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0. INTRODUCTION

Enumerative geometry is the branch of algebraic geometry concerned with count-
ing curves in varieties that satisfy some given conditions. We give some (classical
and modern) examples of enumerative problems and sketch how they can often be
reduced to the computation of intersection products on suitable moduli spaces of
curves.

0.1. What is enumerative geometry? Let X be a complex variety, usually assumed to
be smooth and projective. The goal of enumerative geometry is simply to count curves in
X that satisfy some given conditions. These conditions can be of various types: we can
require that the curves have specified genus, specified degree, intersect given subvarieties
of X, are tangent to a given subvariety of X, have certain singularities, and so on. The only
requirement is that the conditions are chosen so that we expect a finite number of curves
satisfying them. We are then asking for this finite number.

Let us illustrate these ideas by some examples.

Example 0.1.1. Probably the easiest enumerative question that one can ask is: how many
lines are there in the projective plane P? through two given (distinct) points? The answer
here is obviously 1.

Example 0.1.2. Let us extend example 0.1.1 to conics, i. e. plane curves of degree 2. Note
that a conic is uniquely given by its equation

2 2 2
apxg + ajxoXx| + axxoxp +asxy +asxixy +asx; = 0,

and conversely the g; are determined up to a common scalar by the conic. So we can think
of the projective space P> with homogeneous coordinates a; as the space of all conics. We
say that P° is a moduli space for plane conics.

Now let P € P? be a given point. Then a conic (determined by the a;) passes through P
if and only if the above equation is satisfied if we set xg,x1,x> to be the coordinates of P.
This is obviously one linear condition in the coordinates a; of the moduli space 3. As the
moduli space is 5-dimensional we see that we get a finite number of conics if we require
them to pass through 5 given points in the plane. In fact, we get exactly one such conic as
the intersection of the 5 linear conditions in IP3 is a single point.

There are two potential problems here that we should mention though:

(i) We should check that the linear equations in P> given by the 5 incidence condi-
tions are in fact independent, so that their intersection is really just a point (and
not a higher-dimensional subspace).

(i) Not all points in the moduli space P> describe smooth conics. Some of them
correspond to unions of two lines or even double lines. In other words, the “true”
moduli space of smooth conics is not IP? itself but rather an open subset U C P>,
The complement P3\U is usually called the boundary of the moduli space. We
cannot know a priori whether the point in the moduli space that is the intersection
of the 5 linear conditions lies in U or not. In other words, it may be that there is
no smooth conic through the 5 given points.

Both problems can actually arise for some special choices of the 5 points. For example, if
we choose all 5 points to lie on a line then there is no smooth conic through these points
at all, but on the other hand there is an infinite family of reducible conics through them
(namely the line through the points together with any other line).

We will show now however that this cannot happen if we pick the 5 points in general po-
sition. This means: there is a dense open subset V C (IP?)° such that for any (Py,...,Ps) €V
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there is precisely one smooth conic through Py, ..., Ps. In fact, in this case we can say ex-
plicitly what this open subset V' looks like: all we have to require is that no three of the
marked points lie on a line. It is then obvious that there is no reducible conic through the
five points. Moreover, if we had two distinct smooth conics through the points then these
two conics would meet in five points, which is a contradiction to Bézout’s theorem.

One would probably expect in general that the above problems (intersection products
of too big dimension and components of the result in the boundary of the moduli space)
do not occur if we pick the conditions on the curves in a general way. This is not true
however; we will see a counterexample in example 0.1.6.

Example 0.1.3. Example 0.1.2 obviously extends to curves of higher degree: plane curves
of degree d are parametrized by the projectivization of the vector space of homogeneous

degree-d polynomials in 3 variables, which has dimension (szrz) — 1. Arguing as above

we see that there is exactly 1 curve in P? of degree d that passes through (d“;z) — 1 general

given points (see exercise 0.2.1).

The above examples were very easy because the moduli spaces and conditions were all
linear. We usually express this by saying that the curves form a linear system. It is obvious
then that the answer to our enumerative problem must be 1 since a zero-dimensional linear
space is necessarily a single point. But in general of course neither the moduli space nor
the conditions need be linear, and consequently the answer to an enumerative problem need
not always be 1. Let us give some examples of this.

Example 0.1.4. In this example we want to answer the following question: how many
singular plane cubic curves are there through 8 given points?

We have seen in example 0.1.3 that plane cubics are parametrized by a projective space
P°. The 8 point conditions are again linear conditions in this P°, so what we have to
analyze is the new condition that the curves be singular.

To do so define the function
_ 3 2 2 3
F = apxy + arxpx1 + axxoxy + -+ - +agx;

describing a general cubic curve in P? with coefficients a;. Consider the variety

S:Z(aF oF 8F> P w2

dx’ ax1 " axy
and its projection 7t : § — P. By the projective Jacobi criterion of [G] proposition 4.4.8 (ii)
the fiber of S over a point P € PY is precisely the set of singular points of the cubic curve
determined by the point P in the moduli space P°. So the image 7t(S) C P’ is the locus of

singular cubic curves. Its class is easily determined: every equation % is homogeneous
1

of degree 1 in the coordinates of P° and homogeneous of degree 2 in the coordinates of
P2. So if we denote by H € A, (P?) and L € A,(P?) the class of a hyperplane in P and P2
respectively, the class of each zero locus of % is H + 2L (where we use the same letters H

and L to denote the pull-back classes on P x P2, The class of S is therefore
] = (H +2L)* = H® + 6H*L+ 12HL? +8L* € Ag(P® x P?),
and so we conclude that
T.[S] = 12H € Ag(PY)

by the description of the push-forward of [G] construction 9.2.9. The condition of being
a singular curve is therefore a hypersurface of degree 12 in the moduli space P°. As the
8 point conditions are again linear we see that there are 12 singular plane cubic curves
through 8 given points.
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Example 0.1.5. Let X be a smooth cubic surface in P3. We have seen in [G] section
4.5 and example 10.3.15 that there are exactly 27 lines in X. Let us briefly recall the
intersection-theoretic computation that leads to this number.

Our moduli space is the 4-dimensional Grassmannian variety G(1,3) of lines in 3. There
is a tautological rank-2 subbundle F of the trivial bundle C* on G(1,3) whose fiber over
a point [L] € G(1,3) (where L C 3 is a line) is precisely the 2-dimensional subspace of
C* whose projectivization is L. Dualizing, we get a surjective morphism of vector bundles
(C*)Y — FV that corresponds to restricting a linear function on C* (or P3) to the line L.
Taking the d-th symmetric power of this morphism we arrive at a surjective morphism
§4(C*)V — S?FV that corresponds to restricting a homogeneous polynomial of degree d
onP?to L.

Now let f = 0 be the equation of X. By what we have just said the polynomial f
determines a section of S*F" whose set of zeros in G(1,3) is precisely the set of lines that
lie in X (i.e. the set of lines on which f vanishes). As S3F" is a vector bundle of rank 4
we expect finitely many zeros of this section. Their number is given by [G] proposition
10.3.12 as the degree of the top Chern class c4(S*F") on G(1,3). This degree can be
computed explicitly to be 27; see [G] example 10.3.15 for details.

It should be noted that — in the same way as in example 0.1.2 (i) — this computation
does not show that the number of lines in X is actually finite; we have to prove this in some
other way (see [G] section 4.5). Only then do we know that the Chern class computation
above gives the correct answer.

Example 0.1.6. Let us now give an example of an enumerative problem where the naive
intersection-theoretic computation does not give the right answer. Consider again conics
in P? with associated moduli space IP’. We have seen in example 0.1.2 that there is exactly
one conic through 5 points (in general position) since incidence conditions with points are
linear conditions in the moduli space P°.

We will now replace some of the incidence conditions by tangency conditions. Let us
first replace only one condition and ask: how many conics in P? are tangent to a given line
and moreover pass through 4 given points? Let us analyze the tangency condition. By a
change of coordinates we may assume that the line is given by the equation xo = 0. Then
a conic with equation

aox% “+ aijxox1 + axxox + agx% “+ agx1x2 + asx% =0
is tangent to this line if and only if the restriction of this equation to the line
(13)(% +agx1xp + a5x% =0

has a double zero somewhere, i.e. if and only if the discriminant ai — 2azas of this qua-
dratic equation is zero. So we see that the tangency condition is a quadratic equation in the
a;. Intersecting this with 4 (linear) incidence conditions we conclude that there are exactly
2 conics that are tangent to a line and pass through 4 points.
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Let us now replace all incidence conditions by tangencies and ask: how many plane conics
are tangent to 5 given lines in general position? The naive answer would be 2° = 32 as
the intersection of 5 quadratic conditions in P°. This is not true however as one can see
from the theory of dual curves (see [G] exercise 4.6.11): the dual curve of a smooth conic
is again a conic, and in the dual picture tangency conditions are translated into incidence
conditions. So the number of conics tangent to 5 lines must be the same as the number of
conics through 5 points, namely 1.

Why did the intersection-theoretic computation give the wrong answer? The problems
arise from the points in P> corresponding to double lines. Note that every double line
intersects any other (distinct) line in one point with multiplicity two, so it counts as a
tangent according to our definition above. The space of all conics tangent to the 5 given
lines therefore includes the complete 2-dimensional space of double lines in P>. Hence the
intersection-theoretic number 32 cannot be interpreted as the number of solutions to our
enumerative problem.

Example 0.1.7. It happens frequently that a very simple enumerative question has a very
complicated solution or is even still unsolved. For example, we can extend example 0.1.6
to higher degree and ask (similarly to example 0.1.3: how many plane curves are there that
are tangent to (d;rz) — 1 lines in general position? Although this question seems to be very

similar to the ones that we have studied above its answer is still unknown.

Remark 0.1.8. After having studied a series of examples let us now summarize the general
strategy to solve enumerative problems:

(1) Set up a moduli space that describes the curves one wants to study. The moduli
space has to be compact (see below). It will therefore usually have “boundary
points” that do not correspond to curves that one wants to count.

(2) Imposing the given conditions on the curve corresponds to an intersection product
on the moduli space. These conditions have to be chosen so that the resulting
intersection product is a cycle of dimension 0. As the moduli space is compact
the degree of this O-cycle is well-defined. It can be considered to be the “expected
solution” of the enumerative problem.

(3) Finally we have to find out whether the geometric intersection of the conditions
in (2) really has dimension O (i. e. the conditions are independent) and does not
contain any points in the boundary of the moduli space (maybe for general choice
of the conditions). If this is not the case then the “expected result” of (2) has to
be corrected based on an explicit analysis of the geometry.

The biggest problem is usually that of finding a suitable moduli space. Note that the moduli
space is certainly not uniquely defined by the problem we want to study:

e There are many ways to compactify a non-compact (moduli) space.

e We can parametrize curves in a variety X either by describing them as embedded
subvarieties of X or as pairs (C, f) where C is an abstract curve and f: C — X a
morphism. The resulting moduli spaces are usually different.

e If we want to count curves in a projective variety X C PV we can either start with
the moduli space of curves in PV and later impose the condition that the curves
actually be in X, or we can start with a moduli space of curves in X in the first
place.
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Of course the final answer to the enumerative problem should not depend on these choices.
Different choices of moduli spaces will however lead to completely different computations:
some moduli spaces may be easy to describe as a variety so that intersection products can
be computed without much effort, but their boundary may be so complicated that the step
from (2) to (3) above cannot be carried out. If one tries to solve this problem by picking
a more sophisticated moduli space that does not give rise to complicated boundary contri-
butions then the moduli space may become intractable as a variety, so that the intersection
product (2) cannot even be computed any more.

This is in fact the point where classical enumerative geometry was stuck for a long time.
For every enumerative question one had to construct and study a moduli space whose only
purpose was to solve this one single problem. The situation changed only about 10 years
ago with the invention of the theory of so-called stable maps that we will present in these
notes.

Example 0.1.9. The transition from “classical” to “modern” enumerative geometry was in
fact inspired by theoretical physicists. In 1989 the string theorists Candelas et al. claimed
that they can compute the numbers ny of genus-zero curves of degree d in a general hyper-
surface of degree 5 in P*. It is expected by a simple dimension count that these numbers
are indeed finite (see exercise 0.2.4). The prediction of the physicists reads as follows. Set

X (5H+i
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Then define rational numbers Ny recursively by the equation of formal power series in g
1 F?
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Then the enumerative numbers n, are given by the recursion

4 /k
Ni=Y
k|d
The first few numbers are as follows.

d ng
1 2875
2 609250
3 317206375
4 242467530000
5 229305888887625
6 248249742118022000
7 295091050570845659250
8 375632160937476603550000
9 503840510416985243645106250
10 | 704288164978454686113488249750

The computation of the physicists was based on arguments from topological quantum field
theory that are not understandable to mathematicians. At the time this result was published
it was even a surprise to mathematicians that there is a reasonably simple generating func-
tion that computes all numbers n, in one go. In fact, it is not even obvious that the numbers
ng defined by the recursion above are positive integers. To verify these results in classical
enumerative geometry people had to find a suitable moduli space separately for every de-
gree d. They checked the results up to degree 4, but the moduli spaces for degrees 3 and 4
were already so complicated that it was clear that no universal formula like the one above
could be proven that way.



6 Andreas Gathmann

About five years ago the above formula has been proven mathematically using the the-
ory of stable maps.

0.2. Exercises. Note: As we have not developed any theory yet, you are not expected
to be able to solve the following problems in a mathematically precise way. Rather, they
are just meant as some “food for thought” if you want to think a little further about the
examples considered in this section.

Exercise 0.2.1. In example 0.1.3 check that there is in fact a unique smooth plane curve of
degree d through (szrz) — 1 given points if these points are in general position. What does
“general position” mean here? Is it sufficient — as in example 0.1.2 — that no three of the

points lie on a line?

Exercise 0.2.2. Generalize the statement of example 0.1.4 to plane curves of higher degree.
More precisely, consider singular plane curves of degree d that pass through n(d) given
points. How big must n(d) be so that we get a finite number of curves, and what is this
number then?

Exercise 0.2.3. Solve the remaining cases of example 0.1.6: for any a,b >0 witha+b =15
determine the number of plane conics that are tangent to a given lines and pass through b
given points in general position. (Hint: For a < 2 show that the naive computation gives
the right answer. Then use the theory of dual curves for the cases b < 2.)

Exercise 0.2.4. Let X C PV be a smooth hypersurface of degree e for some e > 1. Compute
the expected dimension of the space of morphisms P! — X of degree d > 1. For the case
N = 4,e = 5 conclude that for every degree d one expects a finite number of curves of
genus zero of degree d on a hypersurface of degree 5 in P*. (Hint: you may want to use
corollary 1.1.5 and lemma 1.1.7.)



