied des n-ten Taylor-Polynoms und schreibt es als

Rn
f ,a(x).

Beweis. Für den Fall x = a ist die Aussage trivial, da dann beide Seiten der zu zeigenden For-
mel gleich 0 sind. Für x ̸= a behaupten wir, dass die Aussage unmittelbar aus dem Mittelwertsatz
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10.23 (b) angewendet auf die beiden Funktionen

F : D→ R, t 7→ T n
f ,t(x) = f (t)+

f ′(t)
1!

(x− t)+
f ′′(t)
2!

(x− t)2 + · · ·+ f (n)(t)
n!

(x− t)n

und G : D→ R, t 7→ (x− t)n+1

folgt. In der Tat sind F und G dann differenzierbar mit

F ′(t) = f ′(t)+
(
− f ′(t)

1!
+

f ′′(t)
1!

(x− t)
)
+
(
− f ′′(t)

1!
(x− t)+

f ′′′(t)
2!

(x− t)2
)
+ · · ·

+
(
− f (n)(t)

(n−1)!
(x− t)n−1 +

f (n+1)(t)
n!

(x− t)n
)

=
f (n+1)(t)

n!
(x− t)n

und G′(t) =−(n+1)(x− t)n

sowie F(x)−F(a) = f (x)−T n
f ,a(x) = Rn

f ,a(x) und G(x)−G(a) = −(x−a)n+1. Der Mittelwertsatz
10.23 (b) liefert also ein c zwischen a und x mit

− f (n+1)(c)
n!

(x− c)n · (x−a)n+1 =−(n+1)(x− c)n ·Rn
f ,a(x),

d. h. wie behauptet Rn
f ,a(x) =

f (n+1)(c)
(n+1)! (x−a)n+1. □

Bemerkung 11.14.
(a) Für n= 0 ist Satz 11.13 wegen T 0

f ,a(x) = f (a) exakt der Mittelwertsatz 10.23 (a). Wir können
die Taylor-Formel also auch als eine Verallgemeinerung des Mittelwertsatzes auffassen.

(b) Setzen wir in der Formel aus Satz 11.13 noch den Ausdruck aus Definition 11.10 (a) ein, so
erhalten wir für jede (n+1)-mal differenzierbare Funktion f

f (x) = f (a)+
f ′(a)
1!

(x−a)+ · · ·+ f (n)(a)
n!

(x−a)n︸ ︷︷ ︸
=T n

f ,a(x)

+
f (n+1)(c)
(n+1)!

(x−a)n+1︸ ︷︷ ︸
=Rn

f ,a(x)

für ein c zwischen a und x. Das Restglied des n-ten Taylor-Polynoms hat also genau die Form
des (n+1)-ten Gliedes der Taylor-Reihe – bis auf den Unterschied, dass man die Ableitung
dort an einer Zwischenstelle c anstatt am Entwicklungspunkt a nehmen muss.

(c) Offensichtlich gilt für eine unendlich oft differenzierbare Funktion f nach Satz 11.13 genau
dann Tf ,a(x) = f (x), wenn lim

n→∞
Rn

f ,a(x) = 0. Wenn man die Taylor-Reihe oder die Taylor-
Polynome mit der ursprünglichen Funktion vergleichen möchte, muss man also in irgendei-
ner Form das Restglied abschätzen. Hier sind zwei Beispiele dafür.

Beispiel 11.15 (Restgliedabschätzung).
(a) Wenden wir Satz 11.13 auf die Taylor-Reihe der Funktion f : R>0→ R, x 7→ logx mit Ent-

wicklungspunkt a = 1 aus Beispiel 11.11 (b) an, so erhalten wir mit den dort berechneten
Ableitungen f (n+1)(x) = (−1)n n!

xn+1 für jedes x ∈ R>0

Rn
f ,1(x) = f (x)−T n

f ,1(x) =
(−1)n

n+1
· (x−1)n+1

cn+1
n

für ein cn zwischen 1 und x (wir haben den Zwischenwert hier mit cn statt c bezeichnet, da
es natürlich für jedes n ein anderer sein wird). Ist nun x ∈ [1,2], so ist aber stets cn ≥ 1 und
|x−1| ≤ 1, und wir erhalten die Abschätzung

|Rn
f ,1(x)| ≤

1
n+1

,
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was mit n→ ∞ gegen 0 konvergiert. Also konvergieren die Taylor-Polynome für n→ ∞

zumindest auf [1,2] wirklich gegen die Funktion f : Es gilt

logx =
∞

∑
k=1

(−1)k−1

k
(x−1)k für alle x ∈ [1,2]. (∗)

Insbesondere ergibt sich damit für x = 2 der Wert der alternierenden harmonischen Reihe zu

log2 =
∞

∑
k=1

(−1)k−1

k
= 1− 1

2
+

1
3
− 1

4
±·· · .

Wir werden später in Beispiel 12.39 (a) übrigens noch sehen, dass die Gleichung (∗) sogar
für alle x ∈ (0,2] gilt (also für alle x, für die die Taylor-Reihe überhaupt konvergiert), aber
mit unserer bisherigen Formel für das Restglied aus Satz 11.13 können wir das noch nicht
beweisen.

(b) Wenn wir als Näherung einer Funktion nur an einem bestimmten Taylor-Polynom (und nicht
an der kompletten Reihe) interessiert sind, kann uns Satz 11.13 sagen, wie groß der Fehler
ist, den wir dabei machen. Betrachten wir z. B. die Sinusfunktion f : R→ R, x 7→ sinx, so
ist am Entwicklungspunkt 0

T 4
f ,0(x) = x− x3

6
(wie man aus Lemma 9.13 (b) sofort abliest, denn nach Satz 11.8 ist ja jede Potenzreihe ihre
eigene Taylor-Reihe). Wegen f (5)(x) = cosx besagt Satz 11.13 für n = 4 nun für alle x ∈ R

R4
f ,0(x) = sinx−

(
x− x3

6

)
=

cosc
5!

x5

für ein c zwischen 0 und x. Wenn wir nun z. B. nur an Werten x ∈ R mit |x| ≤ 1
2 interessiert

sind, so können wir diesen Ausdruck wegen |cosc| ≤ 1 abschätzen zu

|R4
f ,0(x)| ≤

( 1
2 )

5

5!
=

1
3840

,

d. h. wenn wir für |x| ≤ 1
2 den Sinus durch sein viertes Taylor-Polynom x− x3

6 ersetzen,
machen wir dabei einen Fehler von höchstens 1

3840 ≈ 0,0003.

Aufgabe 11.16.
(a) Berechne das Taylor-Polynom T 2

f ,1 für die Funktion f (x) =
√

x und zeige die Restgliedab-
schätzung | f (x)−T 2

f ,1(x)| ≤
1
20 für alle x ∈

[ 1
2 ,

3
2

]
.

(b) Berechne f (10)(0) sowie das Taylor-Polynom T 10
f ,0 für die Funktion f (x) = cos(x5)

1−2x6 .

Aufgabe 11.17. Es sei f : R → R eine zweimal differenzierbare Funktion mit f ′′ = f sowie
f (0) = f ′(0) = 1. Berechne die Taylor-Reihe von f mit Entwicklungspunkt 0 und zeige durch eine
Restgliedabschätzung, dass f = exp die Exponentialfunktion ist.

Als weitere Anwendung der Taylor-Formel wollen wir nun noch ein einfaches hinreichendes Kri-
terium für lokale Extrema geben. Wir hatten bisher ja nur in Lemma 10.20 gesehen, dass an einem
lokalen Extremum, das nicht am Rand der Definitionsmenge liegt, ein kritischer Punkt vorliegen,
also die erste Ableitung verschwinden muss – dass diese Bedingung aber nicht für ein lokales Extre-
mum ausreicht. Mit Hilfe höherer Ableitungen und der Taylor-Formel können wir nun ein Kriterium
angeben, das nahezu immer und ohne allzu großen Aufwand entscheiden kann, ob wirklich ein lo-
kales Extremum vorliegt oder nicht:

Satz 11.18 (Extremwertkriterium). Es seien n ∈ N>0 und f : D → R eine n-mal stetig dif-
ferenzierbare Funktion auf einem offenen Intervall D ⊂ R. Weiterhin sei a ∈ D ein Punkt mit
f ′(a) = f ′′(a) = · · ·= f (n−1)(a) = 0 und f (n)(a) ̸= 0.

(a) Ist n gerade und f (n)(a)> 0, so hat f in a ein isoliertes lokales Minimum.
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(b) Ist n gerade und f (n)(a)< 0, so hat f in a ein isoliertes lokales Maximum.

(c) Ist n ungerade, so hat f in a kein lokales Extremum.

Beweis. Es sei ohne Beschränkung der Allgemeinheit f (n)(a)> 0 (der Fall f (n)(a)< 0 ist analog).
Da f (n) nach Voraussetzung stetig ist, können wir nach Bemerkung 8.8 nach eventuellem Verklei-
nern von D auf eine geeignete ε-Umgebung von a annehmen, dass f (n) auf ganz D positiv ist. Die
Taylor-Formel aus Satz 11.13 besagt nun, dass es für alle x ∈ D ein c zwischen a und x gibt mit

f (x)−T n−1
f ,a (x) =

f (n)(c)
n!

(x−a)n.

Nach der Voraussetzung f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 ist aber T n−1
f ,a (x) = f (a), und damit

also

f (x)− f (a) =
f (n)(c)

n!
(x−a)n.

Wegen f (n)(c)> 0 ist dieser Term für x ∈ D\{a} nun . . .

• immer größer als 0 falls n gerade ist; in diesem Fall hat f dann also ein isoliertes lokales
Minimum in a;

• größer als 0 für x > a und kleiner als Null für x < a wenn n ungerade ist; in diesem Fall hat
f also kein lokales Extremum in a. □

Bemerkung 11.19. Anschaulich kann man die Idee von Satz 11.18 kurz so zusammenfassen: Es
sei f eine Funktion, von der wir an einer Stelle a wissen wollen, ob ein lokales Extremum vorliegt.
Ist nun die n-te Ableitung von f die erste, die am Punkt a nicht verschwindet, so enthält das Tay-
lor-Polynom T n

f ,a nur den konstanten Term und den vom Grad n – und damit sagt uns die Idee der
Taylor-Näherung, dass in der Nähe von a

f (x)≈ T n
f ,a(x) = f (a)+

f (n)(a)
n!

(x−a)n

gelten sollte. Da der Ausdruck auf der rechten Seite eine einfache Potenzfunktion ist, sieht man ihm
aber natürlich sofort sein Verhalten um den Punkt a herum an: Für gerades n gibt es je nach Vorzei-
chen von f (n)(a) ein isoliertes lokales Minimum oder Maximum, und für ungerades n kein lokales
Extremum. Mit dieser Idee lässt sich übrigens auch die Aussage des Satzes sehr leicht merken!

Aufgabe 11.20. Zeige, dass für jede zweimal stetig differenzierbare Funktion f : R→R die folgen-
den drei Bedingungen äquivalent sind:

(a) Für alle x ∈ R gilt f ′′(x)≥ 0.

(b) Für alle x,y ∈ R gilt f (y)≥ f (x)+ f ′(x) · (y− x).

(c) Für alle x,y ∈ R und λ ∈ [0,1] gilt (1−λ ) f (x)+λ f (y)≥ f ((1−λ )x+λy).

Eine Funktion, die diese Bedingungen erfüllt, heißt konvex. Was bedeuten die drei Bedingungen
anschaulich?
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