Grundlagen der Mathematik 2 – Blatt 10

Abgabe: Montag, 8. Juli

- (1) (a) Bestimme alle lokalen Minima und Maxima der Funktion $f: \mathbb{R}^2 \to \mathbb{R}, x \mapsto x_1^3 + x_2^3 + 3x_1x_2$. Gib zusätzlich für jedes solche Extremum das zweite Taylor-Polynom mit diesem Entwicklungspunkt an.
 - (b) Zeige, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $x \mapsto (x_2 x_1^2)(x_2 2x_1^2)$ keine lokalen Extrema hat, dass die Einschränkung von f auf jede Gerade durch den Ursprung aber ein lokales Minimum in 0 besitzt.
- (2) (a) Es sei $f: \mathbb{R}^n \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion, für die die Hesse-Matrix an jedem Punkt positiv definit ist. Zeige, dass f höchstens ein lokales Extremum besitzt.
 - (b) Es seien $D \subset \mathbb{R}^n$ eine offene euklidische Kugel mit Mittelpunkt a und $f: D \to \mathbb{R}$ eine r-mal stetig differenzierbare Funktion. Zeige, dass es dann eine Funktion $\varphi: D \to \mathbb{R}$ gibt mit

$$f(x) = T_{f,a}^r(x) + \varphi(x)$$
 für alle $x \in D$

und

$$\lim_{x \to a} \frac{\varphi(x)}{\|x - a\|^r} = 0.$$

(3) (a) Überprüfe, ob die Abbildung $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, X \mapsto X^2$ an den Punkten (A, f(A)) bzw. (B, f(B)) mit

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

lokal umkehrbar ist. Ist das Bild von f eine Umgebung der Einheitsmatrix $E \in \mathbb{R}^{2 \times 2}$?

- (b) Es seien $D \subset \mathbb{R}^n$ eine offene Menge und $f \colon D \to \mathbb{R}^n$ eine stetig differenzierbare Funktion, so dass f'(x) für jedes $x \in D$ invertierbar ist.
 - Zeige, dass die Funktion $g: D \to \mathbb{R}, x \mapsto ||f(x)||$ für keine Wahl der verwendeten Norm ein globales Maximum besitzt.
- (4) Es seien $A \in \mathbb{K}^{n \times n}$ und $v \in \mathbb{K}^n$. Man zeige:
 - (a) Der Grenzwert $e^A := \sum_{k=0}^{\infty} \frac{A^k}{k!}$ existiert in $\mathbb{K}^{n \times n}$.
 - (b) Die Funktion $f: \mathbb{K} \to \mathbb{K}^n$, $t \mapsto e^{At}v$ ist differenzierbar mit Ableitung $f'(t) = A e^{At}v$. Insbesondere ist f damit also eine Lösung der Differentialgleichung f' = Af mit der Anfangsbedingung f(0) = v.

(Hinweis: Ihr dürft ohne Beweis benutzen, dass diese Exponentialfunktion für kommutierende Matrizen die übliche Funktionalgleichung erfüllt, also insbesondere dass $e^{At} = e^{A(t-t_0)}e^{At_0}$ gilt. Dies zeigt man genauso wie im eindimensionalen Fall, indem man das Cauchy-Produkt von Reihen in \mathbb{K} auf Reihen von Matrizen verallgemeinert.)