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10. Differentialrechnung

Wir kommen nun zum wohl wichtigsten Teil der Analysis (in
einer Verdnderlichen), der sogenannten Differentialrechnung.
Ziel der Differentialrechnung ist es, wie im Bild rechts eine
Funktion f: D — K in einem gegebenen Punkt « € D C K
linear zu approximieren, d.h. eine Gerade & zu finden, die f f (@)r---------, '
in einer kleinen Umgebung von a moglichst gut annihert. Mit - !
anderen Worten konnen wir 4 als Tangente an den Graphen X
von f im Punkt a auffassen. a

In der Praxis ist dies natiirlich oft wiinschenswert, denn immer wenn wir aus irgendwelchen Griinden
wissen, dass wir die Funktion f nur in der Nihe von a benétigen werden, dann kénnen wir die
womoglich sehr komplizierte Funktion f ndherungsweise durch eine Gerade ersetzen, also durch
eine viel einfacher zu behandelnde Funktion.

Wie kann man nun diese Tangente /& bestimmen? Als Gerade durch den Punkt (g, f(a)) muss sie
natiirlich von der Form (x) = f(a) + ¢ (x — a) fiir ein ¢ € K sein, wobei dieses ¢ die Steigung der
Geraden angibt. Wir mochten also erreichen, dass

fx) = fla) +c(x—a),
wobei das Symbol ,,~* hier nicht exakt definiert ist, sondern nur den anschaulichen Sachverhalt ,,ist
fiir x in der Nihe von a in etwa gleich* beschreiben soll. Es miisste dann also

_ fx)—fla)
x—a
sein. Aufgrund unserer Vorarbeiten wissen wir aber natiirlich nun, wie man dies mathematisch exakt
formulieren muss: Die beste Ndherung erhalten wir fiir den Grenzwert

R CE0)
X—a X—d

(sofern er existiert). Derartige Grenzwerte wollen wir nun also in der Differentialrechnung studieren.

10.A Ableitungen von Funktionen
Bevor wir den obigen Grenzwert von M fiir x — a exakt definieren konnen, miissen wir noch
kurz eine (recht schwache) Bedingung an die Definitionsmenge D der betrachteten Funktion stellen:
Da dieser Quotient nur fiir x € D\{a} definiert ist, muss a nach Definition 8.3 ein Beriithrpunkt von
D\{a} sein, damit der Grenzwert dieses Ausdrucks fiir x — a iiberhaupt definierbar ist, also damit
man sich innerhalb von D\{a} dem Punkt a beliebig nihern kann. Wir wollen diese Bedingung nun
formalisieren.

Definition 10.1 (Isolierte Punkte). Es sei D C K. Ein Punkt a € D heif3t isolierter Punkt von D,
wenn es eine £-Umgebung von a gibt, die auler a keinen Punkt von D enthilt (also ,,wenn man sich
innerhalb von D\{a} dem Punkt a nicht beliebig nidhern kann*).

Beispiel 10.2.
(a) Die Menge Z besteht nur aus isolierten Punkten.

(b) Intervalle in R — egal ob offene, halboffene, abgeschlossene oder uneigentliche — haben keine
isolierten Punkte (solange sie nicht ein einpunktiges Intervall [a,a] sind). Vereinigungen
derartiger Intervalle haben ebenfalls keine isolierten Punkte.
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Durch Negation der Bedingung aus Definition 10.1 sehen wir, dass ein Punkt a € D kein isolierter
Punkt von D ist, wenn in jeder e-Umgebung von a ein Punkt von D\{a} liegt, also wenn a ein
Beriihrpunkt von D\{a} ist. Um Grenzwerte fiir x — a mit x € D und x # a in jedem Punkt a € D
bilden zu kdnnen, machen wir wie oben erldutert jetzt also die

Grundvoraussetzung fiir dieses Kapitel: Die Definitionsmengen aller betrachteten
Funktionen haben keine isolierten Punkte.

Damit kénnen wir nun wie oben motiviert die Steigungen der lokalen linearen Approximationen
einer gegebenen Funktion als Grenzwerte berechnen:

Definition 10.3 (Differenzierbarkeit). Es seien D C Kund f: D — K eine Funktion.

(a) Die Funktion f heif3t differenzierbar in a € D, wenn der Grenzwert

f/(a) — lim f(‘x) _f(a)
S e x-a
in K existiert (ein uneigentlicher Grenzwert £oo im reellen Fall wie in Definition 8.19 ist
hier also nicht zugelassen). Die Zahl W bezeichnet man oft als Differenzenquotient,

ihren Grenzwert f’(a) — sofern er existiert — als Differentialquotient oder Ableitung von f
in a. Da es offensichtlich ist, dass wir hier bei der Grenzwertbildung x # a beachten miissen,
werden wir diese Bedingung in der Regel nicht jedes Mal wieder explizit hinschreiben.

(b) Man nennt f differenzierbar (auf D), wenn f in jedem Punkt von D differenzierbar ist. Offen-
sichtlich erhilt man dann eine Funktion f': D — K, x — f’(x), die die Ableitungsfunktion
(oder ebenfalls kurz Ableitung) von f genannt wird.

Wie oben erléutert ist f’(a) also (zumindest im reellen Fall) die Steigung der Tangenten an den
Graphen von f im Punkt (a, f(a)).

Beispiel 10.4.
(a) Jede Gerade f: K — K, x — mx+ b mit m,b € K ist differenzierbar mit Ableitung m, denn

f(a) = im L) = fl@) _ . (mx+b) —(ma+b)

x—a xX—a x—a xX—a

Dies ist geometrisch natiirlich klar, denn eine solche Gerade ist ihre eigene Tangente in
jedem Punkt und hat damit iiberall die Steigung m.

(b) Essei f: Rsp — R, x — /x die Wurzelfunktion. Dann ist fiir alle a € R>

Vi-va _ Vi—a 1 {zlﬁ fiir a > 0,

1_ 1 N
S xma o (AEVaVEVa) ek Ve e fira=0.
1

Also ist f differenzierbar auf R~ mit Ableitung f/(x) = SN aber nicht differenzierbar auf
R>0. Anschaulich ist f nicht differenzierbar in 0, weil f dort ,,unendliche Steigung* hat
und die lineare Approximation daher eine senkrechte Gerade sein miisste (siehe Bild unten

links).
VX ||

X X

N N
nicht differenzierbar nicht differenzierbar
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(c) Die Betragsfunktion f: R — R, x — |x] ist nicht differenzierbar in O nach dem Folgenkrite-
_ =D

rium, denn die Folge (x,), mit x, = “—~ konvergiert gegen 0, aber der Grenzwert
lim 7]‘(}5 )=~ F0) = lim Al = lim 7/’1 = lim (—1)"
n—soo Xy — n—e X, n—soo (—])”/n n—oo

existiert nicht. Anschaulich ist f deswegen nicht differenzierbar in 0, weil der Funktions-
graph dort einen ,,Knick® hat und sich die Funktion daher dort nicht durch eine Gerade
approximieren lédsst (sieche Bild oben rechts).

Wir haben gerade mit Beispiel 10.4 (b) und (c) zwei Beispiele von Funktionen gesehen, die (in
einem Punkt) stetig, aber nicht differenzierbar sind. Wir wollen nun zeigen, dass umgekehrt aber
jede differenzierbare Funktion stetig ist. Hierfiir benotigen wir das folgende Lemma, das wir auch
spiter noch einmal verwenden werden.

Lemma 10.5 (Aquivalentes Kriterium fiir Differenzierbarkeit). Es seien D C K, f: D — K eine
Funktion und a € D. Dann sind die folgenden beiden Bedingungen dquivalent:

(a) f ist differenzierbar in a.

(b) Es gibt eine in a stetige Funktion ¢: D — K mit f(x) — f(a) = ¢(x) - (x — a) fiir alle x € D.
In diesem Fall ist dann @(a) = f'(a).

Beweis. Die gegebene Bedingung an ¢ legt diese Funktion fiir alle x # a offensichtlich fest als den
Differenzenquotienten

oy = 10110

Damit besagt (b) also genau, dass diese Funktion stetig nach a fortsetzbar ist. Dies ist gemif3 Defi-
nition 8.5 (b) aber exakt dasselbe wie die Aussage (a), dass der Grenzwert

lim ¢ (x) = lim fx)=fa) (%)
X—a X—a XxX—a
x#a x#a
existiert, also dass f in a differenzierbar ist. Ist dies der Fall, so ist der Ausdruck () dann aber
sowohl gleich der stetigen Fortsetzung ¢ (a) von ¢ in a als auch gleich der Ableitung f'(a). O

Bemerkung 10.6. Anschaulich gibt die Funktion ¢ aus Lemma 10.5 im Punkt x genau die Stei-
gung der Geraden durch die Punkte (a, f(a)) und (x, f(x)) an — die im Grenzfall x — a dann zur
Tangentensteigung wird.

Folgerung 10.7. Es seien D C K, f: D — K eine Funktion und a € D. Ist f differenzierbar in a, so
ist f auch stetig in a.

Beweis. Ist f differenzierbar in a, so gibt es nach Lemma 10.5 eine in a stetige Funktion ¢ : D — K
mit f(x) = f(a) + @(x) (x — a). Insbesondere existiert also der Grenzwert lim ¢(x) = ¢(a), und
X—a

damit nach den Grenzwertséitzen aus Satz 8.14 auch
lim f(x) = lim (f(a) + @(x) (x—a)) = f(a) + @(a) (a—a) = f(a),
xX—a X—a
d.h. f ist stetig in a. d

Genau wie bei unserer Untersuchung der Stetigkeit wollen wir nun zeigen, dass sich die Differen-
zierbarkeit von Funktionen auf Summen, Differenzen, Produkte, Quotienten, Verkettungen, Um-
kehrfunktionen und schlielich auch auf Potenzreihen iibertrigt — und auch wie man dann die Ab-
leitungen dieser neuen Funktionen berechnet. Wir beginnen mit den vier Grundrechenarten.

Satz 10.8 (Rechenregeln fiir Ableitungen). Die Funktionen f,g: D — K seien differenzierbar in
a € D. Dann gilt:

(a) f =+ g ist differenzierbar in a mit Ableitung (f +g)'(a) = (f' +¢')(a).
(b) (Produktregel) fg ist differenzierbar in a mit (fg)'(a) = (f'g+ fg')(a).
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. / ! - !
(c) (Quotientenregel) Ist g(a) # 0, so ist % differenzierbar in a mit (f) (a) = (fgg;zfg) (a).

Beweis.
(a) Wir fithren den Beweis hier nur fiir die Addition, der fiir die Subtraktion ist analog:

(48 (@) = i LA =GO 800y, (SO=110) sl

X—a X—da X—a X—d X—da

—f'(a) —¢'(a)

= (f'+8&)(a).

(b) Da g in a differenzierbar, nach Folgerung 10.7 also auch stetig ist, gilt lim g(x) = g(a). Damit
xX—a

ergibt sich nach den Rechenregeln fiir Grenzwerte aus Satz 8.14

(fg)'(a) = lim f(x)gx) — fla)g(a)

i F00800) — (@8 (x) + f(@)g(x) — f(@)g (@)
= tim (LI g 1) S0 =8
—_———
—f'(a)  —gla) ¢ (a)
= (f'e+f&)(a).

(c) Da g als differenzierbare Funktion nach Folgerung 10.7 auch stetig ist, ist g wegen g(a) # 0
nach Bemerkung 8.8 in einer e-Umgebung von a nirgends 0. Damit stimmt die Definitions-
menge von % dort mit D iiberein. Also ist a kein isolierter Punkt dieser Definitionsmenge,

und wir kénnen sinnvoll iiber die Ableitung von g in a sprechen.

Die eigentliche Berechnung dieser Ableitung ist nun analog zu (b):

= lim
x~a g(x)g(a) x—a
x—a g(x)g(a) X—a x—a
—— ~——
—1/(g(a))? —f'(a) —g(a)

Beispiel 10.9.

(a) Wir zeigen mit Induktion iiber n, dass die Ableitung der Potenzfunktion f: R — R, x — x"
fiir alle n € N durch f’(x) = nx"~! gegeben ist. Der Induktionsanfang fiir n = 0 ergibt sich
dabei aus Beispiel 10.4 (a). Wissen wir nun fiir ein n € N, dass die Ableitung von x — x"
gleich x +— nx"~! ist, so folgt mit der Produktregel fiir die Ableitung von f(x) = x"! =x"-x

fx)=mx""1x+x" 1=(n+1)x",
da die Ableitung der Funktion x — x nach Beispiel 10.4 (a) die konstante Funktion 1 ist.

(b) Aus der Produktregel und Beispiel 10.4 (a) folgt insbesondere fiir alle ¢ € K und jede diffe-
renzierbare Funktion f: D — K, dass (cf) =c- f'.

22
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(c) Mit den Regeln aus Satz 10.8 (und Beispiel 10.4 (a)) konnen wir nun offensichtlich die
Ableitung jeder rationalen Funktion, also jeder Funktion der Form f(x) = % mit Poly-

nomfunktionen p und ¢ berechnen. Ist z.B. f(x) =Y}, a;x* selbst eine Polynomfunktion,
soist f'(x) = Y7, kapx*~! nach (a), (b) und Satz 10.8 (a).

Wir kommen jetzt zu Verkettungen und Umkehrfunktionen.

Satz 10.10 (Kettenregel). Es seien f: D — Kund g: D' — K zwei Funktionen, so dass (D) C D'
Ist dann a € D, so dass f differenzierbar in a und g differenzierbar in f(a) ist, so ist auch die
Verkettung g o f differenzierbar in a, und es gilt

(gof)(a) =g (f(a)- f'(a),
d. h. ,,die Ableitung einer Verkettung ist das Produkt der beiden Ableitungen “.

Beweis. Da f und g in a bzw. f(a) differenzierbar sind, gibt es nach Lemma 10.5 Funktionen
¢:D—Kund y: D' — K, die in a bzw. f(a) stetig sind, und fiir die

fx)—=fla) =0(x)(x—a) firallex € D
bzw. g(y)—g(f(a)) = w(y) (y—f(a)) fiiralleye D’

sowie @(a) = f'(a) und y(f(a)) = g'(f(a)) gelten. Setzen wir nun y = f(x), so erhalten wir durch
Einsetzen der ersten Gleichung in die zweite

8(/(x) —g(f(a)) = y(f () (f(x) = f(a)) = y(f(x)) 9(x) (x—a)
fiir alle x € D. Da f und ¢ in a sowie ¥ in f(a) stetig sind, ist nun aber auch x — y(f(x)) @(x) in
a stetig, und somit ergibt sich aus der Richtung ,,(b) = (a)* von Lemma 10.5 angewendet auf g o f,
dass diese Funktion in a differenzierbar ist mit (go f)'(a) = w(f(a)) @(a) = ¢'(f(a))- f'(a). O

Satz 10.11 (Ableitung der Umkehrfunktion). Es seien D,D' C K und f: D — D' eine bijektive
Funktion mit Umkehrfunktion f~': D' — D. Ist dann a € D ein Punkt, so dass f differenzierbar in
a ist mit f'(a) # 0, und so dass f~" stetig in f(a) ist, so ist auch f~" differenzierbar in f(a) mit

1
(@) = -
['(a)
Beweis. Wie im vorherigen Beweis gibt es nach Lemma 10.5 eine in a stetige Funktion ¢: D — K
mit f(x) — f(a) = @(x) (x —a) fiir alle x € D. Mit y := f(x) und b := f(a) (also x = f~'(y) und
a= f~!(b)) konnen wir dies schreiben als

y=b=0(f 'O () —f (b)) firalleyeD'.
Da ¢ o f~! nach Voraussetzung in b stetig ist und den Wert @(f~!(b)) = ¢(a) = f'(a) # 0 hat, ist
diese Funktion nach Bemerkung 8.8 auch in einer e-Umgebung von b ungleich 0. Dort ist dann also

o)== (y—b) firalley,

1
o(f~1(y)

woraus mit Lemma 10.5 folgt, dass £~ in b differenzierbar ist mit (')’ (b) = m = % O

Bemerkung 10.12. Im Fall einer reellen, streng monotonen Funktion f bendtigen wir die Voraus-
setzung der Stetigkeit von f~!in f(a) in Satz 10.11 nicht, da dies nach Satz 8.28 automatisch erfiillt
ist. Die Bedingung f’(a) # 0 ist hingegen auch in diesem Fall nicht iiberfliissig: Das Beispiel der
reellen Funktion f: R — R, x> x> mit f’ (0) = 0 zeigt, dass eine differenzierbare, streng monotone
Funktion in einem Punkt auch Ableitung Null haben kann.

Beispiel 10.13. In den Sétzen 10.10 und 10.11 werden nicht alle Ableitungen an derselben Stelle a,
sondern manche auch an f(a) ausgewertet. Man macht dies ,,automatisch” richtig, wenn man wie in
den folgenden beiden Beispielen fiir die Definitions- und Wertemengen der beteiligten Funktionen
bestimmte Variablennamen festlegt und darauf achtet, dass Funktionen und ihre Ableitungen immer
an der entsprechenden Variablen ausgewertet werden.
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(a) Die Funktion 7: R — R, x+—y=v/x2+ 1 ist von der Form A = go f mit f: x = u=2x>+1
und g: u+>y = y/u. Thre Ableitung ergibt sich daher nach der Kettenregel aus Satz 10.10 zu

K = ¢ W) 1) = 5= 2= 2

denn f'(x) =2xund g'(u) = ﬁ nach Beispiel 10.9 (¢) und 10.4 (b).

(b) Nach Beispiel 10.9 (a) ist die Ableitung der Potenzfunktion f: Ryo — R-q, x+— y = x" fiir
n € Nog gleich f’(x) = nx"~!. Damit ist die Ableitung ihrer Umkehrfunktion, also der n-ten
Waurzelfunktion f~!: y— x = Iy = y!/7 nach Satz 10.11 gleich

1 1 1

1
f/(x) - nxt—1 - n(w)nfl ;

Notation 10.14 (Differentialschreibweise). Die Regeln aus
den Sitzen 10.10 und 10.11 lassen sich leicht mit Hilfe der
sogenannten Differentialschreibweise merken: Man legt hierzu
wie in Beispiel 10.13 fiir eine Funktion f: D — K bestimm-
te Variablennamen fiir Definitions- und Wertemenge fest, et-
wa y = f(x), und schreibt die Ableitung f’(x) dann als forma-
len Quotienten %, wobei die ,,Differentiale” dx und dy wie im
Bild rechts fiir eine (unendlich kleine) Differenz in den x- und
y-Werten stehen sollen.

Faie)

Wichtig dabei ist, dass dies nur eine formale Schreibweise ist — es gibt nicht wirklich Objekte dx
und dy, die hier durcheinander geteilt werden. Dennoch nehmen die Sétze 10.10 und 10.11 in dieser
Schreibweise eine sehr natiirliche Form an, die so aussieht, als konnte man mit diesen ,,Briichen*
wirklich rechnen:

(a) (Verkettung) Ist h = go f eine Verkettung und setzen wir u = f(x), y = g(u) und damit

y = h(x), so besagt Satz 10.10 einfach % = % . %, so als ob man hier mit du erweitern

wiirde.

(b) (Umkehrfunktion) Ist y = f(x), also x = f~!(y), so wiirden wir die Ableitung von f~! ja als

Z—; schreiben, und damit sagt Satz 10.11 gerade Z—“; = (%) ! , so als ob man hier einfach den

Kehrwert des Bruches % bilden wiirde.
Aufgabe 10.15. Es seien f,g: R — R stetige Funktionen. Man beweise oder widerlege:

(a) Ist f differenzierbar in 0 und g(0) = 0, dann ist f - g differenzierbar in 0.
(b) Ist f differenzierbar in 0 und f(0) = 0, dann ist f - g differenzierbar in 0.

(c) Sind f und g differenzierbar in 0 mit £(0) =0 und f(x)g(x) = x fiir alle x € R, dann gilt
(0) #0.

Aufgabe 10.16. Es seien D C Rund f: D — R eine Funktion. Zeige, dass fiir jedes a € Dund c € R
die folgenden beiden Bedingungen dquivalent sind:

(a) Die Funktion f ist differenzierbar in a mit f'(a) = c.

(b) Fiir zwei beliebige gegen a konvergente Folgen (x,), und (y,), in D mit x, < a <y, und
X, 7 y, fur alle n € N gilt

i L) = flw)
n—eo Yn —Xn
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Aufgabe 10.17. Wir betrachten wie im Bild rechts dargestellt

die ,,Zickzackfunktion“ g: R — R, die periodisch mit Peri- | 8(x)
odenldnge 2 ist und auf [—1, 1] mit der Betragsfunktion iiber-
einstimmt. Zeige, dass dann die Funktion

| X
-1 1
o (on
[TRSR x— Y 8(2"x) nx)
n=0 2 f(x)

in jedem Punkt stetig und in keinem Punkt differenzierbar ist. 1

(Hinweis: Fiir die Differenzierbarkeit ist Aufgabe 10.16 niitz-

lich.) | 1 > X

10.B Extremwerte und der Mittelwertsatz

Nachdem wir nun schon einige Ableitungen berechnen kdnnen, wollen wir uns als Nichstes an-
schauen, welche Informationen man iiber eine differenzierbare Funktion aus ihrer Ableitung erhalten
kann. Am wichtigsten ist dabei, dass man mit Hilfe der Ableitung sehr leicht die Stellen finden kann,
an denen eine Funktion ihre grof3ten bzw. kleinsten Werte annimmt. Dies zu untersuchen ist natiirlich
nur fiir reelle Funktionen sinnvoll, und daher beschrinken wir uns im Folgenden auf solche.

Definition 10.18 (Extrema). Es seien D C R, f: D — R eine Funktion und a € D. Man sagt, ...

(a) f habe in a ein (globales) Maximum, wenn f(a) > f(x) fiir alle x € D.

(b) f habe in a ein lokales Maximum, wenn es ein € > 0 gibt, so dass f(a) > f(x) fiir alle
x € D mit |x—a| < €. Gilt sogar f(a) > f(x) fiir alle x € D mit [x —a| < € und x # a, so
nennt man das lokale Maximum isoliert.

Analog definiert man globale und lokale (isolierte) Minima. Hat f in a ein (globales, lokales, iso-
liertes) Maximum oder Minimum, so sagt man auch, dass f dort ein (globales, lokales, isoliertes)
Extremum hat.

Bemerkung 10.19. Ein globales Maximum (ana-

log Minimum) bedeutet also gerade, dass f dort f(x)
den groften aller moglichen Funktionswerte an-
nimmt; ein lokales Maximum dagegen nur, dass
f in einer kleinen Umgebung des betrachteten
Punktes den grofiten Wert hat. Offensichtlich ist
also jedes globale Maximum auch ein lokales.
Das Bild rechts zeigt, dass die Umkehrung nicht
notwendig richtig ist. X

<— globales (und lokales) Maximum

~— lokales, aber kein
globales Maximum

Wie wir im Bild schon sehen, zeichnet sich ein lokales Extremum, das nicht am Rand des Defini-
tionsbereichs liegt, dadurch aus, dass die Ableitung, also die Steigung der Funktion, dort gleich O
ist:

Lemma 10.20 (Notwendige Bedingung fiir lokale Extrema). Hat eine Funktion f: (a,b) — R in
einem Punkt x € (a,b) ein lokales Extremum und ist f dort differenzierbar, so gilt f'(x) = 0.

Beweis. Wir beweisen das Lemma fiir ein Maximum; der Beweis fiir ein Minimum ist natiirlich
analog. Nach eventuellem Verkleinern des Definitionsintervalls (a,b) koénnen wir weiterhin ohne
Beschrinkung der Allgemeinheit annehmen, dass f in x sogar ein globales Maximum hat. Wihle
nun eine Folge (x,), in (a,b) mit x, — x und x,, > x fiir alle n € N — also eine Folge in D, die sich
dem Punkt x von rechts néhert. Die Ableitung f’(x), die nach Voraussetzung existiert, kdnnen wir
dann nach dem Folgenkriterium aus Satz 8.12 als

f'(x) = lim f('x}’l) 7f(x)

n—eo Xy —X
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berechnen. Nun ist der Zihler dieses Bruches immer kleiner oder gleich 0 (weil f in x ein Maximum
hat), und der Nenner immer groBer als Null —und damit folgt f(x) < 0 nach Satz 5.24 (a). Durch eine
Folge, die sich von links dem Punkt x néhert, erhilt man genauso f’(x) > 0, und damit letztendlich
f(x)=0. O

Bemerkung 10.21. Hat eine reelle Funktion f: [a,b] — R auf einem abgeschlossenen Intervall in
einem Punkt x € [a,b] ein lokales Extremum, so gibt es also zwei Moglichkeiten:

(@) x € (a,b): Nach Lemma 10.20 muss dann f’(x) = O sein, falls f dort differenzierbar ist.
Beachte aber, dass die Bedingung f”(x) = 0 nicht hinreichend dafiir ist, dass in x ein lokales
Extremum vorliegt — dies zeigt das Beispiel der Funktion f(x) = x°, fiir die zwar f'(0) = 0
gilt, die bei x = 0 aber kein Extremum hat. Punkte x € (a,b), fiir die f’(x) = 0 gilt, die also
als lokales Extremum im Inneren des Definitionsintervalls in Frage kommen, werden oft
kritische Punkte genannt. Wir werden spéter noch sehen, wie man feststellen kann, ob ein
kritischer Punkt wirklich ein lokales Extremum ist oder nicht (siche Bemerkung 10.25 und
Satz 11.18).

(b) x =a oder x = b: In diesem Fall muss die Ableitung von f in x nicht notwendig O sein (wie
z.B. beim globalen Maximum der Funktion in Bemerkung 10.19). Solche Extremwerte am
Rand des Definitionsintervalls nennt man Randextrema.

Als Nichstes wollen wir mit Hilfe der Ableitung einer reellen Funktion ihre Monotonieeigenschaften
untersuchen. Wir beweisen dazu zunichst zwei einfache Resultate, die wir auch noch fiir spatere
Anwendungen bendtigen werden.

Satz 10.22 (Satz von Rolle). Es sei f: [a,b] — R eine stetige Funktion, die auf (a,b) differenzierbar
ist. Gilt dann f(a) = f(b), so gibt es ein x € (a,b) mit f'(x) = 0.

Beweis. Da f stetig ist, nimmt f nach Satz 8.25 auf dem In-
tervall [¢,b] Maximum und Minimum an. Sind diese beide
gleich f(a) = f(b), so ist f offensichtlich konstant und wir
konnen ein beliebiges x € (a,b) wihlen. Andernfalls kon-
nen wir ohne Beschrinkung der Allgemeinheit annehmen,
dass das Maximum von f groBer als f(a) = f(b) ist, al-
so im Inneren des Definitionsintervalls angenommen wird.
Dort gilt dann aber f’(x) = 0 nach Lemma 10.20. O

Satz 10.23 (Mittelwertsatz).

(a) (1. Version) Es sei f: a,b] — R eine stetige
Funktion, die auf dem offenen Intervall (a,b) dif-  f(b){----------------
ferenzierbar ist. Dann gibt es ein x € (a,b) mit
f(b)=f(a) = f'(x)(b—a), also

’ f(b)—f(a)
7o =101,
Mit anderen Worten wird die Steigung der Gera-
den zwischen (a, f(a)) und (b, f(b)) wie im Bild ~ f(a)1- - AN F(B)—f(a)
rechts an einer Stelle x € (a,b) als Tangenten- | ToRIgung T
steigung angenommen.

a X b

(b) (2. Version) Es seien f,g: [a,b] — R stetige, auf (a,b) differenzierbare Funktionen. Dann
gibt es ein x € (a,b) mit

f'(x)-(g(b) —g(a)) = &' (x) - (f(b) — f(a)).

Beweis. Es geniigt, die allgemeinere Aussage (b) zu zeigen, da sich Teil (a) sofort daraus ergibt,
wenn man g(x) = x setzt. Wir betrachten dazu die Funktion

h:la,b] = R, x = (f(x) = f(a)) (8(b) — g(a)) — (8(x) —&(a)) (f(b) - f(a)).
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Mit f und g ist auch & auf [a, D] stetig und auf (a,b) differenzierbar; auBerdem ist h(a) = h(b) = 0.
Nach dem Satz 10.22 von Rolle gibt es also ein x € (a,b) mit #’(x) = 0, und wegen

H (x) = f'(x) (8(b) — g(a)) — &' (x) (f(b) — f(a))

ergibt sich daraus genau die Behauptung. 0

Der Mittelwertsatz wirkt auf den ersten Blick etwas unscheinbar, ist in der Tat aber sehr wichtig, da
er es erlaubt, einen Differenzenquotienten (und damit letztlich die Differenz zweier Funktionswerte)
durch einen Differentialquotienten (also eine Ableitung) auszudriicken. Wie bereits angekiindigt ist
ein erstes Beispiel hierfiir, dass man die Monotonie von Funktionen mit Hilfe von Ableitungen un-
tersuchen kann.

Folgerung 10.24 (Monotonie differenzierbarer Funktionen). Es sei f: [a,b] — R eine stetige, auf
(a,D) differenzierbare Funktion. Gilt dann fiir alle x € (a,b). ..

@ f'(x) >0 (bzw. f'(x) > 0), so ist f monoton (bzw. streng monoton) wachsend.
(b) f(x) <0 (bzw. f'(x) <0), so ist f monoton (bzw. streng monoton) fallend.
(©) f'(x)=0, soist f konstant.

Beweis. Es seien x,y € [a,b] mit x < y. Nach dem Mittelwertsatz 10.23 (a) angewendet auf das
Intervall [x,y] gibt es dann ein ¢ € (x,y) C (a,b) mit f(y) — f(x) = f'(c) (y — x). Im Fall (a) ist nun
f(¢) > 0bzw. f'(c) > 0, und damit f(y) — f(x) > 0 bzw. f(y) — f(x) >0, d. h. f ist monoton (bzw.
streng monoton) wachsend. Teil (b) ergibt sich natiirlich genauso, und (c) folgt aus der Kombination
der beiden Teile. O
Bemerkung 10.25 (Hinreichendes Kriterium fiir lokale Extrema).
Mit Folgerung 10.24 ergibt sich ein einfaches hinreichendes Krite-
rium fiir ein (lokales) Extremum: Ist f: [a,b] — R stetig und auf
(a,b) differenzierbar, und gibt es ein ¢ € (a,b) mit

f'(x) > 0 fiir alle x < c und f'(x) < O fiir alle x > ¢

(d.h. hat f’ einen Vorzeichenwechsel von + nach — in c¢), so ist |

| SR N —
f nach Folgerung 10.24 streng monoton wachsend auf [a,c] und a c b
streng monoton fallend auf [c,b], d.h. f hat ein isoliertes lokales % T> 0o f T< 0

Maximum in c¢. Eine analoge Aussage gilt natiirlich auch fiir ein
Minimum.

Wir sehen also, dass man mit Hilfe der Ableitung gut die Extrema von differenzierbaren Funktionen
finden kann. Um dies in der Praxis auch anwenden zu konnen, miissen wir aber auch noch in der
Lage sein, von komplizierteren Funktionen — z. B. den ,,speziellen Funktionen® aus Kapitel 9 — die
Ableitung zu berechnen oder iiberhaupt erst einmal ihre Differenzierbarkeit nachzuweisen. Da diese
Funktionen oftmals iiber Potenzreihen definiert sind, miissen wir uns also mit der Differenzierbarkeit
solcher Potenzreihen (oder allgemeiner von Funktionenfolgen) beschiftigen. Entscheidend hierfiir
ist die folgende Aussage, die ebenfalls zentral den Mittelwertsatz verwendet.

Satz 10.26 (Vertauschbarkeit von Differentiation und Grenzwertbildung). Es seien D C R ein Inter-
vall und (f,), mit f,,: D — R eine Folge differenzierbarer Funktionen. Wir setzen voraus, dass

o (fn)n punktweise gegen eine Grenzfunktion f: D — R konvergiert, und
e die Ableitungen f) stetig sind und gleichmdifiig gegen eine Grenzfunktion g: D — R konver-

gieren.

Dann ist f differenzierbar mit f' = g (d. h. ,, Differentiation und Grenzwertbildung kinnen vertauscht
werden*; es ist ( lim fn)/ = lim f}).
n—yoo n—oo
Beweis. Fiir alle a € D zeigen wir direkt mit der Grenzwertdefinition, dass lim fe-fa) g(a). Es
xX—a

X—a

sei also € > 0 beliebig. Da g nach Satz 8.38 als gleichméBiger Grenzwert stetiger Funktionen stetig
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ist, gibt es zunichst ein & > 0, so dass
€
lg(x) —g(a)] < 3 fiir alle x € D mit [x —a| < 6. (1)

AuBerdem konvergiert (f;), nach Voraussetzung gleichmiBig gegen g, d. h. es gibt auch ein (von x
unabhingiges) ng € N mit

|fa(x) —g(x)] < g fiir alle x € D und n > no. )

Es seien nun x € D mit x # a und |x —a| < & sowie n > ng beliebig. Nach dem Mittelwertsatz
10.23 (a) gibt es dann ein ¢ zwischen a und x (fiir das also insbesondere auch |c —a| < [x—a| < 8
gilt) mit
fu(x)— fula
19— J@) i_a"( )= ). 3)

Setzen wir dies nun alles zusammen, so erhalten wir mit der Dreiecksungleichung
Ja(x) = fu(a) ®
T —g(a)| = |fu(e) —g(a)| = |fu(e) — 8(c) +g(c) — g(a)]

X—da
<|fule) —g(e)|+1g(c) — g(a)|
M2 e € 2¢

37373
wobei wir (1) und (2) fiir den Punkt ¢ angewendet haben. Nehmen wir hier nun den Grenzwert fiir
n — oo, so erhalten wir daraus mit Satz 5.24 (a) fiir alle x mit [x —a| <

- 2e
f(x) — f(a) —gla) < <.
xX—a 3
Da € > 0 beliebig war, bedeutet dies aber genau, dass f'(a) = )161_1)1611 W = g(a). O

Auch wenn der Beweis dieses Satzes recht kompliziert war, ist die Aussage doch sehr einfach anzu-
wenden. So ergibt sich z. B. in dem fiir uns wichtigsten Fall von Potenzreihen:

Folgerung 10.27 (Differenzierbarkeit von Potenzreihen). Es sei f(x) = Y2, aix* eine reelle Po-

tenzreihe mit Konvergenzradius r. Dann ist f im Konvergenzgebiet (—r,r) differenzierbar mit Ablei-
tung f'(x) = Y5, kagx*=1, d. h. ,, Potenzreihen konnen gliedweise differenziert werden*.

Beweis. Es sei ¢ € (—r,r); wir wollen zeigen, dass f in ¢ differenzierbar ist mit Ableitung
f'(e) = X5 kayck=!. Wihle dazu ein R mit |¢| < R < r. Dann ist die Folge der Partialsummen
fu(x) = X7y axx* nach Satz 8.36 auf (—R, R) gleichmBig konvergent gegen f. Die Ableitung dieser
Partialsummenfunktionen sind nach Beispiel 10.9 (c) die stetigen Funktionen f;, (x) = Y}_, kay 1
Da die Reihe g(x) = Y5, kag x*~! nach Aufgabe 7.32 den gleichen Konvergenzradius r wie f hat,
konvergieren genauso auch die f;, auf (—R, R) gleichm#Big gegen g.

Damit haben wir alle Voraussetzungen iiberpriift, um Satz 10.26 auf die Folge (f;), auf (—R,R)
anwenden zu konnen. Der Satz liefert uns also f’ = g auf (—R,R), und damit insbesondere auch im
Punkt c. .

Mit Folgerung 10.27 (und unseren vorherigen Resultaten) konnen wir jetzt endlich von ,,praktisch
allen Funktionen die Ableitungen berechnen:

Beispiel 10.28 (Ableitungen spezieller Funktionen).

(a) Die Ableitung der Exponentialfunktion f: R - R, x—»e* =3} ", 2—’: ergibt sich durch glied-
weises Differenzieren zu

> nx" ! > -
/x):; g’nfl

die Exponentialfunktion ist also gleich ihrer eigenen Ableitung.
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(b)

(©)

(d)

Andreas Gathmann

Die Ableitung der Sinusfunktion f: R = R, x = sinx=Y"_, %xznﬂ ist analog
S (=D" v (D"
(2n+1) 7x”: x“" = cosx.
Z (2n+1)! ,;J (2n)!
Genauso berechnet man cos’(x) = —sinx. Aus der Quotientenregel von Satz 10.8 (c) ergibt
sich damit

. / 2 .2
tan’(x) = () () = SOSXESINTE

cos cos2x

Die Ableitungen der Umkehrfunktionen zu (a) und (b) folgen nun sofort aus Satz 10.11: Mit
fix—y=¢e" also f'(x) =e*und f~!(y) = logy ist z. B.
1 1 1
log’ =—=—.
D=Fm e Ty

Fiir f: x+ y = sinx, also f'(x) = cosx und f~!(y) = arcsiny ist analog
11 » 1 B 1
f'(x) cosx \/l—sinzx a \/1 -
wobei wir in (x) die Gleichung aus Satz 9.14 (b) benutzen (sowie dass der Arkussinus streng

monoton wachsend ist, so dass wir hier das positive Vorzeichen der Wurzel nehmen miissen).
Genauso zeigt man

arcsin’(y) =

1 1
/ = —— d t ! = —
arccos’ (y) un arctan’(y) )2

Vi

Die Ableitung der Potenzfunktion f: R-o — R, x — x% = e*1°2* (mit festem Exponenten
a € R) ist nach der Kettenregel aus Satz 10.10
f/(x) — ealogx . ﬁ e E _ axufl,
x X

das Ergebnis ist also fiir alle a € R das gleiche wie schon fiir die speziellen Exponenten
in Beispiel 10.9 (a) und 10.13 (b). Ebenfalls nach der Kettenregel ist die Ableitung der
Potenzfunktion f: R — R, x — a* = ¢*1°2¢ mit fester Basis a € R~ dagegen

f(x) = e*1°8% . loga = a* -loga.

Bemerkung 10.29.

(a)

(b)

Aufgabe 10.30. Bestimme alle lokalen und globalen Extrema der Funktion f: R - R, x +—

Man kann zeigen, dass die Aussage von Satz 10.26 (und damit auch von Folgerung 10.27)
genauso auch im komplexen Fall gilt. Da wir in unserem Beweis dieser Aussagen den Mittel-
wertsatz verwendet haben (der nur in R gilt), benotigt man hierfiir jedoch andere Argumente.
Wir werden den komplexen Fall im Folgenden in dieser Vorlesung aber nicht benotigen — die
Untersuchung komplex differenzierbarer Funktionen bzw. Potenzreihen ist der wesentliche
Inhalt der Vorlesung ,Einfiihrung in die Funktionentheorie®, die ihr im zweiten Studienjahr
horen konnt.

Ohne die Voraussetzung der (gleichméBigen) Konvergenz der Folge der Ableitungen in Satz
10.26 wire die Aussage im Allgemeinen falsch: Betrachten wir z. B. die Folge der Funktio-

nen f,: R — R, x+ 1 sin(nx), so gilt zwar lim f,(x) = 0 fiir alle x, d. h. (f,), konvergiert
n—yoo

punktweise (und in der Tat auch gleichméBig) gegen die Nullfunktion, die ja Ableitung 0
hat — aber die Folge der Ableitungen f;(x) = cos(nx) konvergiert fiir n — oo noch nicht ein-
mal punktweise! Hier konnen Differentiation und Grenzwertbildung also nicht vertauscht
werden.

1+2 |x\

Aufgabe 10.31. Es sei f: [a,b] — R eine differenzierbare Funktion. Man zeige:

(a)

Ist f'(a) > 0und f'(b) < 0, so gibt es ein x € (a,b) mit f'(x) = 0.
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(b) Fiir alle ¢ zwischen f’(a) und f’(b) gibt es ein x € [a,b] mit f'(x) = c. (Ableitungen erfiillen
also den Zwischenwertsatz, obwohl sie nach Aufgabe 10.33 (d) nicht stetig sein miissen.)

Aufgabe 10.32. Untersuche die Funktionenfolge (f;,), mit f,: Rso — R, x +— x"*1e ™ auf gleich-
mifBige Konvergenz.
Aufgabe 10.33. Finde m € N und n € Nog, so dass f: [-1,1] R, xrs 4 © S Hrxr70-
0 firx=20
(a) unstetig ist.
(b) stetig, aber nicht differenzierbar ist.
(c) differenzierbar mit unbeschrinkter Ableitung ist.
(d) differenzierbar mit beschrénkter, aber unstetiger Ableitung ist.

(e) differenzierbar mit stetiger Ableitung ist.
Skizziere fiir kleine Werte von m und n auch die Graphen dieser Funktionen!

Aufgabe 10.34. Ein Rettungsschwimmer, der sich an Land
am Punkt A befindet, mochte eine im Meer ertrinkende Per-
son am Punkt B retten. Er lauft dazu zunéchst entlang einer .
geraden Linie zu einem Punkt P am Ufer, und schwimmt von Meer 7
dort wieder entlang einer geraden Linie nach B. Wenn er mit :

der Geschwindigkeit v; laufen und mit der Geschwindigkeit ’

v, schwimmen kann, wo muss er dann den Punkt P wihlen, o
damit er moglichst schnell bei B ist? Zeige, dass diese mini-  Land

male Zeit genau dort erreicht wird, wo

sing;  v;
singy vy

Fiir die Physiker und physikalisch Interessierten unter euch: Dies ist iibrigens genau das Brechungs-
gesetz fiir Licht — auch Licht bewegt sich so, dass es schnellstmoglich ans Ziel kommt!

Aufgabe 10.35. Wir betrachten wie im Bild unten rechts Kreissektoren mit variablem Offnungswin-
kel o € (0,27) und Radius r € R+.

Welcher solche Kreissektor hat bei vorgegebenem Flacheninhalt F' den kleinst-
moglichen Umfang U? Bestimme fiir diesen Fall », o und U in Abhingigkeit
von F.

(Der Umfang beinhaltet dabei auch die beiden Geradenstiicke zum Mittelpunkt. r
Die Formeln fiir den Flicheninhalt und Umfang eines Kreissektors konnen als
bekannt vorausgesetzt werden.)

Aufgabe 10.36. Es sei f: D — R eine auf einem Intervall D definierte Funktion. Wir setzen voraus,
dass es b,c € R gibt mit |f(x) — f(y)| < ¢|x —y|” fiir alle x,y € D mit x # y. Man zeige:

(a) f ist gleichmiBig stetig.
(b) Ist b > 1, soist f konstant.
Aufgabe 10.37. Zeige mit Hilfe des Mittelwertsatzes fiir alle x,y € R:

(@) |sinx—siny| < |[x—yl;

®) e —e| < \E x—yl.

Aufgabe 10.38. Es sei f: R>o — R differenzierbar und beschrinkt. Zeige mit Hilfe des Mittelwert-
satzes, dass es eine Folge (x,), in R>( gibt mit lim x, = oo und lim f’(x,) = 0.
= n—soo n—soo



