Grundlagen der Mathematik 2 – Blatt 14

Lösungshinweise

(1) (a) Berechne das Integral $\int_D (2x-y) d(x,y)$, wobei D das Parallelogramm mit den Eckpunkten $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{5}{3} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$ und $\begin{pmatrix} \frac{4}{3} \\ -\frac{1}{3} \end{pmatrix}$ in \mathbb{R}^2 ist.

(Hinweis: Betrachte dazu den Diffeomorphismus $f: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ 2x-y \end{pmatrix}$.)

(b) Berechne das Integral $\int_D \frac{1}{(x^2+y^2)^2} d(x,y)$, wobei D das Gebiet ist, das von den vier Kurven $x^2+y^2=4x$, $x^2+y^2=8x$, y=x und y=2x im Bereich $x\geq 0$ begrenzt wird.

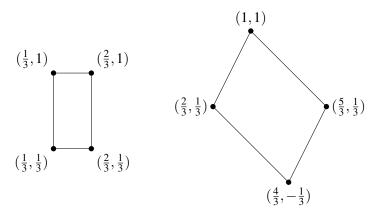
Lösung: (a) Wir zeigen zunächst, dass die Abbildung

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2, \ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ 2x-y \end{pmatrix}$$

ein Diffeomorphismus ist: Es gilt $f'(x,y) = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$, die Abbildung f ist also stetig differenzierbar. Weiter ist f bijektiv mit Umkehrfunktion

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{3}(x+y) \\ \frac{1}{3}(2x-y) \end{pmatrix},$$

also $f^{-1}=\frac{1}{3}f$. Somit ist auch f^{-1} stetig differenzierbar. Es gilt D=f(D'), wobei D' das folgende Rechteck in \mathbb{R}^2 ist:



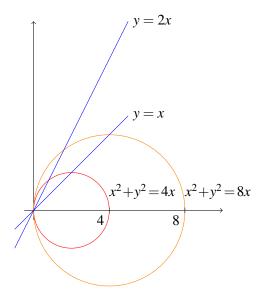
Mit dem Transformationssatz gilt dann:

$$\int_{D} (2x - y) d(x, y) = \int_{D'} (2(x + y) - (2x - y)) |\det f'(x, y)| d(x, y)$$

$$= \int_{\frac{1}{3}}^{\frac{2}{3}} \int_{\frac{1}{3}}^{1} 3 \cdot 3y \, dy \, dx = \frac{9}{2} \left(1 - \frac{1}{9} \right) \left(\frac{2}{3} - \frac{1}{3} \right) = \frac{4}{3}.$$

(b) Der Bereich zwischen den beiden Geraden im positiven Orthanten wird in Polarkoordinaten beschrieben durch $arctan(1) \le \varphi \le arctan(2)$. Das Gebiet D wird also beschrieben durch

$$D = \{(r\cos\varphi, r\sin\varphi) : \arctan(1) \le \varphi \le \arctan(2), 4\cos\varphi \le r \le 8\cos\varphi\}.$$



Um das Integral $\int_D \frac{1}{(x^2+y^2)^2} d(x,y)$ zu bestimmen, wenden wir den Transformationssatz an. Es gilt

$$\begin{split} \int_{D} \frac{1}{(x^2 + y^2)^2} \, d(x, y) &= \int_{\arctan(1)}^{\arctan(2)} \int_{4\cos\varphi}^{8\cos\varphi} \frac{1}{r^4} \cdot r \, dr \, d\varphi \\ &= \int_{\arctan(1)}^{\arctan(2)} \int_{4\cos\varphi}^{8\cos\varphi} \frac{1}{r^3} \, dr \, d\varphi \\ &= \int_{\arctan(1)}^{\arctan(2)} -\frac{1}{2} \left(\frac{1}{64\cos^2\varphi} - \frac{1}{16\cos^2\varphi} \right) \, d\varphi \\ &= \int_{\arctan(1)}^{\arctan(2)} -\frac{1}{128} \frac{-3}{\cos^2\varphi} \, d\varphi \\ &= \frac{3}{128} \left(\tan(\arctan(2)) - \tan(\arctan(1)) \right) \\ &= \frac{3}{128} \, . \end{split}$$

(2) Es seien $f: \mathbb{R}^3 \to \mathbb{R}^3$ ein Diffeomorphismus und $K_r(a)$ die abgeschlossene Kugel in der Maximumsnorm um $a \in \mathbb{R}^3$ mit Radius $r \in \mathbb{R}_{>0}$. Zeige, dass

$$\lim_{r\to 0} \frac{\operatorname{vol}(f(K_r(a)))}{8r^3} = |\det f'(a)|.$$

Lösung: Nach dem Transformationssatz ist

$$vol(f(K_r(a))) = \int_{f(K_r(a))} 1 \, dx = \int_{K_r(a)} |\det f'(x)| \, dx.$$

Bezeichnen nun m und M das Minimum bzw. Maximum der stetigen Funktion $|\det f'|$ auf der kompakten Menge $K_r(a)$, so ist

$$m\operatorname{vol} K_r(a) = \int_{K_r(a)} m \, dx \le \int_{K_r(a)} |\det f'(x)| \, dx \le \int_{K_r(a)} M \, dx = M\operatorname{vol} K_r(a)$$

und damit wegen $\operatorname{vol} K_r(a) = (2r)^3 = 8r^3$

$$m \le \frac{\operatorname{vol}(f(K_r(a)))}{8r^3} \le M.$$

Weil $K_r(a)$ zusammenhängend ist, gibt es also nach dem Zwischenwertsatz 24.22 ein $c_r \in K_r(a)$ mit

$$\frac{\operatorname{vol}(f(K_r(a)))}{8r^3} = |\det f'(c_r)|.$$

Da hierbei natürlich $\lim_{r\to 0} c_r = a$ gelten muss, ergibt sich nun durch Grenzwertbildung $r\to 0$ die Behauptung.

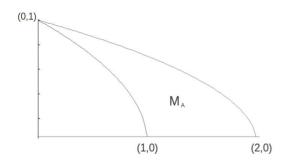
Es seien $A \subset \mathbb{R}$ eine kompakte messbare Menge und

$$M_A := \{((1-t^2)x, t) : x \in A \text{ und } t \in [0,1]\} \subset \mathbb{R}^2.$$

- (a) Skizziere M_A für den Fall A = [1,2].
- (b) Zeige, dass M_A messbar ist.
- (c) Berechne $vol(M_A)$ in Abhängigkeit von vol(A).

Lösung:

(a) Wir skizzieren den Fall A = [1, 2].



(b) Um die Messbarkeit von M_A zu zeigen, überprüfen wir, dass ∂M_A eine Nullmenge ist, und müssen dazu also ∂M_A bestimmen.

Es sei dazu $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,t) \mapsto ((1-t^2)x,t)$. Für $(x,t) \in \mathbb{R}^2$ mit $t \notin [0,1]$ gibt es eine Umgebung von (x,t), in der weiterhin alle t-Werte nicht in [0,1] liegen. Diese Punkte sind also alle nicht im Rand von M_A .

Wir betrachten nun Punkte mit $t \in (0,1)$. Schränken wir f in der zweiten Komponente auf (0,1)ein, dann ist die Funktion bijektiv mit Umkehrfunktion $f^{-1}(x,t) = (\frac{1}{1-t^2}x,t)$. Durch Ausdrücken von $\mathbb{R} \times (0,1)$ als die disjunkte Vereinigung $f(A^{\circ} \times (0,1)) \cup f(\partial A \times (0,1)) \cup f(\mathbb{R} \setminus A \times (0,1))$ erhalten wir, dass hiervon nur die Punkte in $f(\partial A \times (0,1))$ in Frage kommen. Dies folgt daraus, dass $A^{\circ} \times (0,1)$ und $\mathbb{R} \setminus A \times (0,1)$ offen sind und dasselbe somit auch für $f(A^{\circ} \times (0,1))$ und $f(\mathbb{R} \setminus A \times (0,1))$ gilt, als Urbilder offener Mengen unter f^{-1} . Erstere Menge liegt in M_A und letztere außerhalb, weshalb keine dieser Punkte in ∂M_A sein können.

Es bleibt noch $\mathbb{R} \times \{0,1\}$ zu betrachten. Da mit A auch $f(A \times [0,1])$ kompakt ist, gibt es ein $c \in \mathbb{R}$ mit $M_A = f(A \times [0,1]) \subset [-c,c] \times [0,1]$. Damit ist aber kein Punkt der Form (x,t) mit $t \in \{0,1\}$ und $x \notin [-c,c]$ im Rand von M_A .

Damit liegt ∂M_A also in $f(\partial A \times (0,1)) \cup ([-c,c] \times \{0,1\})$. Diese Menge ist aber eine Nullmenge: Da A messbar ist, ist ∂A eine Nullmenge. Genauso ist natürlich auch $\{0,1\}$ eine Nullmenge. Nach Aufgabe 3 (a) von Blatt 13 sind damit auch $A \times (0,1)$ und $[-c,c] \times \{0,1\}$ Nullmengen. Da f stetig differenzierbar ist, ist damit nach Satz 30.2 auch $f(\partial A \times (0,1))$ eine Nullmenge, und damit auch die Vereinigung $f(\partial A \times (0,1)) \cup ([-c,c] \times \{0,1\})$. Also ist ∂M_A eine Nullmenge, d. h. M_A ist messbar.

(c) Wir berechnen das Integral $\int_{M_A} 1 \, dx$ mit dem Transformationssatz. Beachte zuerst, dass die Menge $M' := M_A \setminus ([-c,c] \times \{0,1\})$ als Differenz messbarer Mengen messbar ist. Da die zweite Menge außerdem eine Nullmenge ist, genügt es, das Volumen von M' zu bestimmen. Es sei dazu $D \subset \mathbb{R} \times (0,1)$ groß genug, um M' zu enthalten. Da f aus (b) eingeschränkt auf D ein Diffeomorphismus (mit Zielbereich D') ist, und $1_{M'}$ integrierbar ist wegen der Messbarkeit von

4

M', gilt nach dem Transformationssatz, dass

$$\begin{aligned} \operatorname{vol}(M') &= \int_D 1_{M'}(x,t) \, d(x,t) = \int_{D'} 1_{M'}((1-t^2)x,t)(1-t^2) \, d(x,t) \\ &= \int_{D'} 1_{A \times (0,1)}(x,t)(1-t^2) \, d(x,t) = \int_{A \times [0,1]} (1-t^2) \, d(x,t) = \frac{2}{3} \operatorname{vol}(A). \end{aligned}$$