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10. Differentialrechnung

Wir kommen nun zum wohl wichtigsten Teil der Analysis (in
einer Veränderlichen), der sogenannten Differentialrechnung.
Ziel der Differentialrechnung ist es, wie im Bild rechts eine
Funktion f : D→ K in einem gegebenen Punkt a ∈ D ⊂ K
linear zu approximieren, d. h. eine Gerade h zu finden, die f
in einer kleinen Umgebung von a möglichst gut annähert. Mit
anderen Worten können wir h als Tangente an den Graphen
von f im Punkt a auffassen.

x

h(x)
f (x)

f (a)

a

In der Praxis ist dies natürlich oft wünschenswert, denn immer wenn wir aus irgendwelchen Gründen
wissen, dass wir die Funktion f nur in der Nähe von a benötigen werden, dann können wir die
womöglich sehr komplizierte Funktion f näherungsweise durch eine Gerade ersetzen, also durch
eine viel einfacher zu behandelnde Funktion.

Wie kann man nun diese Tangente h bestimmen? Als Gerade durch den Punkt (a, f (a)) muss sie
natürlich von der Form h(x) = f (a)+ c(x− a) für ein c ∈ K sein, wobei dieses c die Steigung der
Geraden angibt. Wir möchten also erreichen, dass

f (x)≈ f (a)+ c(x−a),

wobei das Symbol „≈“ hier nicht exakt definiert ist, sondern nur den anschaulichen Sachverhalt „ist
für x in der Nähe von a in etwa gleich“ beschreiben soll. Es müsste dann also

c≈ f (x)− f (a)
x−a

sein. Aufgrund unserer Vorarbeiten wissen wir aber natürlich nun, wie man dies mathematisch exakt
formulieren muss: Die beste Näherung erhalten wir für den Grenzwert

c = lim
x→a

f (x)− f (a)
x−a

(sofern er existiert). Derartige Grenzwerte wollen wir nun also in der Differentialrechnung studieren.

10.A Ableitungen von Funktionen

Bevor wir den obigen Grenzwert von f (x)− f (a)
x−a für x→ a exakt definieren können, müssen wir noch

kurz eine (recht schwache) Bedingung an die Definitionsmenge D der betrachteten Funktion stellen:
Da dieser Quotient nur für x ∈ D\{a} definiert ist, muss a nach Definition 8.3 ein Berührpunkt von
D\{a} sein, damit der Grenzwert dieses Ausdrucks für x→ a überhaupt definierbar ist, also damit
man sich innerhalb von D\{a} dem Punkt a beliebig nähern kann. Wir wollen diese Bedingung nun
formalisieren.

Definition 10.1 (Isolierte Punkte). Es sei D ⊂ K. Ein Punkt a ∈ D heißt isolierter Punkt von D,
wenn es eine ε-Umgebung von a gibt, die außer a keinen Punkt von D enthält (also „wenn man sich
innerhalb von D\{a} dem Punkt a nicht beliebig nähern kann“).

Beispiel 10.2.
(a) Die Menge Z besteht nur aus isolierten Punkten.

(b) Intervalle in R – egal ob offene, halboffene, abgeschlossene oder uneigentliche – haben keine
isolierten Punkte (solange sie nicht ein einpunktiges Intervall [a,a] sind). Vereinigungen
derartiger Intervalle haben ebenfalls keine isolierten Punkte.
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Durch Negation der Bedingung aus Definition 10.1 sehen wir, dass ein Punkt a ∈ D kein isolierter
Punkt von D ist, wenn in jeder ε-Umgebung von a ein Punkt von D\{a} liegt, also wenn a ein
Berührpunkt von D\{a} ist. Um Grenzwerte für x→ a mit x ∈ D und x ̸= a in jedem Punkt a ∈ D
bilden zu können, machen wir wie oben erläutert jetzt also die

Grundvoraussetzung für dieses Kapitel: Die Definitionsmengen aller betrachteten
Funktionen haben keine isolierten Punkte.

Damit können wir nun wie oben motiviert die Steigungen der lokalen linearen Approximationen
einer gegebenen Funktion als Grenzwerte berechnen:

Definition 10.3 (Differenzierbarkeit). Es seien D⊂K und f : D→K eine Funktion.

(a) Die Funktion f heißt differenzierbar in a ∈ D, wenn der Grenzwert

f ′(a) := lim
x→a
x ̸=a

f (x)− f (a)
x−a

in K existiert (ein uneigentlicher Grenzwert ±∞ im reellen Fall wie in Definition 8.19 ist
hier also nicht zugelassen). Die Zahl f (x)− f (a)

x−a bezeichnet man oft als Differenzenquotient,
ihren Grenzwert f ′(a) – sofern er existiert – als Differentialquotient oder Ableitung von f
in a. Da es offensichtlich ist, dass wir hier bei der Grenzwertbildung x ̸= a beachten müssen,
werden wir diese Bedingung in der Regel nicht jedes Mal wieder explizit hinschreiben.

(b) Man nennt f differenzierbar (auf D), wenn f in jedem Punkt von D differenzierbar ist. Offen-
sichtlich erhält man dann eine Funktion f ′ : D→ K, x 7→ f ′(x), die die Ableitungsfunktion
(oder ebenfalls kurz Ableitung) von f genannt wird.

Wie oben erläutert ist f ′(a) also (zumindest im reellen Fall) die Steigung der Tangenten an den
Graphen von f im Punkt (a, f (a)).

Beispiel 10.4.
(a) Jede Gerade f : K→K, x 7→ mx+b mit m,b ∈K ist differenzierbar mit Ableitung m, denn

f ′(a) = lim
x→a

f (x)− f (a)
x−a

= lim
x→a

(mx+b)− (ma+b)
x−a

= m.

Dies ist geometrisch natürlich klar, denn eine solche Gerade ist ihre eigene Tangente in
jedem Punkt und hat damit überall die Steigung m.

(b) Es sei f : R≥0→ R, x 7→
√

x die Wurzelfunktion. Dann ist für alle a ∈ R≥0

lim
x→a

√
x−
√

a
x−a

= lim
x→a

√
x−
√

a
(
√

x+
√

a)(
√

x−
√

a)
= lim

x→a

1√
x+
√

a
=

{
1

2
√

a für a > 0,

∞ für a = 0.

Also ist f differenzierbar auf R>0 mit Ableitung f ′(x) = 1
2
√

x , aber nicht differenzierbar auf
R≥0. Anschaulich ist f nicht differenzierbar in 0, weil f dort „unendliche Steigung“ hat
und die lineare Approximation daher eine senkrechte Gerade sein müsste (siehe Bild unten
links).

x x

√
x |x|

nicht differenzierbar nicht differenzierbar



120 Andreas Gathmann

(c) Die Betragsfunktion f : R→ R, x 7→ |x| ist nicht differenzierbar in 0 nach dem Folgenkrite-
rium, denn die Folge (xn)n mit xn =

(−1)n

n konvergiert gegen 0, aber der Grenzwert

lim
n→∞

f (xn)− f (0)
xn−0

= lim
n→∞

|xn|
xn

= lim
n→∞

1/n
(−1)n/n

= lim
n→∞

(−1)n

existiert nicht. Anschaulich ist f deswegen nicht differenzierbar in 0, weil der Funktions-
graph dort einen „Knick“ hat und sich die Funktion daher dort nicht durch eine Gerade
approximieren lässt (siehe Bild oben rechts).

Wir haben gerade mit Beispiel 10.4 (b) und (c) zwei Beispiele von Funktionen gesehen, die (in
einem Punkt) stetig, aber nicht differenzierbar sind. Wir wollen nun zeigen, dass umgekehrt aber
jede differenzierbare Funktion stetig ist. Hierfür benötigen wir das folgende Lemma, das wir auch
später noch einmal verwenden werden.

Lemma 10.5 (Äquivalentes Kriterium für Differenzierbarkeit). Es seien D ⊂ K, f : D→ K eine
Funktion und a ∈ D. Dann sind die folgenden beiden Bedingungen äquivalent:

(a) f ist differenzierbar in a.

(b) Es gibt eine in a stetige Funktion ϕ : D→K mit f (x)− f (a) = ϕ(x) · (x−a) für alle x ∈ D.

In diesem Fall ist dann ϕ(a) = f ′(a).

Beweis. Die gegebene Bedingung an ϕ legt diese Funktion für alle x ̸= a offensichtlich fest als den
Differenzenquotienten

ϕ(x) =
f (x)− f (a)

x−a
.

Damit besagt (b) also genau, dass diese Funktion stetig nach a fortsetzbar ist. Dies ist gemäß Defi-
nition 8.5 (b) aber exakt dasselbe wie die Aussage (a), dass der Grenzwert

lim
x→a
x ̸=a

ϕ(x) = lim
x→a
x ̸=a

f (x)− f (a)
x−a

(∗)

existiert, also dass f in a differenzierbar ist. Ist dies der Fall, so ist der Ausdruck (∗) dann aber
sowohl gleich der stetigen Fortsetzung ϕ(a) von ϕ in a als auch gleich der Ableitung f ′(a). □

Bemerkung 10.6. Anschaulich gibt die Funktion ϕ aus Lemma 10.5 im Punkt x genau die Stei-
gung der Geraden durch die Punkte (a, f (a)) und (x, f (x)) an – die im Grenzfall x→ a dann zur
Tangentensteigung wird.

Folgerung 10.7. Es seien D⊂K, f : D→K eine Funktion und a ∈ D. Ist f differenzierbar in a, so
ist f auch stetig in a.

Beweis. Ist f differenzierbar in a, so gibt es nach Lemma 10.5 eine in a stetige Funktion ϕ : D→K
mit f (x) = f (a) + ϕ(x)(x− a). Insbesondere existiert also der Grenzwert lim

x→a
ϕ(x) = ϕ(a), und

damit nach den Grenzwertsätzen aus Satz 8.14 auch

lim
x→a

f (x) = lim
x→a

(
f (a)+ϕ(x)(x−a)

)
= f (a)+ϕ(a)(a−a) = f (a),

d. h. f ist stetig in a. □

Genau wie bei unserer Untersuchung der Stetigkeit wollen wir nun zeigen, dass sich die Differen-
zierbarkeit von Funktionen auf Summen, Differenzen, Produkte, Quotienten, Verkettungen, Um-
kehrfunktionen und schließlich auch auf Potenzreihen überträgt – und auch wie man dann die Ab-
leitungen dieser neuen Funktionen berechnet. Wir beginnen mit den vier Grundrechenarten.

Satz 10.8 (Rechenregeln für Ableitungen). Die Funktionen f ,g : D→ K seien differenzierbar in
a ∈ D. Dann gilt:

(a) f ±g ist differenzierbar in a mit Ableitung ( f ±g)′(a) = ( f ′±g′)(a).

(b) (Produktregel) f g ist differenzierbar in a mit ( f g)′(a) = ( f ′g+ f g′)(a).
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(c) (Quotientenregel) Ist g(a) ̸= 0, so ist f
g differenzierbar in a mit

(
f
g

)′
(a) =

(
f ′g− f g′

g2

)
(a).

Beweis.

(a) Wir führen den Beweis hier nur für die Addition, der für die Subtraktion ist analog:

( f +g)′(a) = lim
x→a

f (x)+g(x)− ( f (a)+g(a))
x−a

= lim
x→a

( f (x)− f (a)
x−a︸ ︷︷ ︸
→ f ′(a)

+
g(x)−g(a)

x−a︸ ︷︷ ︸
→g′(a)

)

= ( f ′+g′)(a).

(b) Da g in a differenzierbar, nach Folgerung 10.7 also auch stetig ist, gilt lim
x→a

g(x)= g(a). Damit
ergibt sich nach den Rechenregeln für Grenzwerte aus Satz 8.14

( f g)′(a) = lim
x→a

f (x)g(x)− f (a)g(a)
x−a

= lim
x→a

f (x)g(x)− f (a)g(x)+ f (a)g(x)− f (a)g(a)
x−a

= lim
x→a

( f (x)− f (a)
x−a︸ ︷︷ ︸
→ f ′(a)

· g(x)︸︷︷︸
→g(a)

+ f (a) · g(x)−g(a)
x−a︸ ︷︷ ︸
→g′(a)

)

= ( f ′g+ f g′)(a).

(c) Da g als differenzierbare Funktion nach Folgerung 10.7 auch stetig ist, ist g wegen g(a) ̸= 0
nach Bemerkung 8.8 in einer ε-Umgebung von a nirgends 0. Damit stimmt die Definitions-
menge von f

g dort mit D überein. Also ist a kein isolierter Punkt dieser Definitionsmenge,

und wir können sinnvoll über die Ableitung von f
g in a sprechen.

Die eigentliche Berechnung dieser Ableitung ist nun analog zu (b):

( f
g

)′
(a) = lim

x→a

f (x)
g(x) −

f (a)
g(a)

x−a

= lim
x→a

1
g(x)g(a)

· f (x)g(a)− f (a)g(a)+ f (a)g(a)− f (a)g(x)
x−a

= lim
x→a

1
g(x)g(a)︸ ︷︷ ︸
→1/(g(a))2

·
( f (x)− f (a)

x−a︸ ︷︷ ︸
→ f ′(a)

·g(a)− f (a) · g(x)−g(a)
x−a︸ ︷︷ ︸
→g′(a)

)

=
( f ′g− f g′

g2

)
(a).

□ 22

Beispiel 10.9.

(a) Wir zeigen mit Induktion über n, dass die Ableitung der Potenzfunktion f : R→ R, x 7→ xn

für alle n ∈ N durch f ′(x) = nxn−1 gegeben ist. Der Induktionsanfang für n = 0 ergibt sich
dabei aus Beispiel 10.4 (a). Wissen wir nun für ein n ∈ N, dass die Ableitung von x 7→ xn

gleich x 7→ nxn−1 ist, so folgt mit der Produktregel für die Ableitung von f (x) = xn+1 = xn ·x

f ′(x) = nxn−1 · x+ xn ·1 = (n+1)xn,

da die Ableitung der Funktion x 7→ x nach Beispiel 10.4 (a) die konstante Funktion 1 ist.

(b) Aus der Produktregel und Beispiel 10.4 (a) folgt insbesondere für alle c ∈K und jede diffe-
renzierbare Funktion f : D→K, dass (c f )′ = c · f ′.
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(c) Mit den Regeln aus Satz 10.8 (und Beispiel 10.4 (a)) können wir nun offensichtlich die
Ableitung jeder rationalen Funktion, also jeder Funktion der Form f (x) = p(x)

q(x) mit Poly-

nomfunktionen p und q berechnen. Ist z. B. f (x) = ∑
n
k=0 akxk selbst eine Polynomfunktion,

so ist f ′(x) = ∑
n
k=1 kakxk−1 nach (a), (b) und Satz 10.8 (a).

Wir kommen jetzt zu Verkettungen und Umkehrfunktionen.

Satz 10.10 (Kettenregel). Es seien f : D→K und g : D′→K zwei Funktionen, so dass f (D)⊂D′.
Ist dann a ∈ D, so dass f differenzierbar in a und g differenzierbar in f (a) ist, so ist auch die
Verkettung g◦ f differenzierbar in a, und es gilt

(g◦ f )′(a) = g′( f (a)) · f ′(a),

d. h. „die Ableitung einer Verkettung ist das Produkt der beiden Ableitungen“.

Beweis. Da f und g in a bzw. f (a) differenzierbar sind, gibt es nach Lemma 10.5 Funktionen
ϕ : D→K und ψ : D′→K, die in a bzw. f (a) stetig sind, und für die

f (x)− f (a) = ϕ(x)(x−a) für alle x ∈ D

bzw. g(y)−g( f (a)) = ψ(y)(y− f (a)) für alle y ∈ D′

sowie ϕ(a) = f ′(a) und ψ( f (a)) = g′( f (a)) gelten. Setzen wir nun y = f (x), so erhalten wir durch
Einsetzen der ersten Gleichung in die zweite

g( f (x))−g( f (a)) = ψ( f (x))( f (x)− f (a)) = ψ( f (x))ϕ(x)(x−a)

für alle x ∈ D. Da f und ϕ in a sowie ψ in f (a) stetig sind, ist nun aber auch x 7→ ψ( f (x))ϕ(x) in
a stetig, und somit ergibt sich aus der Richtung „(b) ⇒ (a)“ von Lemma 10.5 angewendet auf g◦ f ,
dass diese Funktion in a differenzierbar ist mit (g◦ f )′(a) = ψ( f (a))ϕ(a) = g′( f (a)) · f ′(a). □

Satz 10.11 (Ableitung der Umkehrfunktion). Es seien D,D′ ⊂ K und f : D→ D′ eine bijektive
Funktion mit Umkehrfunktion f−1 : D′→ D. Ist dann a ∈ D ein Punkt, so dass f differenzierbar in
a ist mit f ′(a) ̸= 0, und so dass f−1 stetig in f (a) ist, so ist auch f−1 differenzierbar in f (a) mit

( f−1)′( f (a)) =
1

f ′(a)
.

Beweis. Wie im vorherigen Beweis gibt es nach Lemma 10.5 eine in a stetige Funktion ϕ : D→K
mit f (x)− f (a) = ϕ(x)(x− a) für alle x ∈ D. Mit y := f (x) und b := f (a) (also x = f−1(y) und
a = f−1(b)) können wir dies schreiben als

y−b = ϕ( f−1(y))( f−1(y)− f−1(b)) für alle y ∈ D′.

Da ϕ ◦ f−1 nach Voraussetzung in b stetig ist und den Wert ϕ( f−1(b)) = ϕ(a) = f ′(a) ̸= 0 hat, ist
diese Funktion nach Bemerkung 8.8 auch in einer ε-Umgebung von b ungleich 0. Dort ist dann also

f−1(y)− f−1(b) =
1

ϕ( f−1(y))
(y−b) für alle y,

woraus mit Lemma 10.5 folgt, dass f−1 in b differenzierbar ist mit ( f−1)′(b) = 1
ϕ( f−1(b)) =

1
f ′(a) . □

Bemerkung 10.12. Im Fall einer reellen, streng monotonen Funktion f benötigen wir die Voraus-
setzung der Stetigkeit von f−1 in f (a) in Satz 10.11 nicht, da dies nach Satz 8.28 automatisch erfüllt
ist. Die Bedingung f ′(a) ̸= 0 ist hingegen auch in diesem Fall nicht überflüssig: Das Beispiel der
reellen Funktion f : R→R, x 7→ x3 mit f ′(0) = 0 zeigt, dass eine differenzierbare, streng monotone
Funktion in einem Punkt auch Ableitung Null haben kann.

Beispiel 10.13. In den Sätzen 10.10 und 10.11 werden nicht alle Ableitungen an derselben Stelle a,
sondern manche auch an f (a) ausgewertet. Man macht dies „automatisch“ richtig, wenn man wie in
den folgenden beiden Beispielen für die Definitions- und Wertemengen der beteiligten Funktionen
bestimmte Variablennamen festlegt und darauf achtet, dass Funktionen und ihre Ableitungen immer
an der entsprechenden Variablen ausgewertet werden.
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(a) Die Funktion h : R→R, x 7→ y =
√

x2 +1 ist von der Form h = g◦ f mit f : x 7→ u = x2 +1
und g : u 7→ y =

√
u. Ihre Ableitung ergibt sich daher nach der Kettenregel aus Satz 10.10 zu

h′(x) = g′(u) · f ′(x) =
1

2
√

u
·2x =

x√
x2 +1

,

denn f ′(x) = 2x und g′(u) = 1
2
√

u nach Beispiel 10.9 (c) und 10.4 (b).

(b) Nach Beispiel 10.9 (a) ist die Ableitung der Potenzfunktion f : R>0→ R>0, x 7→ y = xn für
n ∈ N>0 gleich f ′(x) = nxn−1. Damit ist die Ableitung ihrer Umkehrfunktion, also der n-ten
Wurzelfunktion f−1 : y 7→ x = n

√
y = y1/n, nach Satz 10.11 gleich

( f−1)′(y) =
1

f ′(x)
=

1
nxn−1 =

1
n( n
√

y)n−1 =
1
n
· y

1
n−1.

Notation 10.14 (Differentialschreibweise). Die Regeln aus
den Sätzen 10.10 und 10.11 lassen sich leicht mit Hilfe der
sogenannten Differentialschreibweise merken: Man legt hierzu
wie in Beispiel 10.13 für eine Funktion f : D→ K bestimm-
te Variablennamen für Definitions- und Wertemenge fest, et-
wa y = f (x), und schreibt die Ableitung f ′(x) dann als forma-
len Quotienten dy

dx , wobei die „Differentiale“ dx und dy wie im
Bild rechts für eine (unendlich kleine) Differenz in den x- und
y-Werten stehen sollen.

dy
dx

x+dxx

y
y+dy

Wichtig dabei ist, dass dies nur eine formale Schreibweise ist – es gibt nicht wirklich Objekte dx
und dy, die hier durcheinander geteilt werden. Dennoch nehmen die Sätze 10.10 und 10.11 in dieser
Schreibweise eine sehr natürliche Form an, die so aussieht, als könnte man mit diesen „Brüchen“
wirklich rechnen:

(a) (Verkettung) Ist h = g ◦ f eine Verkettung und setzen wir u = f (x), y = g(u) und damit
y = h(x), so besagt Satz 10.10 einfach dy

dx = dy
du ·

du
dx , so als ob man hier mit du erweitern

würde.

(b) (Umkehrfunktion) Ist y = f (x), also x = f−1(y), so würden wir die Ableitung von f−1 ja als
dx
dy schreiben, und damit sagt Satz 10.11 gerade dx

dy =
( dy

dx

)−1, so als ob man hier einfach den

Kehrwert des Bruches dy
dx bilden würde.

Aufgabe 10.15. Es seien f ,g : R→ R stetige Funktionen. Man beweise oder widerlege:

(a) Ist f differenzierbar in 0 und g(0) = 0, dann ist f ·g differenzierbar in 0.

(b) Ist f differenzierbar in 0 und f (0) = 0, dann ist f ·g differenzierbar in 0.

(c) Sind f und g differenzierbar in 0 mit f (0) = 0 und f (x)g(x) = x für alle x ∈ R, dann gilt
g(0) ̸= 0.

Aufgabe 10.16. Es seien D⊂R und f : D→R eine Funktion. Zeige, dass für jedes a∈D und c∈R
die folgenden beiden Bedingungen äquivalent sind:

(a) Die Funktion f ist differenzierbar in a mit f ′(a) = c.

(b) Für zwei beliebige gegen a konvergente Folgen (xn)n und (yn)n in D mit xn ≤ a ≤ yn und
xn ̸= yn für alle n ∈ N gilt

lim
n→∞

f (yn)− f (xn)

yn− xn
= c.
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Aufgabe 10.17. Wir betrachten wie im Bild rechts dargestellt
die „Zickzackfunktion“ g : R → R, die periodisch mit Peri-
odenlänge 2 ist und auf [−1,1] mit der Betragsfunktion über-
einstimmt. Zeige, dass dann die Funktion

f : R→ R, x 7→
∞

∑
n=0

g(2n x)
2n

in jedem Punkt stetig und in keinem Punkt differenzierbar ist.

(Hinweis: Für die Differenzierbarkeit ist Aufgabe 10.16 nütz-
lich.)

1−1

1

x

g(x)

x

f (x)
1

1 2

10.B Extremwerte und der Mittelwertsatz

Nachdem wir nun schon einige Ableitungen berechnen können, wollen wir uns als Nächstes an-
schauen, welche Informationen man über eine differenzierbare Funktion aus ihrer Ableitung erhalten
kann. Am wichtigsten ist dabei, dass man mit Hilfe der Ableitung sehr leicht die Stellen finden kann,
an denen eine Funktion ihre größten bzw. kleinsten Werte annimmt. Dies zu untersuchen ist natürlich
nur für reelle Funktionen sinnvoll, und daher beschränken wir uns im Folgenden auf solche.

Definition 10.18 (Extrema). Es seien D⊂ R, f : D→ R eine Funktion und a ∈ D. Man sagt, . . .

(a) f habe in a ein (globales) Maximum, wenn f (a)≥ f (x) für alle x ∈ D.

(b) f habe in a ein lokales Maximum, wenn es ein ε > 0 gibt, so dass f (a) ≥ f (x) für alle
x ∈ D mit |x− a| < ε . Gilt sogar f (a) > f (x) für alle x ∈ D mit |x− a| < ε und x ̸= a, so
nennt man das lokale Maximum isoliert.

Analog definiert man globale und lokale (isolierte) Minima. Hat f in a ein (globales, lokales, iso-
liertes) Maximum oder Minimum, so sagt man auch, dass f dort ein (globales, lokales, isoliertes)
Extremum hat.

Bemerkung 10.19. Ein globales Maximum (ana-
log Minimum) bedeutet also gerade, dass f dort
den größten aller möglichen Funktionswerte an-
nimmt; ein lokales Maximum dagegen nur, dass
f in einer kleinen Umgebung des betrachteten
Punktes den größten Wert hat. Offensichtlich ist
also jedes globale Maximum auch ein lokales.
Das Bild rechts zeigt, dass die Umkehrung nicht
notwendig richtig ist. x

f (x)
globales (und lokales) Maximum

lokales, aber kein
globales Maximum

Wie wir im Bild schon sehen, zeichnet sich ein lokales Extremum, das nicht am Rand des Defini-
tionsbereichs liegt, dadurch aus, dass die Ableitung, also die Steigung der Funktion, dort gleich 0
ist:

Lemma 10.20 (Notwendige Bedingung für lokale Extrema). Hat eine Funktion f : (a,b)→ R in
einem Punkt x ∈ (a,b) ein lokales Extremum und ist f dort differenzierbar, so gilt f ′(x) = 0.

Beweis. Wir beweisen das Lemma für ein Maximum; der Beweis für ein Minimum ist natürlich
analog. Nach eventuellem Verkleinern des Definitionsintervalls (a,b) können wir weiterhin ohne
Beschränkung der Allgemeinheit annehmen, dass f in x sogar ein globales Maximum hat. Wähle
nun eine Folge (xn)n in (a,b) mit xn→ x und xn > x für alle n ∈ N – also eine Folge in D, die sich
dem Punkt x von rechts nähert. Die Ableitung f ′(x), die nach Voraussetzung existiert, können wir
dann nach dem Folgenkriterium aus Satz 8.12 als

f ′(x) = lim
n→∞

f (xn)− f (x)
xn− x
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berechnen. Nun ist der Zähler dieses Bruches immer kleiner oder gleich 0 (weil f in x ein Maximum
hat), und der Nenner immer größer als Null – und damit folgt f ′(x)≤ 0 nach Satz 5.24 (a). Durch eine
Folge, die sich von links dem Punkt x nähert, erhält man genauso f ′(x)≥ 0, und damit letztendlich
f ′(x) = 0. □

Bemerkung 10.21. Hat eine reelle Funktion f : [a,b]→ R auf einem abgeschlossenen Intervall in
einem Punkt x ∈ [a,b] ein lokales Extremum, so gibt es also zwei Möglichkeiten:

(a) x ∈ (a,b): Nach Lemma 10.20 muss dann f ′(x) = 0 sein, falls f dort differenzierbar ist.
Beachte aber, dass die Bedingung f ′(x) = 0 nicht hinreichend dafür ist, dass in x ein lokales
Extremum vorliegt – dies zeigt das Beispiel der Funktion f (x) = x3, für die zwar f ′(0) = 0
gilt, die bei x = 0 aber kein Extremum hat. Punkte x ∈ (a,b), für die f ′(x) = 0 gilt, die also
als lokales Extremum im Inneren des Definitionsintervalls in Frage kommen, werden oft
kritische Punkte genannt. Wir werden später noch sehen, wie man feststellen kann, ob ein
kritischer Punkt wirklich ein lokales Extremum ist oder nicht (siehe Bemerkung 10.25 und
Satz 11.18).

(b) x = a oder x = b: In diesem Fall muss die Ableitung von f in x nicht notwendig 0 sein (wie
z. B. beim globalen Maximum der Funktion in Bemerkung 10.19). Solche Extremwerte am
Rand des Definitionsintervalls nennt man Randextrema.

Als Nächstes wollen wir mit Hilfe der Ableitung einer reellen Funktion ihre Monotonieeigenschaften
untersuchen. Wir beweisen dazu zunächst zwei einfache Resultate, die wir auch noch für spätere
Anwendungen benötigen werden.

Satz 10.22 (Satz von Rolle). Es sei f : [a,b]→R eine stetige Funktion, die auf (a,b) differenzierbar
ist. Gilt dann f (a) = f (b), so gibt es ein x ∈ (a,b) mit f ′(x) = 0.

Beweis. Da f stetig ist, nimmt f nach Satz 8.25 auf dem In-
tervall [a,b] Maximum und Minimum an. Sind diese beide
gleich f (a) = f (b), so ist f offensichtlich konstant und wir
können ein beliebiges x ∈ (a,b) wählen. Andernfalls kön-
nen wir ohne Beschränkung der Allgemeinheit annehmen,
dass das Maximum von f größer als f (a) = f (b) ist, al-
so im Inneren des Definitionsintervalls angenommen wird.
Dort gilt dann aber f ′(x) = 0 nach Lemma 10.20. □ xa b

f (a) = f (b)

Satz 10.23 (Mittelwertsatz).
(a) (1. Version) Es sei f : [a,b] → R eine stetige

Funktion, die auf dem offenen Intervall (a,b) dif-
ferenzierbar ist. Dann gibt es ein x ∈ (a,b) mit
f (b)− f (a) = f ′(x)(b−a), also

f ′(x) =
f (b)− f (a)

b−a
.

Mit anderen Worten wird die Steigung der Gera-
den zwischen (a, f (a)) und (b, f (b)) wie im Bild
rechts an einer Stelle x ∈ (a,b) als Tangenten-
steigung angenommen. a bx

f (a)

f (b) f

Steigung f (b)− f (a)
b−a

(b) (2. Version) Es seien f ,g : [a,b]→ R stetige, auf (a,b) differenzierbare Funktionen. Dann
gibt es ein x ∈ (a,b) mit

f ′(x) · (g(b)−g(a)) = g′(x) · ( f (b)− f (a)).

Beweis. Es genügt, die allgemeinere Aussage (b) zu zeigen, da sich Teil (a) sofort daraus ergibt,
wenn man g(x) = x setzt. Wir betrachten dazu die Funktion

h : [a,b]→ R, x 7→ ( f (x)− f (a))(g(b)−g(a))− (g(x)−g(a))( f (b)− f (a)).
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Mit f und g ist auch h auf [a,b] stetig und auf (a,b) differenzierbar; außerdem ist h(a) = h(b) = 0.
Nach dem Satz 10.22 von Rolle gibt es also ein x ∈ (a,b) mit h′(x) = 0, und wegen

h′(x) = f ′(x)(g(b)−g(a))−g′(x)( f (b)− f (a))

ergibt sich daraus genau die Behauptung. □

Der Mittelwertsatz wirkt auf den ersten Blick etwas unscheinbar, ist in der Tat aber sehr wichtig, da
er es erlaubt, einen Differenzenquotienten (und damit letztlich die Differenz zweier Funktionswerte)
durch einen Differentialquotienten (also eine Ableitung) auszudrücken. Wie bereits angekündigt ist
ein erstes Beispiel hierfür, dass man die Monotonie von Funktionen mit Hilfe von Ableitungen un-
tersuchen kann.

Folgerung 10.24 (Monotonie differenzierbarer Funktionen). Es sei f : [a,b]→ R eine stetige, auf
(a,b) differenzierbare Funktion. Gilt dann für alle x ∈ (a,b) . . .

(a) f ′(x)≥ 0 (bzw. f ′(x)> 0), so ist f monoton (bzw. streng monoton) wachsend.

(b) f ′(x)≤ 0 (bzw. f ′(x)< 0), so ist f monoton (bzw. streng monoton) fallend.

(c) f ′(x) = 0, so ist f konstant.

Beweis. Es seien x,y ∈ [a,b] mit x < y. Nach dem Mittelwertsatz 10.23 (a) angewendet auf das
Intervall [x,y] gibt es dann ein c ∈ (x,y)⊂ (a,b) mit f (y)− f (x) = f ′(c)(y− x). Im Fall (a) ist nun
f ′(c)≥ 0 bzw. f ′(c)> 0, und damit f (y)− f (x)≥ 0 bzw. f (y)− f (x)> 0, d. h. f ist monoton (bzw.
streng monoton) wachsend. Teil (b) ergibt sich natürlich genauso, und (c) folgt aus der Kombination
der beiden Teile. □
Bemerkung 10.25 (Hinreichendes Kriterium für lokale Extrema).
Mit Folgerung 10.24 ergibt sich ein einfaches hinreichendes Krite-
rium für ein (lokales) Extremum: Ist f : [a,b]→ R stetig und auf
(a,b) differenzierbar, und gibt es ein c ∈ (a,b) mit

f ′(x)> 0 für alle x < c und f ′(x)< 0 für alle x > c

(d. h. hat f ′ einen Vorzeichenwechsel von + nach − in c), so ist
f nach Folgerung 10.24 streng monoton wachsend auf [a,c] und
streng monoton fallend auf [c,b], d. h. f hat ein isoliertes lokales
Maximum in c. Eine analoge Aussage gilt natürlich auch für ein
Minimum.

x
a c b

f ′ > 0 f ′ < 0

23
Wir sehen also, dass man mit Hilfe der Ableitung gut die Extrema von differenzierbaren Funktionen
finden kann. Um dies in der Praxis auch anwenden zu können, müssen wir aber auch noch in der
Lage sein, von komplizierteren Funktionen – z. B. den „speziellen Funktionen“ aus Kapitel 9 – die
Ableitung zu berechnen oder überhaupt erst einmal ihre Differenzierbarkeit nachzuweisen. Da diese
Funktionen oftmals über Potenzreihen definiert sind, müssen wir uns also mit der Differenzierbarkeit
solcher Potenzreihen (oder allgemeiner von Funktionenfolgen) beschäftigen. Entscheidend hierfür
ist die folgende Aussage, die ebenfalls zentral den Mittelwertsatz verwendet.

Satz 10.26 (Vertauschbarkeit von Differentiation und Grenzwertbildung). Es seien D⊂R ein Inter-
vall und ( fn)n mit fn : D→ R eine Folge differenzierbarer Funktionen. Wir setzen voraus, dass

• ( fn)n punktweise gegen eine Grenzfunktion f : D→ R konvergiert, und

• die Ableitungen f ′n stetig sind und gleichmäßig gegen eine Grenzfunktion g : D→ R konver-
gieren.

Dann ist f differenzierbar mit f ′= g (d. h. „Differentiation und Grenzwertbildung können vertauscht
werden“; es ist

(
lim
n→∞

fn
)′
= lim

n→∞
f ′n).

Beweis. Für alle a ∈ D zeigen wir direkt mit der Grenzwertdefinition, dass lim
x→a

f (x)− f (a)
x−a = g(a). Es

sei also ε > 0 beliebig. Da g nach Satz 8.38 als gleichmäßiger Grenzwert stetiger Funktionen stetig
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ist, gibt es zunächst ein δ > 0, so dass

|g(x)−g(a)|< ε

3
für alle x ∈ D mit |x−a|< δ . (1)

Außerdem konvergiert ( f ′n)n nach Voraussetzung gleichmäßig gegen g, d. h. es gibt auch ein (von x
unabhängiges) n0 ∈ N mit

| f ′n(x)−g(x)|< ε

3
für alle x ∈ D und n≥ n0. (2)

Es seien nun x ∈ D mit x ̸= a und |x− a| < δ sowie n ≥ n0 beliebig. Nach dem Mittelwertsatz
10.23 (a) gibt es dann ein c zwischen a und x (für das also insbesondere auch |c−a| < |x−a| < δ

gilt) mit
fn(x)− fn(a)

x−a
= f ′n(c). (3)

Setzen wir dies nun alles zusammen, so erhalten wir mit der Dreiecksungleichung∣∣∣∣ fn(x)− fn(a)
x−a

−g(a)
∣∣∣∣ (3)
= | f ′n(c)−g(a)|= | f ′n(c)−g(c)+g(c)−g(a)|

≤ | f ′n(c)−g(c)|+ |g(c)−g(a)|
(1),(2)
<

ε

3
+

ε

3
=

2ε

3
,

wobei wir (1) und (2) für den Punkt c angewendet haben. Nehmen wir hier nun den Grenzwert für
n→ ∞, so erhalten wir daraus mit Satz 5.24 (a) für alle x mit |x−a|< δ∣∣∣∣ f (x)− f (a)

x−a
−g(a)

∣∣∣∣≤ 2ε

3
< ε.

Da ε > 0 beliebig war, bedeutet dies aber genau, dass f ′(a) = lim
x→a

f (x)− f (a)
x−a = g(a). □

Auch wenn der Beweis dieses Satzes recht kompliziert war, ist die Aussage doch sehr einfach anzu-
wenden. So ergibt sich z. B. in dem für uns wichtigsten Fall von Potenzreihen:

Folgerung 10.27 (Differenzierbarkeit von Potenzreihen). Es sei f (x) = ∑
∞
k=0 ak xk eine reelle Po-

tenzreihe mit Konvergenzradius r. Dann ist f im Konvergenzgebiet (−r,r) differenzierbar mit Ablei-
tung f ′(x) = ∑

∞
k=1 k ak xk−1, d. h. „Potenzreihen können gliedweise differenziert werden“.

Beweis. Es sei c ∈ (−r,r); wir wollen zeigen, dass f in c differenzierbar ist mit Ableitung
f ′(c) = ∑

∞
k=1 k ak ck−1. Wähle dazu ein R mit |c| < R < r. Dann ist die Folge der Partialsummen

fn(x) =∑
n
k=0 ak xk nach Satz 8.36 auf (−R,R) gleichmäßig konvergent gegen f . Die Ableitung dieser

Partialsummenfunktionen sind nach Beispiel 10.9 (c) die stetigen Funktionen f ′n(x) =∑
n
k=1 k ak xk−1.

Da die Reihe g(x) = ∑
∞
k=1 k ak xk−1 nach Aufgabe 7.32 den gleichen Konvergenzradius r wie f hat,

konvergieren genauso auch die f ′n auf (−R,R) gleichmäßig gegen g.

Damit haben wir alle Voraussetzungen überprüft, um Satz 10.26 auf die Folge ( fn)n auf (−R,R)
anwenden zu können. Der Satz liefert uns also f ′ = g auf (−R,R), und damit insbesondere auch im
Punkt c. □

Mit Folgerung 10.27 (und unseren vorherigen Resultaten) können wir jetzt endlich von „praktisch
allen“ Funktionen die Ableitungen berechnen:

Beispiel 10.28 (Ableitungen spezieller Funktionen).

(a) Die Ableitung der Exponentialfunktion f : R→R, x 7→ ex =∑
∞
n=0

xn

n! ergibt sich durch glied-
weises Differenzieren zu

f ′(x) =
∞

∑
n=1

nxn−1

n!
=

∞

∑
n=1

xn−1

(n−1)!
= ex;

die Exponentialfunktion ist also gleich ihrer eigenen Ableitung.
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(b) Die Ableitung der Sinusfunktion f : R→ R, x 7→ sinx = ∑
∞
n=0

(−1)n

(2n+1)! x2n+1 ist analog

f ′(x) =
∞

∑
n=0

(2n+1) · (−1)n

(2n+1)!
x2n =

∞

∑
n=0

(−1)n

(2n)!
x2n = cosx.

Genauso berechnet man cos′(x) =−sinx. Aus der Quotientenregel von Satz 10.8 (c) ergibt
sich damit

tan′(x) =
(

sin
cos

)′
(x) =

cos2 x+ sin2 x
cos2 x

= 1+ tan2 x.

(c) Die Ableitungen der Umkehrfunktionen zu (a) und (b) folgen nun sofort aus Satz 10.11: Mit
f : x 7→ y = ex, also f ′(x) = ex und f−1(y) = logy ist z. B.

log′(y) =
1

f ′(x)
=

1
ex =

1
y
.

Für f : x 7→ y = sinx, also f ′(x) = cosx und f−1(y) = arcsiny ist analog

arcsin′(y) =
1

f ′(x)
=

1
cosx

(∗)
=

1√
1− sin2 x

=
1√

1− y2
,

wobei wir in (∗) die Gleichung aus Satz 9.14 (b) benutzen (sowie dass der Arkussinus streng
monoton wachsend ist, so dass wir hier das positive Vorzeichen der Wurzel nehmen müssen).
Genauso zeigt man

arccos′(y) =− 1√
1− y2

und arctan′(y) =
1

1+ y2 .

(d) Die Ableitung der Potenzfunktion f : R>0 → R, x 7→ xa = ea logx (mit festem Exponenten
a ∈ R) ist nach der Kettenregel aus Satz 10.10

f ′(x) = ea logx · a
x
= xa · a

x
= axa−1,

das Ergebnis ist also für alle a ∈ R das gleiche wie schon für die speziellen Exponenten
in Beispiel 10.9 (a) und 10.13 (b). Ebenfalls nach der Kettenregel ist die Ableitung der
Potenzfunktion f : R→ R, x 7→ ax = ex loga mit fester Basis a ∈ R>0 dagegen

f ′(x) = ex loga · loga = ax · loga.

Bemerkung 10.29.
(a) Man kann zeigen, dass die Aussage von Satz 10.26 (und damit auch von Folgerung 10.27)

genauso auch im komplexen Fall gilt. Da wir in unserem Beweis dieser Aussagen den Mittel-
wertsatz verwendet haben (der nur in R gilt), benötigt man hierfür jedoch andere Argumente.
Wir werden den komplexen Fall im Folgenden in dieser Vorlesung aber nicht benötigen – die
Untersuchung komplex differenzierbarer Funktionen bzw. Potenzreihen ist der wesentliche
Inhalt der Vorlesung „Einführung in die Funktionentheorie“, die ihr im zweiten Studienjahr
hören könnt.

(b) Ohne die Voraussetzung der (gleichmäßigen) Konvergenz der Folge der Ableitungen in Satz
10.26 wäre die Aussage im Allgemeinen falsch: Betrachten wir z. B. die Folge der Funktio-
nen fn : R→ R, x 7→ 1

n sin(nx), so gilt zwar lim
n→∞

fn(x) = 0 für alle x, d. h. ( fn)n konvergiert
punktweise (und in der Tat auch gleichmäßig) gegen die Nullfunktion, die ja Ableitung 0
hat – aber die Folge der Ableitungen f ′n(x) = cos(nx) konvergiert für n→ ∞ noch nicht ein-
mal punktweise! Hier können Differentiation und Grenzwertbildung also nicht vertauscht
werden.

Aufgabe 10.30. Bestimme alle lokalen und globalen Extrema der Funktion f : R→ R, x 7→ ex

1+2 |x| .

Aufgabe 10.31. Es sei f : [a,b]→ R eine differenzierbare Funktion. Man zeige:

(a) Ist f ′(a)> 0 und f ′(b)< 0, so gibt es ein x ∈ (a,b) mit f ′(x) = 0.
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(b) Für alle c zwischen f ′(a) und f ′(b) gibt es ein x ∈ [a,b] mit f ′(x) = c. (Ableitungen erfüllen
also den Zwischenwertsatz, obwohl sie nach Aufgabe 10.33 (d) nicht stetig sein müssen.)

Aufgabe 10.32. Untersuche die Funktionenfolge ( fn)n mit fn : R≥0→R, x 7→ xn+1e−nx auf gleich-
mäßige Konvergenz.

Aufgabe 10.33. Finde m ∈N und n ∈N>0, so dass f : [−1,1]→R, x 7→

{
xm sin 1

xn für x ̸= 0
0 für x = 0

. . .

(a) unstetig ist.

(b) stetig, aber nicht differenzierbar ist.

(c) differenzierbar mit unbeschränkter Ableitung ist.

(d) differenzierbar mit beschränkter, aber unstetiger Ableitung ist.

(e) differenzierbar mit stetiger Ableitung ist.

Skizziere für kleine Werte von m und n auch die Graphen dieser Funktionen!

Aufgabe 10.34. Ein Rettungsschwimmer, der sich an Land
am Punkt A befindet, möchte eine im Meer ertrinkende Per-
son am Punkt B retten. Er läuft dazu zunächst entlang einer
geraden Linie zu einem Punkt P am Ufer, und schwimmt von
dort wieder entlang einer geraden Linie nach B. Wenn er mit
der Geschwindigkeit v1 laufen und mit der Geschwindigkeit
v2 schwimmen kann, wo muss er dann den Punkt P wählen,
damit er möglichst schnell bei B ist? Zeige, dass diese mini-
male Zeit genau dort erreicht wird, wo

sinϕ1

sinϕ2
=

v1

v2
.

Land

Meer

ϕ1

ϕ2

P

A

B

Für die Physiker und physikalisch Interessierten unter euch: Dies ist übrigens genau das Brechungs-
gesetz für Licht – auch Licht bewegt sich so, dass es schnellstmöglich ans Ziel kommt!

Aufgabe 10.35. Wir betrachten wie im Bild unten rechts Kreissektoren mit variablem Öffnungswin-
kel α ∈ (0,2π) und Radius r ∈ R>0.

Welcher solche Kreissektor hat bei vorgegebenem Flächeninhalt F den kleinst-
möglichen Umfang U? Bestimme für diesen Fall r, α und U in Abhängigkeit
von F .

(Der Umfang beinhaltet dabei auch die beiden Geradenstücke zum Mittelpunkt.
Die Formeln für den Flächeninhalt und Umfang eines Kreissektors können als
bekannt vorausgesetzt werden.)

r
α

Aufgabe 10.36. Es sei f : D→R eine auf einem Intervall D definierte Funktion. Wir setzen voraus,
dass es b,c ∈ R>0 gibt mit | f (x)− f (y)| ≤ c |x− y|b für alle x,y ∈ D mit x ̸= y. Man zeige:

(a) f ist gleichmäßig stetig.

(b) Ist b > 1, so ist f konstant.

Aufgabe 10.37. Zeige mit Hilfe des Mittelwertsatzes für alle x,y ∈ R:

(a) |sinx− siny| ≤ |x− y|;

(b)
∣∣e−x2 − e−y2 ∣∣≤√2

e
· |x− y|.

Aufgabe 10.38. Es sei f : R≥0→R differenzierbar und beschränkt. Zeige mit Hilfe des Mittelwert-
satzes, dass es eine Folge (xn)n in R≥0 gibt mit lim

n→∞
xn = ∞ und lim

n→∞
f ′(xn) = 0.


