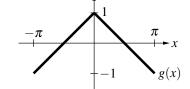
Grundlagen der Mathematik 2 – Blatt 4

Abgabe: Montag, 26. Mai

- (1) Es seien $m, n \in \mathbb{N}$ und V der Vektorraum aller reellen Polynome vom Grad höchstens n. Für $f, g \in V$ setzen wir $\langle f, g \rangle := \sum_{i=0}^{m} f(i) g(i)$.
 - (a) Für welche m und n ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V?
 - (b) Berechne im Fall m = n = 2 eine Orthonormalbasis dieses Skalarprodukts.
- (2) Es sei $V = C^0([-\pi, \pi])$ der Vektorraum aller stetigen Funktionen auf dem Intervall $[-\pi, \pi]$ mit dem üblichen Skalarprodukt $\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x) dx$. Wir betrachten darin das Element $g \in V$ definiert durch $g(x) := 1 \frac{2}{\pi}|x|$.

Für $n \in \mathbb{N}_{>0}$ seien weiterhin $f_n \in V$ mit $f_n(x) := \frac{1}{\sqrt{\pi}} \cos nx$, und $U_n := \text{Lin}(f_1, \dots, f_n) \le V$.

(a) Zeige, dass $(f_1, ..., f_n)$ für alle n eine Orthonormalbasis von U_n ist.



(b) Berechne für alle $n \in \mathbb{N}_{>0}$ die orthogonale Projektion g_n von g auf U_n (also die Funktion in U_n , die von g den kleinsten Abstand hat, d. h. sie am besten approximiert).

Wer Lust hat, kann die Funktionen g_n ja für kleine n einmal von einem Computer zeichnen lassen und mit der ursprünglichen Funktion g vergleichen.

- (3) Man zeige:
 - (a) Ist $A \in O(3)$, so gibt es ein $\varphi \in \mathbb{R}$ und $T \in O(3)$ mit

$$T^{-1}AT = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}.$$

(b) Ist $A \in O(4)$, so gibt es im Allgemeinen kein $\varphi \in \mathbb{R}$ und $T \in O(4)$ mit

$$T^{-1}AT = \begin{pmatrix} \pm 1 & 0 & 0 & 0 \\ 0 & \pm 1 & 0 & 0 \\ 0 & 0 & \cos \varphi & -\sin \varphi \\ 0 & 0 & \sin \varphi & \cos \varphi \end{pmatrix}.$$

Zusatzfrage (ohne Abgabe): Was bedeutet das Ergebnis geometrisch?

(Hinweis: Untersuche, ob A einen Eigenwert besitzen muss.)

- (4) Zeige, dass für jeden Endomorphismus $f: V \to V$ eines endlich-dimensionalen euklidischen Raums V die folgenden Aussagen äquivalent sind:
 - (a) Für alle $x, y \in V$ mit $x \perp y$ gilt $f(x) \perp f(y)$.
 - (b) Es gibt ein $\lambda \in \mathbb{R}_{>0}$, so dass $||f(x)|| = \lambda ||x||$ für alle $x \in V$ gilt.
 - (c) Es gibt ein $\lambda \in \mathbb{R}_{>0}$ und eine orthogonale Abbildung $g: V \to V$ mit $f = \lambda g$.