## 1. Moduli spaces of rational curves

1.1. Set-theoretic description of the smooth case. We have motivated in the introduction that our main goal will be the study of moduli spaces of curves in varieties. For simplicity let us first drop the variety from the picture and study just moduli spaces of curves. On the other hand we have to make the picture slightly more complicated by adding marked points to the curves. These are just distinguished points on the curves that will later become the points where "the specified conditions happen", e.g. the points of intersections with given subvarieties, the singular points, and so on.

Throughout these notes we will work over the field of complex numbers; all schemes and morphisms are assumed to be over $\mathbb{C}$ without further notice. A curve will always be reduced, connected, and projective (but not necessarily smooth or irreducible) unless stated otherwise.

Definition 1.1.1. Let $n \geq 0$ be an integer. A smooth $n$-pointed curve is a tuple $C=$ $\left(C, x_{1}, \ldots, x_{n}\right)$, where $C$ is a smooth curve and the $x_{i}$ are distinct points on $C$. The points $x_{i}$ are called the marked points of $C$. The genus of $\mathcal{C}$ is defined to be the genus of $C$. A smooth $n$-pointed curve is said to be rational (resp. elliptic) if its genus is 0 (resp. 1).

A morphism $\left(C, x_{1}, \ldots, x_{n}\right) \rightarrow\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ of smooth $n$-pointed curves is a morphism $f: C \rightarrow C^{\prime}$ such that $f\left(x_{i}\right)=x_{i}^{\prime}$ for all $i$. For any $g \geq 0$ the set of all smooth $n$-pointed curves of genus $g$ modulo isomorphism is denoted $M_{g, n}$. It will be called the moduli space of smooth $n$-pointed curves of genus $g$.

In this first section we will mainly be concerned with rational curves. So let us figure out first what smooth rational curves look like.

Lemma 1.1.2. Let $C$ be a smooth curve, and let $X$ be a projective variety. Assume that we are given a non-empty open subset $U \subset C$ and a morphism $f: U \rightarrow X$. Then $f$ extends uniquely to a morphism $\tilde{f}: C \rightarrow X$.

Proof. Let $f: U \rightarrow X$ be a morphism. As $X$ is assumed to be projective we may replace $X$ by some $\mathbb{P}^{N}$. By [G] lemma 7.5 .14 the morphism $f: U \rightarrow \mathbb{P}^{N}$ is then given by $f(x)=$ $\left(s_{0}(x): \cdots: s_{N}(x)\right)$, where the $s_{i}$ are global sections of some line bundle $\mathcal{L}$ on $U$.

Now let $P \in C \backslash U$ be a point. As the question is local around $P$ we can assume that $\mathcal{L}$ is trivial, i.e. that the $s_{i}$ are just regular functions on $U$ and thus rational functions on $U \cup\{P\}$. For all $i$ let $m_{i} \in \mathbb{Z}$ be the order of $s_{i}$ at $P$. Denote the minimum of all $m_{i}$ by $m$. By possibly shrinking $U$ again we can assume by [G] lemma 7.5.6 that there is a regular function $\varphi_{P}$ on $U$ that vanishes at $P$ with multiplicity 1 and has no further zeros or poles on $U$. Then $f$ can be rewritten as

$$
f(x)=\left(\frac{s_{0}(x)}{\varphi_{P}(x)^{m}}: \cdots: \frac{s_{N}(x)}{\varphi_{P}(x)^{m}}\right) .
$$

But by the choice of $m$ all entries are now regular at $P$, and at least one of them is non-zero. So $f$ has a unique extension to $P$.

Corollary 1.1.3. Let $C$ and $C^{\prime}$ be smooth curves. The following are equivalent:
(i) $C \cong C^{\prime}$.
(ii) $C$ and $C^{\prime}$ are birational, i. e. they have isomorphic non-empty open subsets.
(iii) The fields of rational functions $K(C)$ and $K\left(C^{\prime}\right)$ are isomorphic.

Proof. (i) $\Rightarrow$ (ii) is trivial.
(ii) $\Rightarrow$ (i): Let $U \subset C$ and $U^{\prime} \subset C^{\prime}$ be isomorphic non-empty open subsets. The isomorphism $f: U \rightarrow U^{\prime}$ extends to a morphism $\tilde{f}: C \rightarrow C^{\prime}$ by lemma 1.1.2. In the same way the inverse $f^{-1}: U^{\prime} \rightarrow U$ extends to a morphism $\widetilde{f^{-1}}: C^{\prime} \rightarrow C$. These two morphisms must be
inverse to each other since $\tilde{f} \circ \widetilde{f^{-1}}$ and $\widetilde{f^{-1}} \circ \tilde{f}$ are the identity on a non-empty open subset and hence on the whole curve.
(ii) $\Rightarrow$ (iii) is clear as $K(C)=K(U)$ for any non-empty open subset $U \subset C$ by [G] exercise 2.6.9 (iv).
(iii) $\Rightarrow$ (ii): Let $U \subset C$ be an affine open subset, and let $f_{1}, \ldots, f_{k} \in A(U)$ be generators of its coordinate ring. As $A(U) \subset K(C)=K\left(C^{\prime}\right)$ the $f_{i}$ are rational functions on $C^{\prime}$. Hence we can pick an open subset $U^{\prime} \subset C^{\prime}$ on which the $f_{i}$ are regular. We are thus getting a $\mathbb{C}$-algebra homomorphism $A(U) \rightarrow A\left(U^{\prime}\right)$ that corresponds to a morphism $U^{\prime} \rightarrow U$.

We can now apply the same construction to $U^{\prime}$ to arrive at a morphism $V \rightarrow U^{\prime}$ for some non-empty open subset $V \subset C$. By construction the two maps are inverse to each other where defined (the two $\mathbb{C}$-algebra homomorphisms are just restrictions of the identity $K(C)=K\left(C^{\prime}\right)$ after all). So $C$ and $C^{\prime}$ are birational.

Remark 1.1.4. The equivalence (ii) $\Leftrightarrow$ (iii) of corollary 1.1.3 works in fact for varieties of any dimension (with the same proof that we have given). Only the equivalence (i) $\Leftrightarrow$ (ii) is special to smooth curves (with blow-ups as the standard counterexample).

Corollary 1.1.5. Any smooth rational curve is isomorphic to $\mathbb{P}^{1}$.
Proof. Let $C$ be a smooth curve of genus 0 . Pick a point $P \in C$. By the Riemann-Roch theorem [G] 7.7.3 we have

$$
h^{0}\left(O_{C}(P)\right)-h^{0}\left(\omega_{C} \otimes O_{C}(-P)\right)=1+1-0=2
$$

But the line bundle $\omega_{C} \otimes O_{C}(-P)$ does not have global sections since its degree is -3 by [G] corollary 7.6.6. So there are two linearly independent sections $s_{0}, s_{1}$ of $O_{C}(P)$. They define a rational map $\left(s_{0}: s_{1}\right): C \rightarrow \mathbb{P}^{1}$ that must in fact be a morphism by lemma 1.1.2. The degree of this morphism is $\operatorname{deg} O_{C}(P)=1$, so $\left[K(C): K\left(\mathbb{P}^{1}\right)\right]$ is a field extension of degree 1 by [G] proposition 9.2.8. Hence $K(C) \cong K\left(\mathbb{P}^{1}\right)$. The statement of the corollary now follows from the equivalence (i) $\Leftrightarrow$ (iii) of corollary 1.1.3.

Remark 1.1.6. The name rational curve for a curve of genus 0 actually comes from the above corollaries. In general, a variety is called rational if it is birational to some projective space (hence in the case of curves to $\mathbb{P}^{1}$ ). By corollary 1.1 .5 every smooth curve of genus 0 is isomorphic (hence birational) to $\mathbb{P}^{1}$. On the other hand, every smooth curve that is birational to $\mathbb{P}^{1}$ is in fact isomorphic to $\mathbb{P}^{1}$ by corollary 1.1.3, hence has genus 0 .

We have just seen that every smooth rational curve $C$ admits an isomorphism to $\mathbb{P}^{1}$. This isomorphism is however not unique. In fact, we will see in the following lemma that we can require in addition that three marked points of $C$ are mapped to some given points in $\mathbb{P}^{1}$.
Lemma 1.1.7. Let $x_{1}, x_{2}, x_{3}$ and $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ be two sets of three distinct points in $\mathbb{P}^{1}$. Then there is a unique isomorphism $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $f\left(x_{i}\right)=x_{i}^{\prime}$ for $i=1,2,3$.
Proof. First of all note that any isomorphism $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is of the form $f(s: t)=(a s+b t$ : $c s+d t$ ) for some $a, b, c, d$. Passing to an affine coordinate $x=\frac{s}{t}$ on $\mathbb{P}^{1}$ (that is allowed to take on the value $\infty$ ) we can thus write the isomorphism $f$ as

$$
f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, \quad x \mapsto \frac{a x+b}{c x+d}
$$

For simplicity let us first assume that the three image points are $x_{1}^{\prime}=0, x_{2}^{\prime}=1, x_{3}^{\prime}=\infty$. Then the conditions $f\left(x_{i}\right)=x_{i}^{\prime}$ mean that
(i) $f\left(x_{1}\right)=0 \Rightarrow a x_{1}+b=0 \Rightarrow b=-a x_{1}$;
(ii) $f\left(x_{3}\right)=\infty \Rightarrow c x_{3}+d=0 \Rightarrow d=-c x_{3}$;
(iii) $f\left(x_{2}\right)=1 \Rightarrow a x_{2}+b=c x_{2}+d$, so by (i) and (ii) $a\left(x_{2}-x_{1}\right)=c\left(x_{2}-x_{3}\right)$.

As $x_{2} \neq x_{1}$ and $x_{2} \neq x_{3}$ equation (iii) fixes $a$ and $c$ uniquely up to a common scalar. Equations (i) and (ii) then fix $b$ and $d$ as well. So altogether the above equations fix $a, b, c, d$ up to a common scalar and hence $f$ uniquely. It is given by

$$
f(x)=\frac{x-x_{1}}{x-x_{3}} \cdot \frac{x_{2}-x_{3}}{x_{2}-x_{1}}=: c\left(x ; x_{1}, x_{2}, x_{3}\right) .
$$

This function is commonly called the cross ratio. It is the unique isomorphism of $\mathbb{P}^{1}$ that takes the three points $x_{1}, x_{2}, x_{3}$ to $0,1, \infty$, respectively.

In the general case when $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ are also arbitrary distinct given points an isomorphism of the required type is obviously given by $c^{-1}\left(\cdot ; x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \circ c\left(\cdot ; x_{1}, x_{2}, x_{3}\right)$. It is unique since otherwise we could compose two different isomorphisms with $c\left(\cdot ; x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ to get two different isomorphisms that map $x_{1}, x_{2}, x_{3}$ to $0,1, \infty$, respectively, in contradiction to our calculation above.

## Corollary 1.1.8.

(i) If $n \leq 3$ then any two smooth rational n-pointed curves are isomorphic. In particular, $M_{0, n}$ is then just a single point.
(ii) If $n \geq 3$, and $\mathcal{C}$ and $\mathcal{C}^{\prime}$ are two smooth rational n-pointed curves that are isomorphic, then the isomorphism between them is unique.
In particular, a smooth rational n-pointed curve has trivial automorphism group if $n \geq 3$ and infinite automorphism group if $n<3$.

Proof. (i) follows from corollary 1.1.5 and the existence part of lemma 1.1.7. (ii) follows from the uniqueness part of lemma 1.1.7.
1.2. A preliminary discussion of moduli functors. So far we have only considered the moduli spaces $M_{0, n}$ as sets. It is clear that we have to give them some further structure if we want to do any useful geometry on them. The final goal will be to give them the structure of a (smooth) variety. We will do this in this section.

The main additional structure of a variety compared to a mere set of points is that it makes sense to talk about morphisms from or to $M_{0, n}$. For example, a morphism from a scheme $S$ to $M_{0, n}$ can be thought of as a continuously varying assignment of a smooth $n$ pointed rational curve to every point in $S$. We will usually call such an assignment a family of smooth $n$-pointed rational curves over $S$.

To study such families of smooth $n$-pointed rational curves we have to define first of all what exactly we mean by this - recall that so far we have only defined what a single smooth $n$-pointed rational curve is. Let us start by setting up a language that can be used to describe objects varying "continuously" with the points of a base scheme.

Definition 1.2.1. A (moduli) functor $F$ is given by the following data:
(i) for every scheme $S$ a set $F(S)$;
(ii) for every morphism $f: S \rightarrow S^{\prime}$ of schemes a set-theoretic pull-back map $f^{*}$ : $F\left(S^{\prime}\right) \rightarrow F(S)$.
These data must be compatible with compositions, i. e. if $f: S \rightarrow S^{\prime}$ and $g: S^{\prime} \rightarrow S^{\prime \prime}$ are two morphisms of schemes then $(g \circ f)^{*}=f^{*} \circ g^{*}: F\left(S^{\prime \prime}\right) \rightarrow F(S)$ as set-theoretic maps.

Remark 1.2.2. We should think of $F(S)$ as the set of all families of objects (e.g. smooth n-pointed rational curves, see example 1.2.4) parametrized by the base scheme $S$. The pullback maps $f^{*}: F\left(S^{\prime}\right) \rightarrow F(S)$ associated to a morphism $f: S \rightarrow S^{\prime}$ of schemes also have a geometric interpretation: if we are given a family in $F\left(S^{\prime}\right)$, i. e. an object for every point in $S^{\prime}$, then the pull-back of this family in $F(S)$ is simply the family over $S$ that assigns to every point $P \in S$ the given object over $f(P) \in S^{\prime}$.

Remark 1.2.3. There is a branch of mathematics called category theory that deals with the general concept of objects and morphisms between them. To define a category one simply has to say what the objects and morphisms of the category should be. Examples for categories are:
(i) the category of schemes (objects: schemes, morphisms: morphisms of schemes);
(ii) the category of sets (objects: sets, morphisms: set-theoretic maps);
(iii) the category of vector spaces (objects: vector spaces, morphisms: homomorphisms);
(iv) the category of topological spaces (objects: topological spaces, morphisms: continuous maps).
Maps from one category to another are then called functors. In this language, our definition 1.2.1 above defines functors from the category of schemes to the category of sets. We will just call them functors for short as we will not have need for functors between other categories.

Example 1.2.4. As an example let us set up the moduli functor for $M_{0, n}$. By abuse of notation we will denote this functor by $M_{0, n}$ as well.
(i) For any base scheme $S$ we set

$$
M_{0, n}(S)=\left\{\begin{array}{l}
\left(C, x_{1}, \ldots, x_{n}\right) ; C \rightarrow S \text { is a } \mathbb{P}^{1} \text {-bundle with } \\
\text { disjoint sections } x_{1}, \ldots, x_{n}: S \rightarrow C
\end{array}\right\} / \text { isomorphisms. }
$$

(ii) For any morphism $f: S \rightarrow S^{\prime}$ of schemes and any $\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in M_{0, n}\left(S^{\prime}\right)$ we define the pull-back $f^{*}\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ to be $\left(C, x_{1}, \ldots, x_{n}\right) \in M_{0, n}(S)$, where $C=C^{\prime} \times{ }_{S^{\prime}} S$ is simply the pull-back $\mathbb{P}^{1}$-bundle and $x_{i}=f^{*} x_{i}^{\prime}$ are the pulled-back sections of $C$ over $S$.

If $\left(C, x_{1}, \ldots, x_{n}\right) \in M_{0, n}(S)$ note that the fiber of $C$ over any point $P \in S$ together with the points $x_{1}(P), \ldots, x_{n}(P)$ forms a smooth $n$-pointed rational curve. Moreover, as every smooth rational curve is isomorphic to $\mathbb{P}^{1}$ by corollary 1.1.5 it is clear that our definition captures precisely the idea of a "continuously varying family" of $n$-pointed smooth rational curves.


Example 1.2.5. For any scheme $X$ there is an associated functor (that we will also denote by $X$ ) given by:
(i) For any base scheme $S$ we let $X(S)$ be the set of morphisms from $S$ to $X$.
(ii) For any morphism $f: S \rightarrow S^{\prime}$ of schemes and any $\left(S^{\prime} \rightarrow X\right) \in X\left(S^{\prime}\right)$ the pull-back $f^{*}\left(S^{\prime} \rightarrow X\right) \in X(S)$ is simply defined to be the composite morphism $S \xrightarrow{f} S^{\prime} \rightarrow X$.

This functor is usually called the functor of points of $X$. The name can be explained by the observation that a family over $S$, i. e. an element of $X(S)$, is given by a morphism $S \rightarrow X$,
i. e. by an assignment of a point of $X$ to any point of $S$. So we can think of $X$ as a "moduli space that parametrizes points in $X^{\prime \prime}$.
Definition 1.2.6. A functor $F$ is called representable by a scheme $X$ if it agrees with the functor of points of $X$. In this case we say that $X$ is a moduli space for $F$. In other words, $F$ is representable by $X$ if and only if there is a one-to-one correspondence between families in $F$ over a base scheme $S$ and morphisms $S \rightarrow X$.

Remark 1.2.7. If a functor is representable by a scheme then the scheme representing it is unique (up to canonical isomorphism). In fact, assume that $X$ and $Y$ are schemes whose functors of points are the same, i. e. $X(S)=Y(S)$ for any scheme $S$, and the pull-back maps $X\left(S^{\prime}\right) \rightarrow X(S)$ and $Y\left(S^{\prime}\right) \rightarrow Y(S)$ for any $S \rightarrow S^{\prime}$ agree under this identification. We want to show that $X$ and $Y$ are isomorphic as schemes.

As $X(X)=Y(X)$ the identity morphism $\mathrm{id}_{X}: X \rightarrow X$ corresponds to a morphism $f:$ $X \rightarrow Y$. In the same way the identity $\operatorname{id}_{Y}: Y \rightarrow Y$ gives rise to a morphism $g: Y \rightarrow X$ by the equality $Y(Y)=X(Y)$. Now by the equality of the pull-back $g^{*}$ we know that the diagram

is commutative. But the identity $\operatorname{id}_{X} \in X(X)$ is mapped to $\mathrm{id}_{X} \mapsto g \mapsto \mathrm{id}_{Y} \in Y(Y)$ by the $\operatorname{map} X(X) \rightarrow X(Y) \rightarrow Y(Y)$, and to $\mathrm{id}_{X} \mapsto f \mapsto f \circ g \in Y(Y)$ by the map $X(X) \rightarrow Y(X) \rightarrow$ $Y(Y)$. So $f \circ g=\mathrm{id}_{Y}$. In the same way we see that $g \circ f=\mathrm{id}_{X}$. Hence $X$ and $Y$ are canonically isomorphic.

If a functor $F$ is representable by a scheme $X$ we will therefore say that $X$ is the moduli space for $F$. By abuse of notation we will then also often say that the functor "is" a scheme and denote both the functor and the scheme by the same letter.

Example 1.2.8. Let $0 \leq k \leq n$ be integers. The Grassmannian $G(k, n)$ of $k$-dimensional linear subspaces of $\mathbb{P}^{n}$ is defined to be the following moduli functor: to any base scheme $S$ we associate the set of families of $k$-dimensional linear subspaces in a fixed $\mathbb{P}^{n}$ parametrized by $S$ :

$$
G(k, n)(S)=\left\{\begin{array}{l}
\pi: V \rightarrow S ; V \text { is a } \mathbb{P}^{k} \text {-subbundle of } \\
\text { the trivial bundle } S \times \mathbb{P}^{n} \text { over } S
\end{array}\right\} / \text { isomorphisms. }
$$

The pull-back maps for the functor are simply defined by pulling back the projective bundle.

It can then be shown that the functor $G(k, n)$ is (representable by) a projective variety. This variety can be constructed in several ways, e. g. by suitable gluing of affine spaces or by finding an explicit embedding in a projective space. Note however that defining the Grassmannian as a functor is much simpler than defining it as a variety.

Remark 1.2.9. Let us say a few words about the philosophy behind functors and their moduli spaces. Note that a functor is a very general concept; it does not have much structure. Consequently, it is usually very easy to set up a functor for a given moduli problem (see e. g. example 1.2.8). The downside is of course that one cannot do much useful geometry with a functor alone.

It is a remarkable fact that this situation changes drastically if we know that a functor $F$ is representable by a scheme $X$. Even if we do not know how this scheme $X$ is constructed explicitly we can deduce almost any important information about it just from the functor $F$ :
(i) The points of $X$ are simply $F(\mathrm{pt})$ by definition.
(ii) Thinking of a curve in $X$ as the image of a morphism $V \rightarrow X$ from a curve $V$ we see that we can define such a curve by an element of $F(V)$, i. e. by a family over a one-dimensional base. In the same way we can describe higher-dimensional subvarieties of $X$.
(iii) To find the intersection of two subvarieties of $X$ (given by two families in $F$ as in (ii)) one just has to figure out which objects occur in both families.
(iv) By [G] exercise 5.6 .12 a tangent vector in $X$ can be thought of as a morphism $D \rightarrow X$, where $D=\operatorname{Spec} \mathbb{C}[x] /\left(x^{2}\right)$ is the "double point". Hence tangent vectors in $X$ correspond to $F(D)$, i. e. to families over the double point.
(v) In particular, knowing the tangent spaces to $X$ allows to check whether $X$ is smooth, or whether given subvarieties of $X$ intersect transversally.
(vi) Recall that a scheme $X$ is called separated if and only if "it is a Hausdorff space in the classical topology", i. e. if and only if a morphism $V \rightarrow X$ is determined by its restriction to any dense open subset $U \subset V$. This translates into the language of functors by asking whether an extension of a family over $U$ to a family over $V$ is unique.
(vii) Assume that $X$ is a projective scheme. If $V$ is a smooth curve and $P \in V$ a point on $V$ then we have seen in lemma 1.1.2 that every morphism $f: V \backslash\{P\} \rightarrow X$ extends to a morphism $\tilde{f}: V \rightarrow X$. One can show that the following converse of this statement is true as well: if every such morphism $f$ has an extension $\tilde{f}$ then $X$ is proper (i. e. compact, see [G] section 9.2). So compactness of the scheme $X$ can be tested on the functor $F$ by checking whether any family over $V \backslash\{P\}$ (where $V$ is a smooth curve) has an extension to $V$.
The conclusion is that to do computations on the moduli space $X$ (e.g. intersection-theoretic calculations) it is often enough to know the functor $F$. Let us stress again however that we must know that a moduli space exists - there is e. g. nothing like intersection theory on a general functor.

Our main task is therefore to construct representable functors for the moduli problems that we want to study. In general this is not easy; in fact "most" functors that one could write down (even the ones that look reasonably well-behaved) are not representable. We will see an example of this in the next remark.
Remark 1.2.10. In example 1.2 .4 we have defined the functor $M_{0, n}$ by considering $\mathbb{P}^{1}$ bundles with $n$ sections modulo isomorphisms. What exactly do we mean by isomorphisms here? Note that there are two possible definitions that are both problematic:
(i) The most natural definition would be to say that two families $\left(C, x_{1}, \ldots, x_{n}\right)$, $\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in M_{0, n}(S)$ are isomorphic if and only if there is an isomorphism between the $\mathbb{P}^{1}$-bundles $C \cong C^{\prime}$ over $S$ that maps the sections $x_{i}$ to the sections $x_{i}^{\prime}$. To see why this causes problems consider the case $n=0$ and assume that we have two non-isomorphic $\mathbb{P}^{1}$-bundles $C$ and $C^{\prime}$ (i. e. two non-isomorphic families) over $S$. If the functor $M_{0,0}$ is representable by a scheme $X$ then by definition these two families must give rise to two different morphisms $S \rightarrow X$. But $X$ is just a point by corollary 1.1.8 (i). As there is only one morphism from $S$ to a point this is a contradiction. So the functor $M_{0,0}$ cannot be representable.
(ii) A possible way out of this problem would be to call two families $\left(C, x_{1}, \ldots, x_{n}\right)$, $\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in M_{0, n}(S)$ isomorphic if and only if all their fibers over $S$ are isomorphic as smooth $n$-pointed rational curves. With this definition the two nonisomorphic $\mathbb{P}^{1}$-bundles of (i) would be isomorphic families of the functor by definition, so we do not get a contradiction to representability. However, such a definition that uses the points of $S$ would not make much sense for non-reduced base schemes $S$. For example, if $S=\operatorname{Spec} \mathbb{C}[x] /\left(x^{2}\right)$ is the double point then we have seen in remark 1.2.9 (iv) that the points in $M_{0, n}(S)$ correspond to tangent
vectors in the moduli space. But if any two families over $S$ are called isomorphic when they agree on the geometric point of $S$ this would imply that any two tangent vectors at a given point of the moduli space are the same. As this is not possible unless the moduli space is just a point we see that in general this definition will not lead to a representable functor either.
As it is quite clear that definition (ii) does not make sense (for non-reduced base schemes) we will have to stick to definition (i). Note that the problems arise here because of the automorphisms of $\mathbb{P}^{1}$ : the existence of such automorphisms allows us to construct families that are not isomorphic although all their fibers are. (Recall that a $\mathbb{P}^{1}$-bundle is always locally trivial. On the overlaps these trivial bundles are glued by some automorphisms in the fibers. If there are no such automorphisms then the bundle must be globally trivial.) So to get representability we will have to require that the objects in question do not admit nontrivial automorphisms, i. e. by corollary 1.1 .8 that we have at least three marked points. So we will assume this from now on.

Actually we will have to consider moduli spaces for objects with non-trivial automorphisms later on in this course. We will be able to deal with that case too; it just turns out that the language of functors as introduced in definition 1.2.1 has to be modified for this to work. (This is why we have called this section a preliminary discussion of moduli functors.)

After all these remarks let us now finally show that the functor $M_{0, n}$ is representable.
Lemma 1.2.11. Let $n \geq 3$. Then the functor $M_{0, n}$ of smooth $n$-pointed rational curves is representable by the open subscheme of $\mathbb{A}^{n-3}$

$$
X=\left\{\left(x_{4}, \ldots, x_{n}\right) ; x_{i} \notin\{0,1\} \text { and } x_{i} \neq x_{j} \text { for } i, j=4, \ldots, n \text { with } i \neq j\right\}
$$

Proof. Let $S$ be any scheme. The bijection $M_{0, n}(S)=X(S)$ can be written down explicitly: in one direction we have

$$
\begin{aligned}
M_{0, n}(S) & \rightarrow X(S) \\
\left(C, x_{1}, \ldots, x_{n}\right) & \mapsto\left(c\left(x_{4} ; x_{1}, x_{2}, x_{3}\right), \ldots, c\left(x_{n} ; x_{1}, x_{2}, x_{3}\right)\right)
\end{aligned}
$$

where $c\left(\cdot ; x_{1}, x_{2}, x_{3}\right)$ denotes the cross ratio of the proof of lemma 1.1.7. Note that strictly speaking the $x_{i}$ are sections of a $\mathbb{P}^{1}$-bundle, but as the cross ratio function is invariant under automorphisms of $\mathbb{P}^{1}$ the number $c\left(\cdot ; x_{1}, x_{2}, x_{3}\right)$ is well-defined. The collection of the functions $c\left(x_{i} ; x_{1}, x_{2}, x_{3}\right): S \rightarrow \mathbb{P}^{\mathbf{1}} \backslash\{0,1, \infty\}$ therefore gives rise to a morphism $S \rightarrow X$.

In the other direction we simply have

$$
\begin{aligned}
X(S) & \rightarrow M_{0, n}(S) \\
\left(x_{4}, \ldots, x_{n}\right) & \mapsto\left(S \times \mathbb{P}^{1}, 0,1, \infty, x_{4}, \ldots, x_{n}\right)
\end{aligned}
$$

where the $x_{i}$ are functions from $S$ to $\mathbb{P}^{1}$.
It is clear that these two constructions are inverse to each other and that they are compatible with the pull-back maps along morphisms $S \rightarrow S^{\prime}$.
1.3. Construction of the moduli functor $\bar{M}_{0, n}$ of rational stable curves. We have just constructed the moduli spaces $M_{0, n}$ of smooth $n$-pointed rational curves (for $n \geq 3$ ) as open subsets of $\mathbb{A}^{n-3}$. For intersection theory we will need compact moduli spaces however. So we will have to find a suitable compactification of $M_{0, n}$.

The first naïve idea might be to simply take $\mathbb{P}^{n-3}$ as a compactification as it is the easiest compact space that contains $M_{0, n} \subset \mathbb{A}^{n-3}$ as a dense open subset. Recall from remark 1.2.9 however that we finally want to do our computations with the moduli functors and not directly with the moduli spaces. So it will not help us if we have a compactification of the moduli space that does not correspond to some functor of curves. Instead we will have to "compactify the functor", i. e. to extend the functor $M_{0, n}$ to some functor $\bar{M}_{0, n}$ that
contains $M_{0, n}$ (i. e. every family in $M_{0, n}$ is a family in $\bar{M}_{0, n}$ ) and that is representable by a compact moduli space.

If we look at the moduli functor $M_{0, n}$ it is easy to spot why its moduli space is not compact: we have required that the marked points be distinct, which is obviously an "open condition". In other words, if we write down a family in which one of the marked points approaches another then this family has no limit at the point where the two points would coincide. Hence the moduli space is not compact.

We may therefore try to solve our problem by simply allowing the marked points to coincide. It is clear that this modified moduli problem still defines a functor. We will see in the following example however that this functor would not be representable by a nice space.

Example 1.3.1. Consider the following two families in $M_{0,4}$ over the base $S=\mathbb{A}^{1} \backslash\{0,1\}$ :

$$
\mathcal{C}_{1}=\left(S \times \mathbb{P}^{1}, 0,1, \infty, t\right) \quad \text { and } \quad \mathcal{C}_{2}=\left(S \times \mathbb{P}^{1}, 0, \frac{1}{t}, \infty, 1\right)
$$

where $t \in \mathbb{A}^{1} \backslash\{0,1\}$ is the coordinate on $S$.


Note that these two families are isomorphic in $M_{0, n}$ since they have the same cross ratio $c(t ; 0,1, \infty)=c\left(1 ; 0, \frac{1}{t}, \infty\right)=t$. But if we now want to extend these families to families over $\mathbb{A}^{1}$ by allowing the marked points to coincide then the limits for $t=0$ would be different: in the family $\mathcal{C}_{1}$ the points $x_{1}$ and $x_{4}$ coincide, whereas in the family $\mathcal{C}_{2}$ the points $x_{2}$ and $x_{3}$ coincide. These two 4-pointed limit curves are certainly not isomorphic. By remark 1.2.9 (vi) this would mean that the moduli space could not be separated, which is certainly not desirable. So the idea of just allowing the marked points to coincide does not lead to a nice moduli functor.

Actually there would be more problems if we just allowed the marked points to coincide: as soon as fewer than 3 marked points are distinct the resulting curves would have nontrivial automorphisms again, and we would run into the same trouble as for $M_{0, n}$ in the case $n<3$ (see remark 1.2.10).

In the above picture it is easy to see how these problems can be avoided: if we blow up the point in $S \times \mathbb{P}^{1}$ where the two sections $x_{1}$ and $x_{4}$ (resp. $x_{2}$ and $x_{3}$ ) meet then the fiber over 0 becomes reducible with two components, both of which contain two of the marked points. As the fiber and the two sections run through the blown-up point with different tangent directions their strict transforms will meet the exceptional divisor in three different points. So the new picture looks as follows:


Note that the limit curves in the two families are actually isomorphic now by the $n=3$ case of corollary 1.1.8 (i). So we have avoided the trouble of a non-separated moduli space.

In summary the effect of the blow-up can be described as follows: when two marked points try to come together the curve sprouts off another smooth rational component (the exceptional divisor of the blow-up) that contains these two marked points. In fact this is the general idea how to compactify the moduli space $M_{0, n}$. So we will still require the marked points to be distinct, but the curves may have several irreducible components intersecting transversally. Let us now make the corresponding definition.

Definition 1.3.2. Let $C$ be a curve. A point $P \in C$ is called a node of $C$ if the tangent cone $C_{X, P}$ (see [G] remark 4.3.8) is a union of two reduced lines. Alternatively, in the classical topology $C$ is locally reducible around $P$ with two smooth components meeting transversally. The curve $C$ is called a nodal curve if all points of $C$ are either smooth points or nodes.

Let $n \geq 0$ be an integer. A pre-stable $n$-pointed curve is a tuple $\mathcal{C}=\left(C, x_{1}, \ldots, x_{n}\right)$, where $C$ is a nodal curve and the $x_{i}$ are distinct smooth points on $C$. As usual for singular curves, the genus of $C$ is defined to be $h^{1}\left(C, O_{C}\right)$. As in the smooth case a pre-stable $n$ pointed curve is said to be rational (resp. elliptic) if its genus is 0 (resp. 1). A morphism $\left(C, x_{1}, \ldots, x_{n}\right) \rightarrow\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ of pre-stable $n$-pointed curves is a morphism $f: C \rightarrow C^{\prime}$ such that $f\left(x_{i}\right)=x_{i}^{\prime}$ for all $i$.

A pre-stable $n$-pointed curve is called stable if its group of automorphisms is finite. For any $g \geq 0$ the set of all stable $n$-pointed curves of genus $g$ modulo isomorphism is denoted $\bar{M}_{g, n}$. It will be called the moduli space of stable $n$-pointed curves of genus $g$.

Remark 1.3.3. By [G] example 8.3.6 a nodal curve obtained by gluing $k$ smooth components of genera $g_{1}, \ldots, g_{k}$ in $p$ nodes has genus $g_{1}+\cdots+g_{k}+p+1-k$. Note that we must always have $p \geq k-1$ since the curve is connected and thus every new component must be glued to the rest of the curve in some node. So the genus of a nodal curve $C$ can be 0 only if all $g_{i}$ are zero and $p=k-1$. This means that $C$ is a tree of smooth rational curves, i. e.
(i) all components of $C$ are isomorphic to $\mathbb{P}^{1}$;
(ii) there are no "loops" in the graph of $C$, i. e. by separating the two branches of $C$ at any node the curve becomes disconnected.

As an example, the curve below on the left is a tree and thus has genus 0 , whereas the curve on the right has genus 2 (where all irreducible components are assumed to be isomorphic to $\mathbb{P}^{1}$ ).


Let us now investigate the "stability condition" on the automorphism groups of the curves.

Lemma 1.3.4. Let $\mathcal{C}=\left(C, x_{1}, \ldots, x_{n}\right)$ be a rational pre-stable $n$-pointed curve. The following are equivalent:
(i) $\mathcal{C}$ is stable, i.e. it has finite automorphism group.
(ii) $C$ has trivial automorphism group.
(iii) Every component of $C$ has at least 3 special points. Here a point of $C$ is called a special point if it is either a node or a marked point.

Proof. (ii) $\Rightarrow$ (i) is trivial. The implication (i) $\Rightarrow$ (iii) is obvious as well: assume that there is a component $C_{1}$ of $C$ with only $k<3$ special points. Then we can regard $C_{1}$ as a smooth $k$-pointed rational curve. This curve has infinitely many automorphisms by corollary 1.1.8. We can now extend these automorphisms of $C_{1}$ to automorphism of $C$ by the identity on $C \backslash C_{1}$.

It remains to be shown that (iii) implies (ii). We will do this by induction on the number of components of $C$. If $C$ is irreducible the statement is just that of corollary 1.1.8. Otherwise let $C_{1}$ be a component of $C$ that has only one node $P$ (there must be such a component since $C$ is a tree). This component must then have at least two marked points, say $x_{1}$ and $x_{2}$. By definition an automorphism of $\mathcal{C}$ must keep $x_{1}$ and $x_{2}$ fixed. In particular, any automorphism of $\mathcal{C}$ must map $C_{1}$ to $C_{1}$ and keep the three special points $P, x_{1}$, and $x_{2}$ on $C_{1}$ fixed. By corollary 1.1.8 the automorphism must then be the identity on $C_{1}$. We can now remove $C_{1}$ from $C$ and consider the remaining parts of the curve as a new pre-stable curve, where we add $P$ to the set of marked points. The lemma now follows by the induction hypothesis applied to the remaining parts of the curve.


Remark 1.3.5. For curves of genus $g>0$ all equivalences of lemma 1.3 .4 will be false. In particular there are curves of higher genus with finite but non-trivial automorphism group. We have defined a stable curve to be one with finite (and not trivial) automorphism group as this turns out to be the correct generalizaton for higher genus. Note however that we have seen in remark 1.2.10 that any non-trivial automorphism will lead to a non-representable functor in the way we have set it up so far. This is the main reason why we will restrict ourselves to the case of rational curves for a while.

Example 1.3.6. There are precisely three rational stable 4-pointed curves that are not smooth:


In the spirit of example 1.3.1 these three curves correspond to the cases when $x_{4}$ approaches $x_{1}, x_{2}$, and $x_{3}$, respectively, and therefore to the cross ratios 0,1 , and $\infty$. So we can think of $\bar{M}_{0,4}$ as $\bar{M}_{0,4} \cup\{0,1, \infty\}=\mathbb{P}^{1}$. In fact, $\bar{M}_{0,4}$ will just be $\mathbb{P}^{1}$ as a scheme (see proposition 1.3.15). To make this statement precise however we first have to define $\bar{M}_{0,4}$ as a functor, and then prove that this functor is representable by $\mathbb{P}^{1}$.

So let us generalize the definition of the moduli functor $M_{0, n}$ to stable curves. Recall that a family of smooth rational $n$-pointed curves over a base scheme $S$ was defined to be a tuple $\left(C, x_{1}, \ldots, x_{n}\right)$, where $C \rightarrow S$ is a $\mathbb{P}^{1}$-bundle and the $x_{i}$ are disjoint sections. We can think of the $\mathbb{P}^{1}$-bundle $C$ as a continuously varying family of curves that are isomorphic to $\mathbb{P}^{1}$. Now we need to generalize this setup and allow the curves in the fibers of the morphism $C \rightarrow S$ to be nodal. We will see in the following example however that this requirement on the fibers is not enough.

Example 1.3.7. Let $C$ be the union of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\mathbb{P}^{1}$ glued at the points $(0,0) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $0 \in \mathbb{P}^{1}$. Consider the morphism $C \rightarrow S=\mathbb{P}^{1}$ that projects the component $\mathbb{P}^{1} \times \mathbb{P}^{1}$ onto the first factor and contracts the component $\mathbb{P}^{1}$ to $0 \in \mathbb{P}^{1}$.


Although all fibers of this morphisms are nodal curves we can certainly not say that the fiber over $0 \in S$ is the "limit" of the nearby fibers, i. e. that we have a continuously varying family of nodal curves: the correct limit would of course be obtained by leaving out the additional component $\mathbb{P}^{1}$ in $C$.

So we need to define a property of morphisms that ensures that the curves over any point are in fact the "limits" of the nearby fibers, or in other words that there are no components of $C$ that lie only in special fibers. This property of morphisms is called flatness. There is a geometric and an algebraic way to define it. We will give both definitions and explain briefly why the two notions are the same.

Definition 1.3.8. Let $f: X \rightarrow S$ be a morphism of schemes, and assume that $S$ is reduced.
(i) If $S$ is a smooth curve then $f$ is called (geometrically) flat if no component of $X$ is mapped to a single point in $S$. Here by component we mean an irreducible or embedded component, i.e. (in the affine picture) the subvarieties of $X$ occurring in the primary decomposition of the ring that defines $X$.
(ii) For general $S$ we say that $f$ is (geometrically) flat if it satisfies the condition of (i) after pull-back to any smooth curve, i. e. if for every morphism $C \rightarrow S$ from a
smooth curve $C$ to $S$ the induced morphism $X \times{ }_{S} C \rightarrow C$ is (geometrically) flat as in (i).

## Example 1.3.9.

(i) The family of example 1.3 .1 obtained by blowing up a point in the trivial family $S \times \mathbb{P}^{1} \rightarrow S$ is geometrically flat by part (i) of the definition since the blow-up of $S \times \mathbb{P}^{1}$ is irreducible and maps surjectively onto the base $S$.
(ii) The morphism of example 1.3.7 is obviously not flat.
(iii) The blow-up morphism $\pi: \tilde{\mathbb{P}}^{2} \rightarrow \mathbb{P}^{2}$ of a point $P$ in the plane is not flat: if $L \rightarrow \mathbb{P}^{2}$ is the inclusion morphism of a line in $\mathbb{P}^{2}$ through $P$ then the pull-back of $\pi$ to $L$ has the exceptional divisor as an irreducible component that is mapped to $P$.

Note that the geometric definition of flatness above is only applicable to morphisms to a reduced scheme. The algebraic definition that we give now does not have this disadvantage. It is however not very intuitive and in general difficult to check explicitly in concrete examples.

Definition 1.3.10. Let $R$ be a ring. An $R$-module $M$ is called flat if for every injective $R$-module homomorphism $M_{1} \rightarrow M_{2}$ the induced homomorphism $M_{1} \otimes_{R} M \rightarrow M_{2} \otimes_{R} M$ is also injective. In the same way we call a sheaf of $O_{S}$-modules $\mathcal{F}$ on a scheme $S$ flat if for every injective morphism $\mathcal{F}_{1} \rightarrow \mathcal{F}_{2}$ of sheaves of $O_{S}$-modules the induced morphism $\mathcal{F}_{1} \otimes \mathcal{F} \rightarrow \mathcal{F}_{2} \otimes \mathcal{F}$ is also injective.

A morphism $f: X \rightarrow S$ of schemes is called (algebraically) flat if $f_{*} O_{X}$ is a flat sheaf of $O_{S}$-modules.

Remark 1.3.11. By [G] lemma 7.2 .7 (ii) algebraic flatness can be checked on affine open subsets. More precisely, if $X=\operatorname{Spec} M$ and $S=\operatorname{Spec} R$ are affine (and thus $M$ has the structure of an $R$-module by the morphism $f$ ) then $f$ is algebraically flat if and only if $M$ is a flat $R$-module. In the general case it is sufficient to cover $X$ and $S$ by such affine open subsets and check flatness on them.

Remark 1.3.12. One can show that to check that an $R$-module $M$ is flat it suffices to consider injective $R$-module homomorphisms of the form $\mathfrak{p} \rightarrow R$ where $\mathfrak{p}$ is a prime ideal of $R$, i. e. to prove that $\mathfrak{p} \otimes_{R} M \rightarrow M$ is injective for every prime ideal $\mathfrak{p} \subset R$. Let us briefly sketch the proof of this statement even if it uses some facts from commutative algebra that we have not developed here. Consider the exact sequence

$$
0 \rightarrow \mathfrak{p} \rightarrow R \rightarrow R / \mathfrak{p} \rightarrow 0
$$

for some prime ideal $\mathfrak{p}$ of $R$. If we tensor this exact sequence with $M$ the resulting sequence

$$
\mathfrak{p} \otimes_{R} M \rightarrow R \otimes_{R} M \rightarrow R / \mathfrak{p} \otimes_{R} M \rightarrow 0
$$

is in general only "right exact", i. e. the first homomorphism need not be injective. Similarly to the theory of cohomology of sheaves there is a natural way to extend this sequence to the left to a long exact sequence

$$
\cdots \rightarrow \operatorname{Tor}^{2}(R / \mathfrak{p}, M) \rightarrow \operatorname{Tor}^{1}(\mathfrak{p}, M) \rightarrow \operatorname{Tor}^{1}(R, M) \rightarrow \operatorname{Tor}^{1}(R / \mathfrak{p}, M) \rightarrow \mathfrak{p} \otimes_{R} M \rightarrow R \otimes_{R} M \rightarrow R / \mathfrak{p} \otimes_{R} M \rightarrow 0,
$$

where the $R$-modules $\operatorname{Tor}^{i}(\cdot, M)$ are the so-called torsion modules. Torsion modules always vanish if one of their entries is the base ring, so we get an exact sequence

$$
0 \rightarrow \operatorname{Tor}^{1}(R / \mathfrak{p}, M) \rightarrow \mathfrak{p} \otimes_{R} M \rightarrow R \otimes_{R} M \rightarrow R / \mathfrak{p} \otimes_{R} M \rightarrow 0
$$

So if we know that $\mathfrak{p} \otimes_{R} M \rightarrow M$ is injective then this means that $\operatorname{Tor}^{1}(R / \mathfrak{p}, M)=0$.
Now if $M_{1} \rightarrow M_{2}$ is any injective $R$-module homomorphism then one can show that there is always a so-called composition series (see [G] remark 9.1.1)

$$
M_{1}=N_{0} \subset N_{1} \subset \cdots \subset N_{k}=M_{2}
$$

where each quotient is of the form $N_{i} / N_{i-1}=R / \mathfrak{p}_{i}$ for some prime ideal $\mathfrak{p}_{i}$. Tensoring the exact sequence

$$
0 \rightarrow N_{i-1} \rightarrow N_{i} \rightarrow R / \mathfrak{p}_{i} \rightarrow 0
$$

with $M$ we get an exact sequence

$$
\cdots \rightarrow \operatorname{Tor}^{1}\left(R / \mathfrak{p}_{i}, M\right) \rightarrow N_{i-1} \otimes_{R} M \rightarrow N_{i} \otimes_{R} M \rightarrow R / \mathfrak{p}_{i} \otimes_{R} M \rightarrow 0
$$

But we know that $\operatorname{Tor}^{1}\left(R / \mathfrak{p}_{i}, M\right)=0$, hence it follows that $N_{i-1} \otimes_{R} M \rightarrow N_{i} \otimes_{R} M$ is injective for all $i$. So $M_{1} \otimes_{R} M \rightarrow M_{2} \otimes_{R} M$ is injective as well, i. e. $M$ is a flat $R$-module.

Proposition 1.3.13. Let $f: X \rightarrow S$ be a morphism of schemes, and assume that $S$ is reduced. Then $f$ is geometrically flat if and only if it is algebraically flat.

Sketch proof. We will assume for simplicity that $S$ is a smooth curve and leave the general case as an exercise. We will also assume for simplicity that $X$ is reduced and thus all components of $X$ in the sense of definition 1.3.8 are irreducible components.

As flatness is a local property we can assume that both $X=\operatorname{Spec} M$ and $S=\operatorname{Spec} R$ are affine. The morphism $f$ then gives $M$ the structure of an $R$-module.

First let us assume that $f$ is algebraically but not geometrically flat; we want to arrive at a contradiction. As $f$ is not geometrically flat there is a component $Y$ of $X$ that maps to a point $P \in S$. Consider the injective $R$-module homomorphism $I(P) \rightarrow R$ where $I(P)$ denotes the ideal of $P$; we will show that the induced homomorphism $I(P) \otimes_{R} M \rightarrow R \otimes_{R} M=M$ is not injective, in contradiction to algebraic flatness.

To do so let $\varphi_{P} \in I(P)$ be a function on $S$ that vanishes at $P$ with multiplicity 1 (see [G] lemma 7.5.6), and let $\psi \in M$ be a non-zero function on $X$ that vanishes on every component of $X$ except $Y$. Then the function $\varphi_{P} \cdot \psi \in M$ is obviously zero, but the tensor product $\varphi_{P} \otimes \psi \in I(P) \otimes_{R} M$ is not. This shows that $f$ cannot be algebraically flat.


Conversely, let us assume now that $f$ is geometrically but not algebraically flat. By remark 1.3.12 there must then be a prime ideal $I \subset R$ such that $I \otimes_{R} M \rightarrow M$ is not injective. As $S$ is a curve the ideal $I$ must be of the form $I(P)$ for some point $P \in S$.

As above let $\varphi_{P} \in I(P)$ be a function that vanishes at $P$ with multiplicity 1 and is nonzero at all other points of $S$ (we may have to shrink $S$ to achieve this). Then $I(P)$ is generated by $\varphi_{P}$. In other words, we can write every element of $I(P) \otimes_{R} M$ in the form $\varphi_{P} \otimes \psi$ for some $\psi \in M$.

By assumption we have $\varphi_{P} \cdot \psi=0 \in M$ and $\varphi_{P} \otimes \psi \neq 0 \in I(P) \otimes_{R} M$. In particular we have $\psi \neq 0 \in M$, so $\psi$ must be non-zero on at least one component $Y$ of $X$. It follows that then $\varphi_{P}$ is zero on $Y$. But this means that $Y$ maps entirely to $P$, in contradiction to geometric flatness.

Construction 1.3.14. We are now ready to set up the moduli functor $\bar{M}_{0, n}$ for stable $n$ pointed rational curves.
(i) For any base scheme $S$ we set

$$
\bar{M}_{0, n}(S)=\left\{\begin{array}{l}
\left(C, x_{1}, \ldots, x_{n}\right) ; C \rightarrow S \text { is a flat morphism, } \\
\text { and the } x_{1}, \ldots, x_{n}: S \rightarrow C \text { are disjoint sec- } \\
\text { tions such that all geometric fibers are sta- } \\
\text { ble } n \text {-pointed rational curves }
\end{array}\right\} / \text { isomorphisms. }
$$

(ii) For any morphism $f: S \rightarrow S^{\prime}$ of schemes and any $\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \bar{M}_{0, n}\left(S^{\prime}\right)$ we define the pull-back $f^{*}\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ to be $\left(C, x_{1}, \ldots, x_{n}\right) \in \bar{M}_{0, n}(S)$, where $C=C^{\prime} \times{ }_{S^{\prime}} S$ is simply the pull-back $\mathbb{P}^{1}$-bundle and $x_{i}=f^{*} x_{i}^{\prime}$ are the pulled-back sections of $C$ over $S$.

Let us start by considering the first non-trivial cases. It is clear that $\bar{M}_{0,3}=M_{0,3}$ is just a point. For 4 marked points we have the expected result from example 1.3.6:

Proposition 1.3.15. $\bar{M}_{0,4} \cong \mathbb{P}^{1}$, with an isomorphism given by the cross ratio as in the proof of lemma 1.2.11, together with the three special points $0,1, \infty$ as in example 1.3.6.

Proof. For any base scheme $S$ we will set up a one-to-one correspondence between morphisms $S \rightarrow \mathbb{P}^{1}$ and families in $\bar{M}_{0,4}(S)$.

First of all let us construct a family over $\mathbb{P}^{1}$ corresponding to the identity morphism id $\mathbb{P}_{\mathbb{P}^{1}}$, i. e. a flat family whose fiber over the point $t \in \mathbb{P}^{1}$ is the stable 4-pointed rational curve with cross ratio $t$ (and one of the special curves of example 1.3.6 if $t$ is 0,1 , or $\infty$ ). In fact, this is easily done using the idea of example 1.3 .1 : we take the trivial bundle $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ with the 4 sections $0,1, \infty$, and $t$, and blow up the three points $(0,0),(1,1)$, and $(\infty, \infty)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. If now $S \rightarrow \mathbb{P}^{1}$ is any morphism we can simply obtain the desired family over $S$ by pulling back the above family over $\mathbb{P}^{1}$.

Conversely, let $\left(C, x_{1}, \ldots, x_{4}\right) \in \bar{M}_{0,4}(S)$ be a family over $S$. We have to construct the corresponding morphism $f: S \rightarrow \mathbb{P}^{1}$. For simplicity we will assume that $S$ is a smooth curve. The morphism $f$ can be constructed locally around every point $P \in S$. By lemma 1.2.11 we know that the desired morphism exists if the fiber of $\left(C, x_{1}, \ldots, x_{4}\right)$ over $P$ is smooth. Moreover, the morphism clearly exists if $\left(C, x_{1}, \ldots, x_{4}\right)$ is a constant family. So we may assume without loss of generality that the fiber of $\left(C, x_{1}, \ldots, x_{4}\right)$ over $P$ is reducible, say with $x_{1}, x_{3}$ on one component and $x_{2}, x_{4}$ on the other, whereas all other fibers are smooth.


If we consider $C$ as a surface we denote the divisors $x_{1}(S) \subset C$ and $x_{3}(S) \subset C$ by $D_{1}$ and $D_{3}$, respectively. Note that $C$ as a surface may or may not be singular at the point where the two components $E_{1}$ and $E_{2}$ of the fiber over $P$ intersect (see exercise 1.6.2 (iii) for an
example of the singular case). However $C$ is smooth away from this point in any case. In particular, the Weil divisors $D_{1}$ and $D_{3}$ are Cartier divisors and thus correspond to line bundles $\mathcal{L}_{1}$ and $\mathcal{L}_{3}$ on $C$ (see [G] section 9.3).

We claim that the line bundles $\mathcal{L}_{1}$ and $\mathcal{L}_{3}$ are in fact isomorphic, i. e. that $D_{1}$ and $D_{3}$ are linearly equivalent Cartier divisors. To see this let us first restrict the given family to $S \backslash\{P\}$. Over this open subset we have a family of smooth 4-pointed curves, so by lemma 1.2.11 it is isomorphic to a family of the form $S \times \mathbb{P}^{1}$ where $x_{1}$ and $x_{3}$ are the constant sections 0 and $\infty$. In particular, $D_{1}$ and $D_{3}$ are linearly equivalent on this restricted family. Filling back in the point $P$ again we therefore see that we must have an equality

$$
\begin{equation*}
D_{1}-D_{3}=a E_{1}+b E_{2} \tag{*}
\end{equation*}
$$

of Cartier divisor classes on $C$ for some $a, b \in \mathbb{Z}$. Next, let $\varphi_{P}$ be a local function on $S$ around $P$ that has a simple zero at $P$ and no other zeros (see [G] lemma 7.5.6). Pulling back this function to $C$ we obtain a regular function with divisor $E_{1}+E_{2}$. In other words, the divisor $E_{1}+E_{2}$ is linearly equivalent to 0 . We may therefore subtract $b\left(E_{1}+E_{2}\right)$ from the right hand side of $(*)$ and obtain

$$
D_{1}-D_{3}=(a-b) E_{1}
$$

on $C$. Now we intersect this Cartier divisor with the Weil divisor $E_{2}$ to obtain $0-0=$ $(a-b) E_{1} \cdot E_{2}$. As $E_{1} \cdot E_{2}>0$ we conclude that $a-b=0$ and thus that $D_{1}$ and $D_{3}$ are linearly equivalent on $C$. In other words, the equations $\sigma_{1}$ and $\sigma_{3}$ of $D_{1}$ and $D_{3}$ are sections of the same line bundle $\mathcal{L}$ on $C$.

By [G] lemma 7.5.14 we therefore obtain a morphism

$$
\sigma=\left(\sigma_{1}: \sigma_{3}\right): C \rightarrow \mathbb{P}^{1}
$$

(note that $\sigma_{1}$ and $\sigma_{3}$ are nowhere simultaneously zero since $D_{1}$ and $D_{3}$ do not intersect). By construction it has the property that $D_{1}$ and $D_{3}$ map to $(0: 1)=0$ and $(1: 0)=\infty$, respectively. Moreover, $\sigma$ must be constant on $E_{2} \cong \mathbb{P}^{1}$ since it is nowhere zero there (i. e. $E_{2}$ does not intersect $D_{1}$ ). So if we define a morphism $f: S \rightarrow \mathbb{P}^{1}$ by

$$
f(Q)=\frac{\sigma\left(x_{4}(Q)\right)}{\sigma\left(x_{2}(Q)\right)}
$$

then $f(P)=1$ (since $\sigma$ is constant on $E_{2}$ ), and $f(Q)$ for $Q \neq P$ is simply the cross ratio of the four points $x_{1}(Q), \ldots, x_{4}(Q)$ (since the cross ratio of the four points $0, x_{2}, \infty, x_{4}$ on $\mathbb{P}^{1}$ is $\frac{x_{4}}{x_{2}}$ ). So we have constructed the desired morphism.

We will extend this lemma to the case of more marked points in section 1.4.
Remark 1.3.16. In the proof of the first part of proposition 1.3 .15 we have constructed a family over the variety $\bar{M}_{0,4} \cong \mathbb{P}^{1}$ whose fiber over a point $P$ is precisely the stable curve parametrized by the moduli point $P$. Such a family is called a universal family. We have seen in the above proof that every other family can be obtained from this universal family by a suitable pull-back (hence the name).
Remark 1.3.17. Proposition 1.3 .15 allows us to make a statement about the local structure of a family of nodal curves around a node in a fiber. More precisely, let $\left(C, x_{1}, \ldots, x_{4}\right) \in$ $\bar{M}_{0, n}(S)$ be a family of stable 4-pointed rational curves over an affine base scheme $S=$ Spec $R$, corresponding to a morphism $S \rightarrow \bar{M}_{0,4}=\mathbb{P}^{1}$. Assume that $P \in S$ is a point such that the fiber of $C$ over $P$ is reducible with two components, i. e. such that $f(P) \in\{0,1, \infty\}$. Let us assume for simplicity that $f(P)=0$. We know that the family $\left(C, x_{1}, \ldots, x_{4}\right)$ must be obtained from the universal family over $\mathbb{P}^{1}$ by pull-back along the morphism $S \rightarrow \mathbb{P}^{1}$. As the universal family is simply the blow-up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in three points it has local coordinates $x$ and $y$ around a node in the fiber over 0 , with the morphism to the base given by $t=x y$ (where $t$ is a local coordinate on the base $\mathbb{P}^{1}$ ). The morphism $S \rightarrow \mathbb{P}^{1}$ is given by the
assignment $t=f$ for some $f \in R$. So we obtain the following local picture around the node in the fiber over $P$ :


In other words, the family $\left(C, x_{1}, \ldots, x_{4}\right)$ is locally around a node in a fiber of the form $C=\operatorname{Spec} R[x, y] /(x y-f)$ for some $f \in R$ with $f(P)=0$. One can show that the same statement is true for stable rational curves with more than 4 marked points (and in fact for any family of rational nodal curves).
1.4. Representability of the moduli functor $\bar{M}_{0, n}$. In this section we want to extend proposition 1.3.15 to the case of more marked points, i. e. prove that the functor $\bar{M}_{0, n}$ is representable by a smooth projective variety of dimension $n-3$ for every $n \geq 3$. We will actually give an explicit construction of these varieties, although (in the spirit of remark 1.2 .9 ) the details of this construction are not needed to do computations on the varieties $\bar{M}_{0, n}$.

The key ingredient in the proof of representability is the construction of the so-called forgetful maps. Roughly speaking their idea is that we can obtain a stable $n$-pointed curve from an $(n+1)$-pointed curve by simply forgetting one of the marked points. One just has to be careful if forgetting the marked point leaves us with a component of the curve with only two special points, i. e. with an unstable curve.

Construction 1.4.1. Let $n \geq 3$, and let $\mathcal{C}=\left(C, x_{1}, \ldots, x_{n+1}\right)$ be a stable $(n+1)$-pointed rational curve. Denote by $C_{0}$ the irreducible component of $C$ on which the last marked point $x_{n+1}$ lies. We construct an associated stable $n$-pointed rational curve $\mathcal{C}^{\prime}$ as follows:
(i) If the component $C_{0}$ has at least 4 special points then we simply set $\mathcal{C}^{\prime}$ to be the curve $\left(C, x_{1}, \ldots, x_{n}\right)$ obtained by forgetting the last marked point $x_{n+1}$.
(ii) If the component $C_{0}$ has only 3 special points (one of which must be $x_{n+1}$ ) then we let $C^{\prime}$ be the curve obtained from $C$ by contracting $C_{0}$ to a point, and set $\mathcal{C}^{\prime}=\left(C^{\prime}, x_{1}, \ldots, x_{n}\right)$. Note that the condition $n \geq 3$ ensures that at least one of the two remaining special points of $C_{0}$ is a node, so that the contraction of $C_{0}$ cannot give rise to two coinciding marked points.

The curve $\mathcal{C}^{\prime}$ is called the curve obtained from $\mathcal{C}$ by forgetting the last marked point. The corresponding (set-theoretic) map $\bar{M}_{0, n+1} \rightarrow \bar{M}_{0, n}$ is called the forgetful map that forgets the last marked point.


Obviously, there is a morphism $\mathcal{C} \rightarrow \mathcal{C}^{\prime}$ in each case (i. e. a morphism $f: C \rightarrow C^{\prime}$ such that $f\left(x_{i}\right)=x_{i}^{\prime}$ for all $i$ ) that simply "contracts the unstable components".

Exercise 1.6 .6 shows that this construction can be done in the same way in families: if $\left(C, x_{1}, \ldots, x_{n+1}\right) \in \bar{M}_{0, n+1}(S)$ is a family of stable $(n+1)$-pointed rational curves over a base scheme $S$ then the above construction gives rise to family $\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \bar{M}_{0, n}(S)$ of stable $n$-pointed rational curves together with a morphism $f: C \rightarrow C^{\prime}$. (Note that this is a non-trivial statement since in general contractions of components will be necessary in some but not all curves in the family. It is not clear a priori that this gives rise to a well-defined morphism of the families.)
Remark 1.4.2. Instead of the last marked point we can of course also forget any other given marked point. We can also compose several forgetful maps, i. e. forget any given subset of the marked points, as long as we keep at least 3 marked points in the end. It is easy to see that the result in this case does not depend on the order in which the selected marked points are forgotten.

## Example 1.4.3.

(i) Note that $\bar{M}_{0,3}$ is just a point, i. e. every family $\left(C, x_{1}, \ldots, x_{4}\right)$ of 4-pointed stable rational curves gives rise to the constant family $\left(\mathbb{P}^{1}, 0,1, \infty\right)$ of 3-pointed stable rational curves after forgetting the last marked point.
(ii) Consider the family of 5-pointed stable curves as in exercise 1.6 .2 (ii), possibly after extending to $t=0$. Then the family of 4-pointed stable curves obtained by forgetting the fourth marked point is precisely the family of exercise 1.6.2 (iii).
Remark 1.4.4. Let $\mathcal{C}=\left(C, x_{1}, \ldots, x_{n}\right)$ be an $n$-pointed rational stable curve. Note that there is a natural bijection

$$
\left\{\begin{array}{l}
(n+1) \text {-pointed rational stable curves mapping to } C \\
\text { when forgetting the last marked point }
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow} C
$$

Then there is a natural bijection between $C$ and $(n+1)$-pointed stable curves mapping to $\mathcal{C}$ when forgetting the last marked point.

This motivates the following proposition.
Proposition 1.4.5. Assume that the functor $\bar{M}_{0, n}$ is representable, so that in particular there is a universal family $\bar{C}_{0, n} \rightarrow \bar{M}_{0, n}$. Then the functor $\bar{M}_{0, n+1}$ is representable by the scheme $\bar{C}_{0, n}$.

Proof. We have to show that there is a one-to-one correspondence

$$
\left\{\begin{array}{l}
\text { families }\left(C, x_{1}, \ldots, x_{n+1}\right) \text { of stable }(n+1)- \\
\text { pointed rational curves over } S
\end{array}\right\} \longleftrightarrow\left\{\text { morphisms } S \rightarrow \bar{C}_{0, n}\right\}
$$

for every base scheme $S$.
" $\longrightarrow "$

" ". as usual it suffices to construct universal family; rest then by pull-back.


This is OK except where the $(n+1)$-st marked point is a node or coincides with another one.

Corollary 1.4.6. $\bar{M}_{0, n}$ is a smooth projective variety of dimension $n-3$ for all $n \geq 3$.

Proof.
1.5. Intersection theory on $\bar{M}_{0, n}$. Having just defined the moduli functor of stable rational $n$-pointed curves our next task would of course be to prove its representability. However we will rather continue in the spirit of remark 1.2.9: assume that representability holds and study the properties of the moduli space that we can read off from the functor alone.

More precisely, we will study the consequences of the following theorem whose proof we will sketch later in section 1.4:

Theorem 1.5.1. $\bar{M}_{0, n}$ is a smooth projective variety of dimension $n-3$.
Example 1.5.2. Pull-back of boundary divisor: sum of two parts.
Example 1.5.3. Forget more than 1 point. Both desciption of forgetful map and pull-back of divisors. Example: small WDVV, maybe for 6 marked points. Thus gives relations between boundary divisors in $\bar{M}_{0, n}$. In fact, get all relations this way.

### 1.6. Exercises.

Exercise 1.6.1. What is the maximum number of irreducible components that a rational $n$-pointed stable curve can have?

Show that the number of rational $n$-pointed stable curves with this maximum number of components is finite.

Exercise 1.6.2. Consider the following families of smooth rational $n$-pointed curves:
(i) $n=5,\left(S \times \mathbb{P}^{1}, 0,1, \infty, t, 2 t\right)$;
(ii) $n=5,\left(S \times \mathbb{P}^{1}, 0,1, \infty, t, t^{2}\right)$;
(iii) $n=4,\left(S \times \mathbb{P}^{1}, 0,1, \infty, t^{2}\right)$;
where $S$ is a suitable open subset of $\mathbb{A}^{1}$ with coordinate $t$.


What are their "limit stable curves" as $t \rightarrow 0$ ? In other words, find their extensions to families of stable rational $n$-pointed curves over $S \cup\{0\}$.
Exercise 1.6.3. Let $C \subset \mathbb{P}^{3} \times \mathbb{A}^{1}$ be the union of the surfaces $\left\{x_{0}=x_{1}=0\right\}$ and $\left\{x_{0}-\right.$ $\left.t x_{3}=x_{2}=0\right\}$, where $x_{0}, x_{1}, x_{2}, x_{3}$ and $t$ are the coordinates of $\mathbb{P}^{3}$ and $\mathbb{A}^{1}$, respectively. Show that the morphism $C \rightarrow \mathbb{A}^{1}$ is a family of disconnected curves with two components approaching each other as $t \rightarrow 0$, but that the limit for $t=0$ is not just a reducible curve with two components.


Conclude that "separating the two branches at a node of a stable curve" is not a flat deformation, i. e. it cannot occur in the moduli functor of stable curves.

Exercise 1.6.4. Consider the following stable 5-pointed trees:

$\Gamma_{1}$

$\Gamma_{2}$
(i) What is the dimension of $\left[\Gamma_{1}\right]$ and $\left[\Gamma_{2}\right]$ in $\bar{M}_{0,5}$ ?
(ii) List all stable curves with more than one node that are contained in $\left[\Gamma_{1}\right]$ resp. $\left[\Gamma_{2}\right]$. Conclude that $\left[\Gamma_{1}\right]$ and $\left[\Gamma_{2}\right]$ intersect in exactly one point in $\bar{M}_{0,5}$.
(iii) Find an open neighborhood of this point in $\bar{M}_{0,5}$. Prove that $\left[\Gamma_{1}\right]$ and $\left[\Gamma_{2}\right]$ intersect transversally in this point (i.e. with multiplicity 1 ).
(iv) Are $\left[\Gamma_{1}\right]$ and $\left[\Gamma_{2}\right]$ the same cycle in the Chow group $A_{*}\left(\bar{M}_{0,5}\right)$ ?

## Exercise 1.6.5.

(i) Write the cycles

and

in $A_{0}\left(\bar{M}_{0,6}\right)$ as an intersection of three boundary divisors in $\bar{M}_{0,6}$.
(ii) Show in general that every cycle of the form $[\Gamma] \in A_{*}\left(\bar{M}_{0, n}\right)$ for a stable $n$-pointed tree $\Gamma$ with $k$ nodes can be written uniquely as a product of $k$ boundary divisors.

Exercise 1.6.6. In this exercise we will construct the dualizing sheaf of a nodal curve and use it to prove that forgetting a marked point as in construction 1.4.1 is well-defined in families. The key idea is contained in part (v) below.
(i) Let $\varphi \in \Omega_{C} \otimes K(C)$ be a rational differential form on a smooth curve $C$. Pick a point $P \in C$ such that $\operatorname{ord}_{P} \varphi \geq-1$, i. e. $\varphi$ is either regular or has a pole of order 1 at $P$. Choose a regular function $\varphi_{P}$ in a neighborhood $U$ of $P$ with a simple zero at $P$ and no other zeros on $U$ (see [G] lemma 7.5.6). Show that we can then write $\varphi=f \cdot \varphi_{P}^{-1} d \varphi_{P}$ on $U$ for a regular function $f \in O_{C}(U)$, and that the value $f(P)$ does not depend on the choice of $\varphi_{P}$. This value is then called the residue of $\varphi$ at $P$ and denoted $\operatorname{res}_{P} \varphi$.
(ii) Let $C$ be a rational nodal curve, and denote by $\operatorname{Pic} C$ the group of line bundles on $C$. Let $C_{1}, \ldots, C_{r}$ be the irreducible components and $P_{1}, \ldots, P_{k}$ the nodes of $C$. Show that there is an isomorphism

$$
\operatorname{Pic} C \cong \operatorname{Pic} C_{1} \oplus \cdots \oplus \operatorname{Pic} C_{r} .
$$

In other words, giving a line bundle on $C$ is the same thing as giving line bundles on all components $C_{i}$.

Can you find a corresponding statement if the nodal curve $C$ is not necessarily rational?
(iii) Using (i) and (ii) show that every nodal curve $C$ has a unique line bundle $\omega_{C} \in$ Pic $C$ whose sections over an open subset $U \subset C$ are given by collections of rational differential forms $\varphi_{i}$ on $C_{i} \cap U$ such that for every $P \in U$ we have:

- if $P \in C_{i}$ is a smooth point of $C$ then $\varphi_{i}$ is regular at $P$;
- if $P \in C_{i} \cap C_{j}$ is a node of $C$ then $\operatorname{ord}_{P} \varphi_{i} \geq-1$, $\operatorname{ord} \varphi_{j} \geq-1$, and $\operatorname{res}_{P} \varphi_{i}+$ $\operatorname{res}_{P} \varphi_{j}=0$.
The line bundle $\omega_{C}$ is called the dualizing sheaf of $C$.
(iv) (The result of this part is not needed for the rest of the exercise.) The dualizing sheaf $\omega_{C}$ can be thought of as a generalization of the canonical bundle of a smooth curve in the following sense:
- $h^{0}\left(\omega_{C}\right)=h^{1}\left(O_{C}\right)$ is the genus $g$ of the curve;
- for every line bundle $\mathcal{L}$ on $C$ we have the Riemann-Roch theorem

$$
h^{0}(C, \mathcal{L})-h^{0}\left(C, \omega_{C} \otimes \mathcal{L}^{\vee}\right)=\operatorname{deg} \mathcal{L}+1-g
$$

(v) Let $\left(C, x_{1}, \ldots, x_{n+1}\right)$ be a stable $(n+1)$-pointed rational curve. Show that the stable $n$-pointed rational curve obtained by forgetting the last marked point $x_{n+1}$ is

$$
C^{\prime}=\operatorname{Proj}\left(\bigoplus_{k \geq 0} H^{0}\left(C, \omega_{C}\left(x_{1}+\cdots+x_{n}\right)^{\otimes k}\right)\right)
$$

and that there is a morphism $f: C \rightarrow C^{\prime}$ that contracts the unstable component (if there is any).
(vi) Let $X$ be a variety, and let $\mathcal{L}_{1}, \mathcal{L}_{2}$ be two line bundles on $X$. If $Y \subset X$ is a subvariety of codimension at least 2 such that $\left.\left.\mathcal{L}_{1}\right|_{X \backslash Y} \cong \mathcal{L}_{2}\right|_{X \backslash Y}$ then $\mathcal{L}_{1} \cong \mathcal{L}_{2}$.
(vii) Now let $\left(C, x_{1}, \ldots, x_{n+1}\right) \in \bar{M}_{0, n+1}(S)$ be a family of stable $(n+1)$-pointed rational curves over a base variety $S$. Show that there is a unique line bundle $\omega_{C / S}$ (called the relative dualizing sheaf) such that

- the restrictions of $\omega_{C / S}$ to the fibers of the morphism $C \rightarrow S$ agree with the dualizing sheaves constructed above;
- $\omega_{C / S}$ is isomorphic to the sheaf $\Omega_{C / S}$ of relative differential forms away from the nodes of the fibers of the morphism $C \rightarrow S$.
(Hint: If $S=\operatorname{Spec} R$ is affine then by remark 1.3.17 the morphism $C \rightarrow S$ is locally around a node of a fiber of the form $\operatorname{Spec} R[x, y] /(x y-f) \rightarrow \operatorname{Spec} R$ for some $f \in R$. On such an open neighborhood the subsheaf of $\Omega_{C / S} \otimes K(C)$ generated by $\frac{d x}{x}$ and $\frac{d y}{y}$ gives a line bundle with the desired properties.)
(viii) Using the above results conclude that forgetting a marked point is well-defined in families, i. e. if $\left(C, x_{1}, \ldots, x_{n+1}\right) \in \bar{M}_{0, n+1}(S)$ is a family of stable $(n+1)$-pointed rational curves over a base variety $S$ then forgetting the last marked point gives rise to a family $\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \bar{M}_{0, n}(S)$ of stable $n$-pointed rational curves together with a morphism $f: C \rightarrow C^{\prime}$ that contracts the unstable components in the fibers.

Exercise 1.6.7. For any decomposition $A \cup B=\{1, \ldots, n\}$ with $|A|,|B| \geq 2$ denote by $D(A ; B) \in A_{n-4}\left(\bar{M}_{0, n}\right)$ the class of the boundary divisor with marked points $\left\{x_{i} ; i \in A\right\}$ on one component and $\left\{x_{i} ; i \in B\right\}$ on the other.

(i) For any $A, B$ as above compute the push-forward $\pi_{*} D(A ; B) \in A_{n-4}\left(\bar{M}_{0, n-1}\right)$, where $\pi: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1}$ is the morphism that forgets the last marked point.
(ii) For any $A, B$ as above compute the pull-back $\pi^{*} D(A ; B) \in A_{n-3}\left(\bar{M}_{0, n+1}\right)$, where $\pi: \bar{M}_{0, n+1} \rightarrow \bar{M}_{0, n}$ is the morphism that forgets the last marked point.
(iii) Show that

$$
\sum_{1,2 \in A ; 3,4 \in B} D(A ; B)=\sum_{1,3 \in A ; 2,4 \in B} D(A ; B)
$$

in $A_{n-4}\left(\bar{M}_{0, n}\right)$.
Exercise 1.6.8. As usual let $\bar{C}_{0, n} \rightarrow \bar{M}_{0, n}$ be the universal curve. For any $i=1, \ldots, n$ the sheaf $x_{i}^{*} \Omega_{\bar{C}_{0, n} / \bar{M}_{0, n}}$ is a line bundle on $\bar{M}_{0, n}$ whose fiber at a point $\left(C, x_{1}, \ldots, x_{n}\right) \in \bar{M}_{0, n}$ is canonically isomorphic to the cotangent space $T_{C, x_{i}}^{\vee}$. We denote the divisor corresponding to this line bundle by $\psi_{i, n}$ (or $\psi_{i}$ if the number $n$ of marked points is clear from the context). It is usually called the $i$-th cotangent line class.
(i) Compute the degree of the divisor $\psi_{1}$ on $\bar{M}_{0,4} \cong \mathbb{P}^{1}$.
(ii) Let $\pi: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1}$ be the morphism that forgets the last marked point. Show that

$$
\psi_{1, n}=\pi^{*} \psi_{1, n-1}+D(\{1, n\} ;\{2, \ldots, n-1\})
$$

in $A_{n-4}\left(\bar{M}_{0, n}\right)$, and conclude that

$$
\psi_{1, n}=\sum_{1 \in A ; 2,3 \in B} D(A ; B)
$$

(iii) Let $D:=D(\{1,2\} ;\{3, \ldots, n\})$. Show that

$$
D \cdot D=-\psi \cdot D
$$

in $A_{n-5}\left(\bar{M}_{0, n}\right)$, where $\psi$ denotes the cotangent line class at the gluing point in $D \cong \bar{M}_{0, n-1}$.
Exercise 1.6.9. Let $k_{1}, \ldots, k_{n}$ be non-negative integers with $k_{1}+\cdots+k_{n}=n-3$. Show by induction on $n$ that

$$
\psi_{1}^{k_{1}} \cdot \cdots \cdot \psi_{n}^{k_{n}}=\frac{(n-3)!}{k_{1}!\cdots k_{n}!}
$$

on $\bar{M}_{0, n}$. (Hint: At least one of the numbers $k_{i}$ must obviously be 0 or 1 , say $k_{n}$. Using the morphism $\bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1}$ that forgets the last marked point one can then reduce the given intersection product to a similar product on $\bar{M}_{0, n-1}$.)

