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0. Introduction

These notes are meant as a gentle introduction to algebraic geometry, a combination of linear algebra
and algebra:

(a) In linear algebra (as e. g. in the “Foundations of Mathematics” class [G2]), we study systems
of linear equations in several variables over a fixed ground field K.

(b) In algebra (as e. g. in the “Algebraic Structures” or “Introduction to Algebra” classes [G1,
G3]), a central topic are polynomials in one variable over K.

Algebraic geometry combines this by studying systems of polynomial equations in several variables
over K. Of course, such polynomials in several variables occur in many places both in pure math-
ematics and in applications. Consequently, algebraic geometry has become a very large and active
field of mathematics with deep connections to many other areas, such as commutative algebra, com-
puter algebra, number theory, cryptography, topology, and complex analysis, just to name a few.

On the one hand, all these connections make algebraic geometry into a very interesting field to
study — but on the other hand they may also make it hard for the beginner to get started. So to keep
everything digestible, we will restrict ourselves here to the first case that is covered by neither (a) nor
(b) above: one polynomial equation in two variables. Its set of solutions in K2 can then be thought of
as a curve in the plane, we can draw it (at least in the case K =R), ask geometric questions about it,
and try to answer them with algebraic methods. This restriction will significantly reduce the required
theoretical background, but still leads to many interesting results that we will discuss in these notes.

To get a feeling for the kind of problems that one may ask about plane curves, we will now mention
a few of them in this introductory chapter. Their flavor differs quite a bit depending on the chosen
ground field K.

Example 0.1 (Curves over R). The following picture shows some real plane curves. Note that they
can have many different “shapes”: The curve (a) lies in a bounded region of the plane, whereas the
others do not. The curve (b) consists of two components in the sense that it can be decomposed into
two subsets (given by x+ y = 0 and x− y = 0) that are given by polynomial equations themselves.
The curve (c) has a so-called singularity at the origin, i. e. a point where it does not locally look
like a smoothly deformed real line (in fact, (b) has a singularity at the origin as well). Finally, the
image in (d) consists of two disconnected parts, but these parts are not given by separate polynomial
equations themselves, as we will see in Exercise 1.8.

x2

4 + y2−1 = 0
(a) (b) (c) (d)

y2− x3 = 0x2− y2 = 0 y2 + x− x3 = 0

It is a main goal of algebraic geometry to prove such properties of curves just from looking at the
polynomials, i. e. without drawing and referring to a picture (which would not be an exact proof
anyway). Other related questions we might ask are: In how many points can two curves intersect?
How many singularities can a curve have?
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Example 0.2 (Curves over C). Over the complex numbers, pictures of curves will look different
since a 1-dimensional complex object is real 2-dimensional, i. e. a surface. Note that we cannot
draw such a surface as a subset of K2 =C2 =R4 since we would need four dimensions for that. But
we can still get a correct topological picture of the curve itself if we disregard this embedding. Let
us show informally how to do this for the curve with the equation y2 + x− x3 = 0 as in Example 0.1
(d) above; for more details see 5.16.

Note that in this case it is actually possible to write down all the points of the curve explicitly,
because the given equation

y2 = x3− x = x(x−1)(x+1)
is (almost) solved for y already: We can pick x to be any complex number, and then get two values
for y, namely the two square roots of x(x−1)(x+1) — unless x ∈ {−1,0,1}, in which case there is
only one value for y (namely 0).

So one might think that the curve looks like two copies of the complex plane, glued together at
the three points −1,0,1: The complex plane parametrizes the values for x, and the two copies of it
correspond to the two possible values for y, i. e. to the two roots of the number x(x−1)(x+1).

This is not the correct topological picture however, because a non-zero complex number does not
have a distinguished first and second root that could correspond to the first and second copy of the
complex plane. Rather, the two roots of a complex number get exchanged if we run around the origin
once: If we consider a closed path

z = r eiϕ for 0≤ ϕ ≤ 2π and fixed r > 0

around the complex origin, the square root of this number would have to be defined by
√

z =
√

r e
iϕ
2 ,

which gives opposite values at ϕ = 0 and ϕ = 2π . In other words, if x runs around one of the points
−1,0,1 (i. e. around a point at which y is the square root of 0), we go from one copy of the plane to
the other. One way to draw this topologically is to cut the two planes along the real intervals (−1,0)
and (1,∞), and to glue the two planes along these edges as in the following picture on the left, where
edges with the same letter are meant to be identified. The gluing itself is then visualized best by first
turning one of the planes upside down; this is shown in the picture on the right.

glue
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This is now actually a topologically correct picture of the given curve. To make the situation a little
nicer, we can compactify it by adding a point at infinity, which corresponds to identifying the two
planes at their infinitely far points as well (the precise construction will be described in Chapter 3).
This is shown in the picture below, and leads topologically to a torus.
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We will show in Proposition 5.16 how such topological pictures can be obtained immediately from
the given equation of the curve.

Example 0.3 (Curves over finite fields). Of course, over a finite field such as Z/pZ for a prime
number p, a curve just consists of finitely many points, and hence once again looks completely
different. The following picture shows again the curve given by the equation y2 + x− x3 = 0 as in
our previous two examples, but this time over the ground field Z/19Z.

0 2 4 6 8 12 14 1810 16
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2
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Note that we can still see the symmetry y↔−y in the picture, but apart from that we just have a
seemingly random collection of points. In fact, we will see in Example 7.9 that such curves have
important applications in modern cryptography.

Example 0.4 (Curves over Q). The most famous application of algebraic geometry to ground fields
other than just the real or complex numbers is probably Fermat’s Last Theorem. This is the statement
that, for n ∈N≥3, the curve given by the equation xn +yn−1 = 0 over the rational numbers has only
the trivial solutions where x = 0 or y = 0, or equivalently (by setting x = a

c and y = b
c for a,b,c ∈ Z

with c ̸= 0), that the equation an + bn = cn has no non-trivial solutions over Z at all. Note that this
picture is again very different from the cases of the other ground fields considered above. But as one
might expect, a large part of the theory of algebraic curves works over arbitrary ground fields, and
in fact the proof of Fermat’s Last Theorem uses concepts of algebraic geometry in many places. So,
in some sense, we can view (algebraic) number theory as a part of algebraic geometry.

Example 0.5 (Relations to complex analysis). We have just seen in the examples above that alge-
braic geometry has deep relations to e. g. topology and number theory, and it should not come as a
surprise that there are many relations to algebraic fields of mathematics such as commutative algebra
and computer algebra as well. Although it is not within the scope of these notes, let us finish this
introductory chapter by showing interesting relations to complex analysis as well.

Consider a (sufficiently nice) compactified complex curve, such as a torus as in Example 0.2. Of
course, in algebraic geometry one does not only study curves for themselves but also maps between
them; and hence we will have to consider “nice” functions on such curves (where “nice” will trans-
late into “locally a quotient of polynomials”). What do such functions f look like if they are defined
globally on the whole curve? As the curve is compact, note that the image of f must be a com-
pact subset of the complex plane, which means that the absolute value | f | must take a maximum
somewhere. But locally the curve just looks like the complex plane, and by the Maximum Modulus
Principle [G4, Proposition 6.14] the absolute value of a nice (read: holomorphic) function on the
complex plane cannot have a local maximum unless it is constant. So we conclude that f must be a
constant function: There are actually no non-trivial nice global functions on a compact curve.

In fact, we will prove this statement in Corollary 6.29 using only algebraic methods, and hence over
arbitrary (algebraically closed) ground fields. In a similar way, many interesting results over the
ground field C can be obtained using both algebraic geometry and complex analysis, with completely
different methods, and thus give a close relation between these two branches of mathematics as well.

But let us now start with our study of plane curves. In order to keep these notes as accessible
as possible, we will only assume a basic knowledge of groups, rings, and fields as about to the
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extent of the “Algebraic Structures” class [G1], but a little more experience in dealing with these
structures would certainly be advantageous. Very occasionally we will need to assume results from
commutative algebra that go beyond these prerequisites (marked as “Facts” in the notes), but they
will always be clearly stated and motivated, and provided with a reference. However, in order not
to lose this very interesting part of the subject we will nevertheless quite frequently explore the
relations of our results to other fields of mathematics in side remarks and excursions (that will then
not be needed afterwards to follow the remaining parts of the notes).
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1. Affine Curves

In this first chapter we will introduce plane curves both from an algebraic and a geometric point of
view. As explained in the introduction, they will be given as solutions of polynomial equations. So
let us start by fixing the corresponding notations.

Rings are always assumed to be commutative with a multiplicative neutral element 1. The multi-
plicative group of units of a ring R will be denoted by R∗.

Notation 1.1 (Polynomials). Throughout these notes, K will always denote a fixed ground field. By
K[x1, . . . ,xn] we will denote the polynomial ring in n variables x1, . . . ,xn over K, i. e. the ring of finite
formal sums

f = ∑
i1,...,in∈N

ai1,...,in xi1
1 · · · · · x

in
n

with all ai1,...,in ∈ K (see e. g. [G1, Chapter 9] how this concept of “formal sums” can be defined
in a mathematically rigorous way). Note that we can regard it as an iterated univariate polynomial
ring since K[x1, . . . ,xn] = K[x1, . . . ,xn−1][xn]. Of course, for a polynomial f as above and a point
P = (c1, . . . ,cn) ∈ Kn, the value of f at P is defined as

f (P) := ∑
i1,...,in∈N

ai1,...,in ci1
1 · · · · · c

in
n ∈ K.

Unless stated otherwise, the degree of a term ai1,...,in xi1
1 · · · · · xin

n as above is meant to be the total
degree i1 + · · ·+ in in all variables together. The maximum degree occurring in a term with non-zero
coefficient of a polynomial f ̸= 0 is called the degree deg f of f . We call F homogeneous if all its
terms have the same degree.

It is easy to see that K[x1, . . . ,xn] is an integral domain, and that deg( f g) = deg f + degg holds for
all non-zero polynomials f ,g. The units of K[x1, . . . ,xn] are just the non-zero constant polynomials,
which we can identify with K∗ = K\{0}.

Fact 1.2 (Factorial rings). The polynomial ring K[x1, . . . ,xn] is a factorial ring (also called a unique
factorization domain) [G6, Proposition 8.1 and Remark 8.4]. This means that prime and irreducible
elements agree, and that every non-zero non-unit has a decomposition as a product of irreducible
polynomials in a unique way (up to permutations, and up to multiplication with units). In the fol-
lowing, we will usually use this unique factorization property without mentioning. Note however
that, as it is already the case for the integers Z, performing such factorizations in K[x1, . . . ,xn] ex-
plicitly or even determining if a given polynomial is irreducible is usually hard.

Definition 1.3 (Affine varieties).
(a) For n ∈ N we call An := An

K := Kn the affine n-space over K.

It is customary to use the different notation An for Kn here since Kn is also a K-vector space
and a ring. We will usually write An

K if we want to ignore these additional structures: For
example, addition and scalar multiplication are defined on Kn, but not on An

K . The affine
space An

K will be the ambient space for our zero loci of polynomials below.

(b) For a subset S⊂ K[x1, . . . ,xn] of polynomials we call

V (S) := {P ∈ An : f (P) = 0 for all f ∈ S} ⊂ An

the (affine) zero locus of S. Subsets of An of this form are called (affine) varieties. If
S = { f1, . . . , fk} is a finite set, we will write V (S) =V ({ f1, . . . , fk}) also as V ( f1, . . . , fk).

In these notes we will mostly restrict ourselves to zero loci of a single polynomial in two
variables. We will then usually call these variables x and y instead of x1 and x2.
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Remark 1.4. Obviously, for two polynomials f ,g ∈ K[x,y] we have . . .

(a) V ( f )∪V (g) =V ( f g), as f g(P) = 0 for a point P ∈ A2 if and only if f (P) = 0 or g(P) = 0;

(b) V ( f )∩V (g) =V ( f ,g) by definition.

One would probably expect now that a plane curve is just the zero locus of a polynomial in two
variables. However, for our purposes it turns out to be more convenient to define a (plane) curve as
such a polynomial itself rather than as its zero locus — this will simplify many statements and proofs
later on when we want to study curves algebraically, i. e. in terms of their polynomials. Often, we
will denote polynomials by capital instead of small letters if we want to think of them in this way.
However, as it is obvious that two polynomials F and G with F = λG for some λ ∈ K∗ have the
same zero locus (and thus determine the same geometric object), we incorporate this already in the
definition of a curve:

Definition 1.5 (Affine curves).

(a) An (affine plane algebraic) curve (over K) is a non-constant polynomial F ∈K[x,y] modulo
units, i. e. modulo the equivalence relation F ∼G if F = λG for some λ ∈K∗. We will write
it just as F , not indicating this equivalence class in the notation — this will not lead to any
confusion.

We call V (F) = {P ∈ A2 : F(P) = 0} the set of points of F .

(b) The degree of a curve is its degree as a polynomial. Curves of degree 1,2,3, . . . are usually
referred to as lines, quadrics/conics, cubics, and so on.

(c) A curve F is called irreducible if it is as a polynomial, and reducible otherwise. Similarly,
if F = F1

a1 · · · · ·Fak
k is the irreducible decomposition of F as a polynomial (see Fact 1.2),

we will also call this the irreducible decomposition of the curve F . The curves F1, . . . ,Fk
are then called the (irreducible) components of F and a1, . . . ,ak their multiplicities.

A curve F is called reduced if all its irreducible components have multiplicity 1.

Remark 1.6.

(a) Obviously, the notions of Definition 1.5 are well-defined, i. e. they do not change when
multiplying a polynomial with a unit in K∗. All our future constructions with curves will
also have this property, and it will be equally obvious in all these cases as well. In the
following, we will therefore not mention this fact any more.

(b) In the literature, a curve often refers to the set of points V (F) as in Definition 1.5 (a), i. e. to
the geometric object in A2 rather than to the polynomial F .

Example 1.7. Especially in the case of the ground field K = R, we will usually visualize a curve F
by drawing its set of points V (F) in the plane — although this does not contain the full information
on the curve, as we will see below.

(a) The curve x+ y is a line, and hence irreducible (as a polynomial of degree 1 cannot be a
product of two non-constant polynomials). Its square (x+ y)2 has the same set of points as
x+ y, but it is a quadric. It is neither irreducible nor reduced.

More generally, it is obvious that curves with the same irreducible components, just with
different multiplicities, have the same set of points.

(b) The quadric xy is reducible as well, but it is reduced since it has two irreducible components
x and y of multiplicity 1.

(c) In contrast to its appearance (see the picture below), the cubic F = y2 +x−x3 is irreducible:
If we had F = GH for some non-constant G and H, and thus V (F) = V (G)∪V (H) by
Remark 1.4 (a), then one of these factors would have to be a line and the other one a quadric.
But F does not contain a line as we can see from the picture.
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(d) The set of points of the real curve F = x2 + y2 + 1 is empty, but by our definition F is
nevertheless a curve — and also different from the curve x2 + y2 +2, whose set of points is
also empty. If we consider F over the complex numbers however, it has a non-empty set of
points, but it is hard to visualize as it lies in A2

C = A4
R.

(a) (c)(b)

Exercise 1.8. Prove algebraically that the curve y2 + x− x3 of Example 1.7 (c) is irreducible.

Even if we defined a curve to be a polynomial (modulo scalars), we would of course rather like to
think of it as a geometric object in A2 as in the pictures in Examples 0.1 or 1.7. For the rest of this
chapter we will therefore study to what extent the set of points V (F) determines back F , i. e. whether
we can “draw V (F) in the plane to specify F”. We have already seen two reasons why this does not
work in general:

• If a curve F is non-reduced as in Example 1.7 (a), we cannot determine the multiplicities on
its components from V (F).

• If (as in the case K = R) there are non-constant polynomials without zeros, the set of points
V (F) might be empty as in Example 1.7 (d), and thus does not determine back F .

We now want to see that these are essentially the only two problems that can arise, and simultane-
ously prove that the intersection of two curves without a common component is finite. For this, we
need two algebraic prerequisites.

Remark 1.9 (Algebraically closed fields). A field K is called algebraically closed if every non-
constant polynomial F ∈ K[x] in one variable has a zero. The most prominent example is clearly
K =C [G4, Proposition 6.20] — but it can be shown that every field is contained in an algebraically
closed one, so that considering only curves over algebraically closed fields would not be a serious
restriction. In fact, many textbooks on algebraic geometry restrict to this case altogether. In these
notes however we will at least develop the general theory for arbitrary ground fields up to Chapter
5 in order not to exclude e. g. the geometrically most intuitive case of real curves from the very
beginning.
Note that any algebraically closed field is necessarily infinite: If K = {c1, . . . ,cn} was finite, the
polynomial F = ∏

n
i=1(x− ci)+1 would have no zero.

Construction 1.10 (Quotient fields). For any integral domain R, there is an associated quotient field

QuotR =
{a

b
: a,b ∈ R with b ̸= 0

}
,

where the “fraction” a
b denotes the equivalence class of the pair (a,b) under the relation

(a,b)∼ (a′,b′) ⇔ ab′ = a′b.

It is in fact a field with the standard addition and multiplication rules for fractions. The ring R is then
a subring of QuotR by identifying a ∈ R with a

1 ∈ QuotR [G6, Example 6.5 (b)].
The easiest example is R =Z, in which case we just have QuotR =Q. For our purposes the most im-
portant example is the polynomial ring R = K[x1, . . . ,xn], for which QuotR is denoted K(x1, . . . ,xn)
and called the field of rational functions over K. Note that, despite its name, its elements are not
defined as functions, but rather as formal quotients of polynomials as e. g. x1+x2

x1−x2
∈ K(x1,x2). They

do, however, define functions on the subset of An where the denominator is non-zero.
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Lemma 1.11. Let F be an affine curve.

(a) If K is algebraically closed then V (F) is infinite.

(b) If K is infinite then A2
K\V (F) is infinite.

Proof. As F is not a constant polynomial, it has positive degree in at least one of the variables x and
y. By symmetry we may assume that this is x, so that F = anxn + · · ·+a0 for some a0, . . . ,an ∈ K[y]
with n > 0 and an ̸= 0.

Being non-zero, the polynomial an ∈ K[y] has only finitely many zeros. But K is in any case infinite
by Remark 1.9, hence there are infinitely many y∈K with an(y) ̸= 0. For each such y, the polynomial
F(x,y) is non-constant in x, so in case (a) there is an x ∈ K with F(x,y) = 0, and in case (b) there is
an x ∈ K with F(x,y) ̸= 0 (as F( · ,y) has only finitely many zeros). □

01

Proposition 1.12 (Finiteness of the intersection of curves). Let F and G be two curves without a
common component.

(a) The ideal ⟨F,G⟩ in K[x,y] contains a non-zero polynomial that depends only on x (and hence
by symmetry also a non-zero polynomial that depends only on y).

(b) The intersection V (F,G) of the two curves is finite.

Proof.

(a) By assumption, F and G are coprime in K[x,y]. We claim that they are then also coprime in
K(x)[y]. In fact, if they had a common factor in K(x)[y] then after clearing denominators we
would have aF = HF ′ and aG = HG′ for some H,F ′,G′ ∈ K[x,y] and non-zero a ∈ K[x],
where H has a positive y-degree. But then every irreducible factor of a must divide H or
both F ′ and G′ in K[x,y]. So by replacing H or both F ′ and G′ by these quotients we arrive
at a new decomposition F = HF ′ and G = HG′ with H,F ′,G′ ∈ K[x,y] and H of positive
y-degree, in contradiction to F and G being coprime in K[x,y].

Now the ring K(x)[y] as a univariate polynomial ring over a field K(x) is a principal ideal
domain [G1, Example 10.23]. So as F,G ∈ K(x)[y] are coprime we can write 1 as a linear
combination of F and G with coefficients in K(x)[y] [G1, Proposition 10.13 (b)], which
means after clearing denominators again that c = DF +EG for some D,E ∈ K[x,y] and a
non-zero c ∈ K[x]. Hence, c ∈ ⟨F,G⟩ is a non-constant polynomial that depends only on x.

(b) Continuing the above notation, if P ∈V (F,G) we have c(P) = D(P)F(P)+E(P)G(P) = 0.
This restricts the x-coordinate of all points P ∈ V (F,G) to the finitely many zeros of c. By
symmetry, we then also have only finitely many choices for the y-coordinate, i. e. V (F,G) is
finite. □

Corollary 1.13. Let F be a curve over an algebraically closed field. Then for any irreducible curve
G we have

G |F ⇔ V (G)⊂V (F).

In particular, the irreducible components of F (but not their multiplicities, see Example 1.7 (a)) can
be recovered from V (F).

Proof.

“⇒” Assume that F = GH for some curve H. If P ∈ V (G), i. e. G(P) = 0, then we also have
F(P) = G(P)H(P) = 0, and hence P ∈V (F).

“⇐” Now assume that V (G) ⊂ V (F). Then V (F,G) = V (G) is infinite by Lemma 1.11 (a). By
Proposition 1.12 (b) this means that F and G must have a common component. As G is
irreducible, this is only possible if G |F . □
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Remark 1.14 (Specifying a curve by its set of points). By Corollary
1.13, over an algebraically closed field we can specify a curve by giving
its set of points together with a multiplicity on each irreducible compo-
nent. For example, the picture on the right (where the circle has radius
1 and the numbers at the components are their multiplicities) represents
the curve (x2 + y2−1)(x− y)2. (Note however that this is a real picture,
but Corollary 1.13 would only hold over C.)

If we do not specify multiplicities in a picture, we usually mean the cor-
responding reduced curve, i. e. where all multiplicities are 1.

1

2

Notation 1.15. Due to the above correspondence between a curve F and its set of points V (F), we
will sometimes write:

(a) P ∈ F instead of P ∈V (F), i. e. F(P) = 0 (“P lies on the curve F”);

(b) F ∩G instead of V (F,G) for the points that lie on both F and G;

(c) F ∪G for the curve FG (see Remark 1.4 (a));

(d) G⊂ F instead of G |F .

Exercise 1.16 (Pythagorean triples in algebraic geometry). Let F = x2+y2−1∈K[x,y] be the “unit
circle” over K. Assume that the characteristic of K is not 2, i. e. that 1+1 ̸= 0 in K.

(a) Considering the intersection points of an arbitrary line L (with
slope t) through (−1,0) with F , show that the set of points of F
is

V (F)= {(−1,0)}∪
{(

1− t2

1+ t2 ,
2t

1+ t2

)
: t ∈ K with 1+ t2 ̸= 0

}
.

(b) Using (a), prove that the integer solutions (a,b,c) of the equa-
tion a2 + b2 = c2 (the so-called Pythagorean triples) are, up
to a permutation of a and b, exactly the triples of the form
λ (u2− v2,2uv,u2 + v2) with λ ,u,v ∈ Z.

F

L
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2. Intersection Multiplicities

Let us start our study of curves by introducing the concept of intersection multiplicity, which will
be central throughout these notes. It generalizes the well-known notion of multiplicity of a zero
of a univariate polynomial: If f ∈ K[x] is a polynomial and x0 ∈ K such that f = (x− x0)

m g for a
polynomial g ∈ K[x] with g(x0) ̸= 0, then f is said to have multiplicity m at x0. As in the following
two pictures on the left, a zero of multiplicity 1 means that the graph of f intersects the x-axis
transversely, whereas in the case of multiplicity (at least) 2 it is tangent to it. Roughly speaking,
higher multiplicities would correspond to graphs for which the x-axis is an even better approximation
around x0.

P

P
G

F
F

f
f

G

x0 x0

multiplicity 1 multiplicity 2multiplicity 1 multiplicity 2
f = (x− x0)g f = (x− x0)

2 g

In this geometric interpretation, we have considered how the graph of f intersects the horizontal axis
locally at the given point, i. e. how the two curves F = y− f and G = y intersect. As in the picture
above on the right, this concept should thus also make sense for arbitrary curves F and G at an
intersection point P: If they intersect transversely, i. e. with different tangent directions, we want to
say that they have an intersection multiplicity of 1 at P, whereas equal tangents correspond to higher
multiplicities. But of course, the curves F and G might also have “singularities” as e. g. the origin in
Example 0.1 (b) and (c), in which case it is not clear a priori how their intersection multiplicity can
be interpreted or even defined.

So our first task must be to actually construct the intersection multiplicity for arbitrary curves. For
this we need the following algebraic object that allows us to capture the local geometry of the plane
around a point.

Definition 2.1 (Local rings of A2). Let P ∈ A2 be a point.

(a) The local ring of A2 at P is defined as

OP := OA2,P :=
{

f
g

: f ,g ∈ K[x,y] with g(P) ̸= 0
}
⊂ K(x,y).

(b) It admits a well-defined ring homomorphism

OP→ K,
f
g
7→ f (P)

g(P)

which we will call the evaluation map. Its kernel will be denoted by

IP := IA2,P :=
{

f
g

: f ,g ∈ K[x,y] with f (P) = 0 and g(P) ̸= 0
}
⊂OP.

Remark 2.2 (Geometric and algebraic interpretation of local rings). Intuitively, OP describes “nice”
(i. e. rational) functions that have a well-defined value at P (determined by the evaluation map), and
thus also in a neighborhood of P. Note however that OP does not admit similar evaluation maps
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at other points Q ̸= P since the denominator of the fractions might vanish there. This explains the
name “local ring” from a geometric point of view. The ideal IP in OP describes exactly those local
functions that have the value 0 at P.

Algebraically, OP is a subring of K(x,y) that contains K[x,y]. As a subring of a field it is an inte-
gral domain, and its units are precisely the fractions f

g for which both f and g are non-zero at P.
Moreover, just like K[x,y] it is a factorial ring, with the irreducible elements being the irreducible
polynomials that vanish at P (since the others have become units).

For those who know some commutative algebra we should mention that OP is also a local ring in
the algebraic sense, i. e. that it contains exactly one maximal ideal, namely IP [G6, Definition 6.9]:
If I is any ideal in OP that is not a subset of IP then it must contain an element f

g with f (P) ̸= 0 and
g(P) ̸= 0. But this is then a unit since g

f ∈ OP as well, and hence we have I = OP.

In fact, in the algebraic sense OP is just the localization of the polynomial ring K[x,y] at the maximal
ideal ⟨x− x0,y− y0 ⟩ associated to the point P = (x0,y0) — which also shows that it is a local ring
[G6, Corollary 6.10].

Definition 2.3 (Intersection multiplicities). For a point P ∈ A2 and two curves (or polynomials) F
and G we define the intersection multiplicity of F and G at P to be

µP(F,G) := dim OP/⟨F,G⟩ ∈ N∪{∞},

where dim denotes the dimension as a vector space over K.

As this definition is rather abstract, we should of course figure out how to compute this number, what
its properties are, and why it captures the geometric idea given above. In fact, it is not even clear
whether µP(F,G) is finite. But let us start with a few simple statements and examples.

Remark 2.4.

(a) It is clear from the definitions that an invertible affine coordinate transformation from (x,y)
to

(x′,y′) = (ax+by+ c,dx+ ey+ f ) for a,b,c,d,e, f ∈ K with ae−bd ̸= 0

gives us an isomorphism between the local rings OP and OP′ , where P′ is the image point of
P; and between OP/⟨F,G⟩ and OP′/⟨F ′,G′ ⟩, where F ′ and G′ are F and G expressed in the
new coordinates x′ and y′. We will often use this invariance to simplify our calculations by
picking suitable coordinates, e. g. such that P = 0 is the origin.

(b) The intersection multiplicity is symmetric: We have µP(F,G) = µP(G,F) for all F and G.

(c) For all F,G,H we have ⟨F,G+FH ⟩= ⟨F,G⟩, and thus µP(F,G+FH) = µP(F,G).

In Definition 2.3, we have not required a priori that P actually lies on both curves F and G. However,
the intersection multiplicity is at least 1 if and only if it does:

Lemma 2.5. Let P ∈ A2, and let F and G be two curves (or polynomials). We have:

(a) µP(F,G)≥ 1 if and only if P ∈ F ∩G;

(b) µP(F,G) = 1 if and only if ⟨F,G⟩= IP in OP.

Proof. Assume first that F(P) ̸= 0. Then F is a unit in OP, and thus ⟨F,G⟩=OP, i. e. µP(F,G) = 0.
Moreover, we then have P /∈ F and F /∈ IP, proving both (a) and (b) in this case. Of course, the case
G(P) ̸= 0 is analogous.

So we may now assume that F(P) = G(P) = 0, i. e. P∈ F∩G. Then the evaluation map at P induces
a well-defined and surjective map OP/⟨F,G⟩ → K. It follows that µP(F,G)≥ 1, proving (a) in this
case. Moreover, we have µP(F,G) = 1 if and only if this map is an isomorphism, i. e. if and only if
⟨F,G⟩ is exactly the kernel IP of the evaluation map. □
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Example 2.6 (Intersection multiplicity of coordinate axes). The kernel I0 of the evaluation map at
0 consists exactly of the fractions f

g such that f does not have a constant term, which is just the
ideal ⟨x,y⟩ in O0. By Lemma 2.5 (b) this means that µ0(x,y) = 1, i. e. (as expected) that the two
coordinate lines have intersection multiplicity 1 at the origin.

Regarding the finiteness of the intersection multiplicity, the following two exercises show that
µP(F,G) is finite if and only if F and G do not have a common component through P. This should
not come as a surprise since an infinite intersection multiplicity should mean that the two curves
“touch at P to infinite order”, i. e. that they agree locally around P in the irreducible case, resp. share
a common component in the general case. By Remark 2.4 (a) it suffices to consider the case when
P = 0 is the origin.

Exercise 2.7 (Finiteness of the intersection multiplicity). Let F and G be two curves without a
common component that passes through the origin. Show:

(a) There is a number n ∈ N such that xn = yn = 0 in O0/⟨F,G⟩.
(b) Every element of O0/⟨F,G⟩ has a polynomial representative.

(c) µ0(F,G)< ∞.

Exercise 2.8 (Infinite intersection multiplicities). Let F and G be two curves that pass through the
origin. Show:

(a) If F and G have no common component then the family (Fn)n∈N is linearly independent in
O0/⟨G⟩.

(b) If F and G have a common component that passes through the origin then µ0(F,G) = ∞.

For the last important basic property of intersection multiplicities we first need another easy algebraic
tool.

Construction 2.9 (Short exact sequences). We say that a sequence

0−→U
ϕ−→V

ψ−→W −→ 0

of linear maps between vector spaces (where 0 denotes the zero vector space) is exact if the image
of each map equals the kernel of the next, i. e. if

(a) kerϕ = 0 (i. e. ϕ is injective);

(b) imϕ = kerψ; and

(c) imψ =W (i. e. ψ is surjective).

In this case, we get a dimension formula

dimU +dimW
(a),(c)
= dimimϕ +dimimψ = dimimϕ +dimV/kerψ

(b)
= dimimϕ +dimV/ imϕ

= dimV.

Proposition 2.10 (Additivity of intersection multiplicities). Let P ∈A2, and let F,G,H be any three
curves (or polynomials).

(a) If F and G have no common component through P there is an exact sequence

0−→ OP/⟨F,H ⟩
·G−→ OP/⟨F,GH ⟩ π−→ OP/⟨F,G⟩ −→ 0,

where π is the natural quotient map.

(b) We have µP(F,GH) = µP(F,G)+µP(F,H).

Proof.

(a) We may assume that F and G have no common component at all, since components that do
not pass through P are units in OP and can therefore be dropped in the ideals.
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It is checked immediately that both non-trivial maps in this sequence are well-defined, and
that conditions (b) and (c) of Construction 2.9 hold. Hence we just have to show that the first
multiplication map is injective: Assume that f

g is in the kernel of this map, i. e. that

f
g
·G =

f ′

g′
·F +

f ′′

g′′
·GH

for certain f ′, f ′′,g′,g′′ ∈ K[x,y] with g′(P) and g′′(P) non-zero. We may assume without
loss of generality that all three fractions have the same denominator, and multiply by it to
obtain the equation f G = f ′F + f ′′GH in K[x,y]. Now G clearly divides f G and f ′′GH,
hence also f ′F , and consequently f ′ as F and G have no common component. So we have
f ′ = aG for some a ∈ K[x,y], and we see that f G = aFG+ f ′′GH. Dividing by G, it follows
that f = aF + f ′′H, so that f and hence also f

g are zero in OP/⟨F,H ⟩. This shows the
injectivity of the first map.

(b) If F and G have no common component through P the statement follows immediately from
(a) by taking dimensions as in Construction 2.9. Otherwise the equation is true as ∞ = ∞ by
Exercise 2.8 (b). □ 02

Touching the mathematical field of computer algebra, we are now ready to explicitly compute the
intersection multiplicity µP(F,G) of two arbitrary curves F and G at a point P where they do not
have a common component. By Remark 2.4 (a) it suffices to do this at the origin P = 0. Let us start
with the simple case when one of the curves is the horizontal axis; this will be needed in the general
algorithm afterwards.

Example 2.11 (Intersection multiplicity with the horizontal axis). Let F be an affine curve that does
not contain the horizontal axis y. We want to compute the intersection multiplicity µ0(y,F) with this
axis at the origin.

By Remark 2.4 (c) we may remove all multiples of y from F , i. e. replace F by the polynomial
F(x,0) ∈ K[x], which is not the zero polynomial since y is not a component of F . We can write
F(x,0) = xm g where g ∈ K[x] is non-zero at the origin, so that m is the multiplicity of 0 in F(x,0).
Hence we obtain

µ0(y,F) = µ0(y,F(x,0)) (Remark 2.4 (c))

= µ0(y,xm g)

= m µ0(y,x)+µ0(y,g) (Proposition 2.10 (b))
= m (Example 2.6 and Lemma 2.5 (a)).

Note that this coincides with the expectation from the beginning of this chapter: If f ∈ K[x] is a
univariate polynomial with a zero x0 of multiplicity m (which is just x0 = 0 in our current case) then
the intersection multiplicity of its graph y− f with the x-axis at the point (x0,0) is m.

Algorithm 2.12 (Computation of the intersection multiplicity µ0(F,G)). Let F and G be two curves
(or polynomials) without common component through the origin. We then repeat the following
procedure recursively to compute the intersection multiplicity µ0(F,G):

(a) If F(0) ̸= 0 or G(0) ̸= 0, i. e. if one of the curves does not pass through the origin, we stop
with µ0(F,G) = 0 by Lemma 2.5 (a).

(b) Otherwise, if F and G both contain a monomial independent of y, we write

F = axm + (terms involving y or with a lower power of x),

G = bxn + (terms involving y or with a lower power of x)

for some a,b ∈ K∗ and m,n ∈ N>0, where we may assume (by possibly swapping F and G)
that m≥ n. Similarly to a standard polynomial long division we then set

F ′ := F− a
b

xm−nG,
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hence canceling the xm-term in F . By Remark 2.4 (c) we then have µ0(F,G) = µ0(F ′,G),
so we can replace F by F ′ (which also passes through the origin) and repeat this step (b).
As this procedure makes the number m+ n strictly smaller in each step, we will eventually
arrive at a situation with one of the polynomials not having a monomial independent of y,
leading to the final case:

(c) If one of the polynomials F and G, say F , does not contain a monomial independent of y,
we can factor F = yF ′ and obtain by Proposition 2.10 (b)

µ0(F,G) = µ0(y,G)+µ0(F ′,G).

In this expression, the multiplicity µ0(y,G) can be computed directly by Example 2.11: It
is the lowest power of x in a term of G independent of y. Note that this number is non-
zero as G(0) = 0. Hence we have µ0(F ′,G) < µ0(F,G); so if we now repeat the algorithm
recursively to compute µ0(F ′,G) it will terminate in finitely many steps.

Example 2.13. Let us compute the intersection multiplicity µ0(F,G) at the origin of the two curves
F = y2− x3 and G = x2− y3 as in the picture below on the right. We follow Algorithm 2.12 and
indicate which step we performed each time:

µ0(y2− x3,x2− y3)
(b)
= µ0(y2− x3 + x(x2− y3),x2− y3)

= µ0(y2− xy3,x2− y3)

(c)
= µ0(y,x2− y3)︸ ︷︷ ︸

=2 by 2.11

+µ0(y− xy2,x2− y3)

(c)
= 2+µ0(y,x2− y3)︸ ︷︷ ︸

=2 by 2.11

+µ0(1− xy,x2− y3)︸ ︷︷ ︸
=0 by (a)

= 4.

G

F

Remark 2.14 (Curves with common components). If F and G have a common component through
0, Algorithm 2.12 still performs correct computations, but it might not terminate. For example, for
the curves F = x2 and G = xy− x with common component x it yields

µ0(x2,xy− x)
(b)
= µ0(x2 + x(xy− x),xy− x)

= µ0(x2y,xy− x)
(c)
= µ0(y,xy− x)︸ ︷︷ ︸

=1 by 2.11

+µ0(x2,xy− x),

leading to an infinite loop. However, if for arbitrary given F and G it does terminate with a finite
answer, then by Exercise 2.8 (b) we have proven simultaneously with this computation that F and
G have no common component through the origin. In contrast, if the algorithm does not seem to
terminate we will find in Remark 4.8 (c) a rigorous way to decide whether F and G have a common
component through 0.

Exercise 2.15. Draw the real curves F = x2 + y2 + 2y and G = y3x6− y6x2, determine their irre-
ducible decompositions, their intersection points, and their intersection multiplicities at these points.

Following our algorithm, we can now also give an easy and important criterion for when the inter-
section multiplicity is 1.

Notation 2.16 (Homogeneous parts of polynomials). For a polynomial F ∈ K[x,y] of degree d and
i = 0, . . . ,d, we define the degree-i part of F to be the sum of all terms of F of degree i. Hence all
Fi are homogeneous, and we have F = F0 + · · ·+Fd . We call F0 the constant part, F1 the linear part,
and Fd the leading part of F .

Proposition 2.17 (Intersection multiplicity 1). Let F and G be two curves (or polynomials) through
the origin. Then µ0(F,G) = 1 if and only if the linear parts F1 and G1 are linearly independent.
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Proof. We prove the statement following Algorithm 2.12, using the notation from there.

By assumption F and G pass through the origin, so we are not in case (a) of the algorithm. In case
(b), note that F ′1 and G1 are linearly independent if and only if F1 and G1 are, as either F ′1 = F1 (if
m > n) or F ′1 = F1− a

b G1 (if m = n). Hence we can consider the first time we reach case (c). As
µ0(y,G)> 0 we then have

µ0(F,G) = 1 ⇔ µ0(y,G) = 1 and µ(F ′,G) = 0

⇔ G contains a monomial x1y0 and F ′ contains a constant term
(by Example 2.11 and Lemma 2.5 (a))

⇔ G1 = ax+by for some a ∈ K∗,b ∈ K, and F1 = cy for some c ∈ K∗

⇔ F1 and G1 are linearly independent,

where the last implication “⇐” follows since F = yF ′ clearly does not contain a monomial x1y0. □
In fact, Proposition 2.17 has an easy geometric interpretation in the
spirit of the beginning of this chapter: F1 and G1 can be thought of
as the linear approximations of F and G around the origin. If these ap-
proximations are non-zero, hence lines, they can be thought of as the
tangents to the curves as in the picture on the right, and the proposition
states that the intersection multiplicity is 1 if and only if these tangent
directions are not the same.

G

F1
G1

F

0

In general, it is the lowest non-zero terms of a curve F that can be considered as the best local
approximation of F around 0. We can use this idea to define tangents to arbitrary curves (i. e. even
if the linear approximation F1 vanishes) as follows.

Definition 2.18 (Tangents and multiplicities of points). Let F be a curve.

(a) The smallest m∈N for which the homogeneous part Fm is non-zero is called the multiplicity
m0(F) of F at the origin. Any linear factor of Fm (considered as a curve) is called a tangent
to F at the origin.

(b) For a general point P = (x0,y0) ∈ A2, tangents at P and the multiplicity mP(F) are defined
by first shifting coordinates to x′ = x−x0 and y′ = y−y0, and then applying (a) to the origin
(x′,y′) = (0,0).

Exercise 2.19. Given a linear coordinate transformation that maps the origin to itself and a curve F
to F ′, show that m0(F) = m0(F ′), and that the transformation maps any tangent of F to a tangent of
F ′. In particular, despite its appearance, Definition 2.18 is independent of the choice of coordinates
on A2.

By definition, we clearly have mP(F)> 0 if and only if P∈ F . The most important case of Definition
2.18 is then mP(F) = 1, i. e. if there is a non-zero local linear approximation for F around P. There
is a special terminology for this case.

Definition 2.20 (Smooth and singular points). Let F be a curve.

(a) A point P ∈ F is called smooth or regular if mP(F) = 1. Note that F has then a unique
tangent at P, which we will denote by TPF . For P = 0, it is simply given by the linear part
F1 of F .

If P is not a smooth point, i. e. if mP(F)> 1, we say that P is a singular point or a singularity
of F . As a special case, a singularity with mP(F) = 2 such that F has (exactly) two different
tangents there is called a node.

(b) The curve F is said to be smooth or regular if all its points are smooth. Otherwise, F is
called singular.

Example 2.21. Let us consider the origin in the real curves in the following picture.
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(a) (b) (c) (d)
y− x2 y2− x2− x3 y2− x3 x2 + y2

For the case (a), the curve F = y− x2 in (a) has (no constant but) a linear term y. Hence, we have
m0(F) = 1, the origin is a smooth point of the curve, and its tangent there is T0F = y.
For the other three curves, the origin is a singular point of multiplicity 2. In (b), this singularity is
a node, since the quadratic term is y2− x2 = (y− x)(y+ x), and thus we have the two tangents y− x
and y+ x, shown as dashed lines in the picture. The curve in (c) has only one tangent y which is of
multiplicity 2. Finally, in (d) there is no tangent at all since x2 + y2 does not contain a linear factor
over R. Note that, in any case, knowing the tangents of F at the origin (which are easy to compute)
tells us to some extent what the curve looks like locally around 0.

With these notations we can now reformulate Proposition 2.17.

Corollary 2.22 (Transverse intersections). Let P be a point in the intersection of two curves F and
G. Then µP(F,G) = 1 if and only if P is a smooth point of both F and G, and TPF ̸= TPG.
We say in this case that F and G intersect transversely at P.

Remark 2.23 (Additivity of point multiplicities). Note that mP(FG) = mP(F)+mP(G). Hence,
any point that lies on at least two (not necessarily distinct) irreducible components has multiplicity
at least 2, and is thus a singular point. In particular, all points on a component of multiplicity at least
2 (in the sense of Definition 1.5 (c)) are always singular.

To check if a given curve F is smooth, i. e. whether every point P ∈ F is a smooth point of F , there
is a simple criterion that does not require to shift P to the origin first. It uses the (partial) derivatives
∂F
∂x and ∂F

∂y of F , which can be defined purely formally over an arbitrary ground field and then satisfy
the usual rules of differentiation [G1, Exercise 9.10].

Proposition 2.24 (Affine Jacobi Criterion). Let P = (x0,y0) be a point on an affine curve F.

(a) P is a singular point of F if and only if ∂F
∂x (P) =

∂F
∂y (P) = 0.

(b) If P is a smooth point of F the tangent to F at P is given by

TPF =
∂F
∂x

(P) · (x− x0)+
∂F
∂y

(P) · (y− y0).

Proof. Substituting x = x′+x0 and y = y′+y0, i. e. x′ = x−x0 and y′ = y−y0, we can consider F as
a polynomial in x′ and y′. If we expand

F = ax′+by′+ (higher order terms in x′ and y′),

then by definition F is singular at (x′,y′) = (0,0), i. e. at P, if and only if a = b = 0. But by the chain
rule of differentiation we have

a =
∂F
∂x′

(0) =
∂F
∂x

(P) and b =
∂F
∂y′

(0) =
∂F
∂y

(P),

so that (a) follows. Moreover, if F is smooth at P then its tangent is just the term of F linear in x′

and y′, i. e.

ax′+by′ =
∂F
∂x

(P) · (x− x0)+
∂F
∂y

(P) · (y− y0),

as claimed in (b). □
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Example 2.25. Consider again the real curve F = y2−x2−x3 from Example 2.21 (b). To determine
its singular points, we compute the partial derivatives

∂F
∂x

=−2x−3x2 and
∂F
∂y

= 2y.

Its common zeros are (0,0) and (− 2
3 ,0). But the latter does not lie on the curve, and so we conclude

that the origin is the only singular point of F .

Smoothness of a curve F at a point P has another important algebraic consequence: It means that the
containment of ideals containing F in OP (or in other words of ideals in OP/⟨F ⟩) can be checked
by a simple comparison of intersection multiplicities.

Proposition 2.26 (Comparing ideals using intersection multiplicities). Let P be a smooth point on
a curve F. Then for any two curves G and H that do not have a common component with F through
P we have

⟨F,G⟩ ⊂ ⟨F,H ⟩ in OP ⇔ µP(F,G)≥ µP(F,H).

In particular, we have ⟨F,G⟩= ⟨F,H ⟩ in OP if and only if µP(F,G) = µP(F,H).
03

Proof.

“⇒”: Clearly, if ⟨F,G⟩ ⊂ ⟨F,H ⟩ then µP(F,G) = dimOP/⟨F,G⟩ ≥ dimOP/⟨F,H ⟩= µP(F,H).

“⇐”: Let L be a line through P which is not the tangent TPF . Then µP(F,L) = 1 by Corollary
2.22, and hence µP(F,Ln) = n for all n ∈ N by Proposition 2.10. Let n be the maximum
number such that ⟨F,G⟩ ⊂ ⟨F,Ln ⟩ in OP (this exists since ⟨F,G⟩ ⊂ OP = ⟨F,L0 ⟩, and
⟨F,G⟩ ⊂ ⟨F,Ln ⟩ requires n≤ µP(F,G) by the direction “⇒” that we have already shown).

We claim that then ⟨F,G⟩ = ⟨F,Ln ⟩ in OP, i. e. that Ln ∈ ⟨F,G⟩. To see this, note that
⟨F,G⟩ ⊂ ⟨F,Ln ⟩ implies G = aF + bLn for some a,b ∈ OP. If we had b(P) = 0 it would
follow that b ∈ IP = ⟨F,L⟩ by Lemma 2.5 (b), i. e. b = cF + dL for some c,d ∈ OP, which
means that G = aF +(cF + dL)Ln ∈ ⟨F,Ln+1 ⟩ and thus contradicts the maximality of n.
Hence b(P) ̸= 0, i. e. b is a unit in OP, and we obtain Ln = 1

b (G−aF) ∈ ⟨F,G⟩ as desired.

Of course, now ⟨F,G⟩ = ⟨F,Ln ⟩ implies that µP(F,G) = µP(F,Ln) = n, so that we ob-
tain ⟨F,G⟩ = ⟨F,LµP(F,G) ⟩. But the same holds for H instead of G, and so the inequality
µP(F,G)≥ µP(F,H) yields

⟨F,G⟩= ⟨F,LµP(F,G) ⟩ ⊂ ⟨F,LµP(F,H) ⟩= ⟨F,H ⟩. □

Example 2.27. Proposition 2.26 is false without the smoothness assumption on F : For the real curve
F = x2−y2 = (x−y)(x+y) (i. e. the union of the two diagonals in A2, with singular point 0), G = x,
and H = y, we have ⟨F,G⟩ = ⟨x,y2 ⟩ and ⟨F,H ⟩ = ⟨y,x2 ⟩. Hence µ0(F,G) = µ0(F,H) = 2, but
⟨F,G⟩ ̸= ⟨F,H ⟩ (since y /∈ ⟨x,y2 ⟩, as otherwise we would have ⟨x,y2 ⟩= ⟨x,y⟩, in contradiction to
µ0(x,y2) = 2 ̸= 1 = µ0(x,y)).

Remark 2.28 (Geometric interpretation of smooth curves). Mainly for the ground field K = R, our
results on smooth curves have an intuitive interpretation:

(a) The Jacobi Criterion of Proposition 2.24 (a) states that P is a smooth point of a real curve
F if and only if the Implicit Function Theorem [G2, Proposition 27.9] can be applied to
the equation F = 0 around P, so that V (F) is a 1-dimensional submanifold of R2 [G2,
Definition 27.17]. Hence, in this case V (F) is locally the graph of a differentiable function
(expressing y as a function of x or vice versa), and thus we arrive at the intuitive interpretation
of smoothness as “having no sharp corners”.

(b) To interpret Proposition 2.26, let us continue the picture of (a) and consider a local (analytic)
coordinate z around P on the 1-dimensional manifold V (F). In accordance with the idea of
intersection multiplicity at the beginning of this chapter, a curve G should have intersection
multiplicity n with F at P if on F it is locally a function of the form azn in this coordinate,
with a a non-zero function at P (corresponding to a unit in OP). Now if n = µP(F,G) ≥
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µP(F,H) = m then in the same way H is of the form bzm for a function b non-zero at P, so
that bzm = H divides azn = G. This means that ⟨G⟩ ⊂ ⟨H ⟩ in OP/⟨F ⟩ (i. e. as functions
on F , a point of view that we will discuss in detail starting in Chapter 6) and thus that
⟨F,G⟩ ⊂ ⟨F,H ⟩ in OP.

(c) In fact, the analytic idea of (b) has a direct counterpart in commutative algebra that can then
be applied over arbitrary ground fields: For a smooth curve F the ring OP/⟨F ⟩ is a so-called
discrete valuation ring [G6, Chapter 12]. This means that the non-zero elements of this ring
have a valuation — a natural number that can be interpreted as the order of the zero as a
function on F , and hence as the local intersection multiplicity with F . It is then a result in
commutative algebra that the non-zero ideals in a discrete valuation ring are in one-to-one
correspondence with these valuations as above [G6, Corollary 12.17]. This is precisely the
statement of Proposition 2.26.

Exercise 2.29 (Cusps). Let P be a point on an affine curve F . We say that P is a cusp if mP(F) = 2,
there is exactly one tangent L to F at P, and µP(F,L) = 3.

(a) Give an example of a real curve with a cusp, and draw a picture of it.

(b) If F has a cusp at P, prove that F has only one irreducible component passing through P.

(c) If F and G have a cusp at P, what is the minimum possible value for the intersection multi-
plicity µP(F,G)?

Exercise 2.30.
(a) Find all singular points of the curve F = (x2+y2−1)3+10x2y2 ∈R[x,y], and determine the

multiplicities and tangents to F at these points.

(b) Show that an irreducible curve F over a field of characteristic 0 has only finitely many
singular points.

Can you find weaker assumptions on F that also imply that F has only finitely many singular
points?

(c) Show that an irreducible cubic can have at most one singular point, and that over an alge-
braically closed field this singularity must be a node or a cusp as in Exercise 2.29.
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3. Projective Curves

In the last chapter we have studied the local intersection behavior of curves. Our next major goal
will be to consider the global situation and ask how many intersection points two curves can have in
total, i. e. how many common zeros we find for two polynomials F,G ∈ K[x,y] (where we will count
each such zero with its intersection multiplicity).

For polynomials in one variable, the corresponding question would simply be how many zeros a
single polynomial f ∈ K[x] has. At least if K is algebraically closed, so that f is a product of linear
factors, the answer is then of course that we always get deg f zeros (counted with multiplicities).
Hence, in our current case of two polynomials F,G ∈ K[x,y] we would also hope for a result that
depends only on degF and degG, and not on the chosen polynomials.

However, even in the simplest case when F and G are two distinct lines this will not work, since F
and G might intersect in one point or be parallel (and hence have no intersection point). To fix this
situation, the geometric idea is to add points at infinity to the affine plane A2, so that two lines that
are parallel in A2 will meet there. On the other hand, two non-parallel lines (that intersect already in
A2) should not meet at infinity any more as this would then lead to two intersection points. Hence,
we have to add one point at infinity for each direction in the affine plane, so that parallel lines with
the same direction meet there, whereas others do not.

This new space with the added points at infinity will be called the projective plane. In the case K =R
we can also think of it as a compactification of the affine plane A2. It is the goal of this chapter to
study this process in detail, leading to plane curves that are “compactified” by points at infinity. For
two such compactified curves we will then compute the number of intersection points in the next
chapter, and the answer will then indeed depend only on the degrees of the curves.

Remark 3.1 (Geometric idea of projective spaces). Algebraically, the idea for adding points at
infinity is to embed the affine space An in the vector space Kn+1 by prepending a new coordinate
(typically called x0) equal to 1, i. e. by the map

An→ Kn+1, (x1, . . . ,xn) 7→ (1,x1, . . . ,xn),

and considering the 1-dimensional linear subspace in Kn+1 spanned by this vector. For example, in
this way a point (c1,c2) ∈A2 corresponds to the line through the origin and (1,c1,c2) ∈ K3, denoted
by P in the picture below on the left.

QQ

1

x0

1

x2

x0

x1x1

A2 A2(c1,c2)

P

We will define the projective plane as the set of all such 1-dimensional linear subspaces of K3. It
then consists of all lines through the origin coming from points of A2 as above — together with lines
contained in the plane where x0 = 0 that do not arise in this way, such as Q in the picture above.
As shown on the right, these lines can be thought of as limits of lines coming from an unbounded
sequence of points in A2. They can therefore be interpreted as the “points at infinity” that we were
looking for.

Let us now turn this idea into a precise definition.
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Definition 3.2 (Projective spaces). For n ∈ N, we define the projective n-space over K as the set of
all 1-dimensional linear subspaces of Kn+1. It is denoted by Pn

K or simply Pn.

Notation 3.3 (Homogeneous coordinates). Obviously, a 1-dimensional linear subspace of Kn+1 is
uniquely determined by a spanning non-zero vector in V , with two such vectors giving the same
linear subspace if and only if they are scalar multiples of each other. In other words, we have

Pn = (Kn+1\{0})/∼

with the equivalence relation

(x0, . . . ,xn)∼ (y0, . . . ,yn) :⇔ xi = λyi for some λ ∈ K∗ and all i.

The equivalence class of (x0, . . . ,xn) is usually denoted by (x0 : · · · :xn) ∈ Pn. We call x0, . . . ,xn the
homogeneous or projective coordinates of the point (x0 : · · · :xn). Hence, in this notation for a
point in Pn the numbers x0, . . . ,xn are not all zero, and they are defined only up to a common scalar
multiple.

Remark 3.4 (Geometric interpretation of Pn). There are two ways to interpret the projective space
Pn geometrically:

(a) As in Remark 3.1, we can embed the affine space An in Pn by the map

An→ Pn, (x1, . . . ,xn) 7→ (1:x1 : · · · :xn)

whose image is the subset U0 := {(x0 : · · · :xn) : x0 ̸= 0} of Pn. We will often consider An as
a subset of Pn in this way, i. e. by setting x0 = 1. The other coordinates x1, . . . ,xn are then
called the inhomogeneous or affine coordinates on U0.

The remaining points of Pn are of the form (0:x1 : · · · :xn). By forgetting their coordinate x0
(which is zero anyway) they form a set that is naturally bijective to Pn−1, corresponding to
the 1-dimensional linear subspaces of Kn. As in Remark 3.1 we can regard them as points
at infinity; there is hence one such point for each direction in Kn. In short-hand notation,
one often writes this decomposition as Pn = An∪Pn−1 and calls An and Pn−1 the affine and
infinite part of Pn, respectively.

(b) By the symmetry of the homogeneous coordinates, the subsets Ui := {(x0 : · · · :xn) : xi ̸= 0}
of Pn are naturally bijective to An for all i = 0, . . . ,n, in the same way as for i = 0 in (a). As
every point of Pn has at least one non-zero coordinate, it lies in one of the Ui, and hence in
a subset of Pn that just looks like the ordinary affine space An. In this sense we can say that
projective space “looks everywhere the same”; the fact that we interpreted the points with
x0 = 0 as points as infinity above was just due to our special choice of i = 0 in (a).

Example 3.5. By Remark 3.4 (a), we have P1 = A1 ∪P0. The affine part consists of the points
(1:x1) for x1 ∈K, and the infinite part contains the single point (0:1). Denoting this point at infinity
by ∞, we can therefore write P1 = A1∪{∞}.

Remark 3.6 (Topology of projective spaces over R and C). Over the real or complex numbers,
every point in Pn has a representative on the unit sphere {(x0, . . . ,xn) : |x0|2 + · · ·+ |xn|2 = 1} by
normalizing. In other words, Pn can be written as the image of this compact unit sphere under the
quotient map (x0, . . . ,xn) 7→ (x0 : · · · :xn). In accordance with our motivation at the beginning of this
chapter, this means that Pn is itself compact (with the quotient topology [G5, Definition 5.3 and
Corollary 5.8 (c)]).

(a) For K = R, every 1-dimensional linear subspace of Kn+1 meets the unit sphere in exactly
two points, which are negatives of each other. Hence, all points (x0 : · · · :xn) ∈ Pn have a
representative on the upper half of the unit sphere, i. e. where x0 ≥ 0, and this representative
is unique except for points on its boundary where x0 = 0 (i. e. for points at infinity). As in
the following picture, we can therefore visualize Pn

R as the space obtained from the upper
half unit sphere by identifying opposite points on the boundary. For n = 1 we have only one
pair of gluing points, corresponding to one point at infinity as in Example 3.5, and obtain
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topologically a circle. For n = 2, each point on the boundary of the upper half unit sphere
has to be identified with its negative, which leads to a space that cannot be embedded in R3.

1 x0

x1

glue ∞

x0

x1

x2

glue

P1
R P2

R

(b) For K = C, only P1
C can be visualized in R3. By Example 3.5 it

is just the complex plane together with a point ∞. It is therefore
topologically a sphere as in the picture on the right.

Having studied projective spaces, we now want to consider subsets of Pn

given by polynomial equations. However, polynomials in homogeneous
coordinates are not well-defined functions on Pn: For example, for the
polynomial f = x2

0 + x1 we have f (1,−1) = 0 and f (−1,1) = 2 although
(1:−1)= (−1:1)∈P1. We can solve this problem by using homogeneous
polynomials as follows.

∞

P1
C

Remark 3.7. Let
f = ∑

i0+···+in=d
ai0,...,in xi0

0 · · · · · x
in
n ∈ K[x0, . . . ,xn]

be a homogeneous polynomial of degree d. Then

f (λx0, . . . ,λxn) = ∑
i0+···+in=d

ai0,...,in λ
i0+···+inxi0

0 · · · · · x
in
n = λ

d f (x0, . . . ,xn)

for all λ ∈ K. In particular, we see:

(a) Although f is not a well-defined function on Pn, its zero locus is well-defined on Pn, i. e. we
have

f (λx0, . . . ,λxn) = 0 ⇔ f (x0, . . . ,xn) = 0

for all λ ∈ K∗. In the following, we will therefore write this condition simply as f (P) = 0
for P = (x0 : · · · :xn).

(b) If g is another homogeneous polynomial of degree d then

f (λx0, . . . ,λxn)

g(λx0, . . . ,λxn)
=

λ d f (x0, . . . ,xn)

λ dg(x0, . . . ,xn)
=

f (x0, . . . ,xn)

g(x0, . . . ,xn)
,

and so the quotient f
g is a well-defined function on the subset of Pn where g does not vanish.

Definition 3.8 (Projective varieties). For a subset S⊂K[x0, . . . ,xn] of homogeneous polynomials we
call

V (S) := {P ∈ Pn : f (P) = 0 for all f ∈ S} ⊂ Pn

the (projective) zero locus of S. Subsets of Pn that are of this form are called (projective) varieties.
If S = { f1, . . . , fk} is a finite set, we will write V (S) = V ({ f1, . . . , fk}) also as V ( f1, . . . , fk). To
distinguish the projective from the affine zero locus of Definition 1.3 (b), we will sometimes denote
it by Vp(S)⊂ Pn as opposed to Va(S)⊂ An+1.

In this class we will mostly restrict ourselves to the case of the projective plane P2. We will then
usually denote the homogeneous coordinates by x, y, and z, with z corresponding to the variable x0
defining the points at infinity as in Remark 3.4 (a).
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Remark 3.9. The properties of Remark 1.4 hold analogously for the projective zero locus: For any
two homogeneous polynomials f ,g ∈ K[x,y,z] we have

(a) V ( f )∪V (g) =V ( f g);

(b) V ( f )∩V (g) =V ( f ,g).

Exercise 3.10. By a projective coordinate transformation we mean a map f : Pn→ Pn of the form

(x0 : · · · :xn) 7→ ( f0(x0, . . . ,xn) : · · · : fn(x0, . . . ,xn))

for linearly independent homogeneous linear polynomials f0, . . . , fn ∈ K[x0, . . . ,xn].

(a) Let P1, . . . ,Pn+2 ∈ Pn be points such that any n+1 of them are linearly independent in Kn+1,
and in the same way let Q1, . . . ,Qn+2 ∈ Pn be points such that any n+1 of them are linearly
independent. Show that there is a projective coordinate transformation f with f (Pi) = Qi for
all i = 1, . . . ,n+2.

(b) Let F and G be two real smooth projective conics with non-empty set of points. Show that
there is a projective coordinate transformation of P2 that takes F to G.

Exercise 3.11. Show:

(a) If F,G ∈ K[x0, . . . ,xn] are polynomials such that F |G and G is homogeneous, then F is
homogeneous.

(b) Every homogeneous polynomial in two variables over an algebraically closed field is a prod-
uct of linear polynomials.

04
The definition of projective plane curves is now completely analogous to the affine case in Definition
1.5.

Definition 3.12 (Projective curves).

(a) A (projective plane algebraic) curve (over K) is a non-constant homogeneous polynomial
F ∈ K[x,y,z] modulo units. We call V (F) = {P ∈ P2 : F(P) = 0} its set of points.

(b) The degree of a projective curve is its degree as a polynomial. As in the affine case, curves of
degree 1,2,3, . . . are called lines, quadrics/conics, cubics, and so on. The line z is referred
to as the line at infinity.

(c) The notions of irreducible/reducible/reduced curves, as well as of irreducible components
and their multiplicities, are defined in the same way as for affine curves in Definition 1.5
(c) (note that irreducible factors of homogeneous polynomials are always homogeneous by
Exercise 3.11 (a)).

To study projective curves, we will often want to relate them to affine curves. For this we need the
following construction.

Construction 3.13 (Homogenization and dehomogenization).

(a) For a non-zero polynomial

f = ∑
i+ j≤d

ai, j xiy j ∈ K[x,y]

of degree d we define the homogenization of f as

f h := ∑
i+ j≤d

ai, j xiy jzd−i− j ∈ K[x,y,z].

Note that f h is homogeneous of degree deg f h = deg f = d, and that z ̸ | f h since f contains
a term with i+ j = d.
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(b) For a non-zero homogeneous polynomial

f = ∑
i+ j+k=d

ai, j,k xiy jzk ∈ K[x,y,z]

of degree d we define the dehomogenization of f to be

f i := f (z = 1) = ∑
i+ j+k=d

ai, j,k xiy j ∈ K[x,y].

In general, f i will be an inhomogeneous polynomial. If z ̸ | f , i. e. if f contains a monomial
without z, then this monomial will also be present in f i, and thus deg f i = deg f = d.

In particular, there is a bijective correspondence{
polynomials of degree d

in K[x,y]

}
←→

{
homogeneous polynomials of degree d

in K[x,y,z] not divisible by z

}
f 7−→ f h

f i ←−7 f .

Example 3.14. For f = y− x2 ∈ K[x,y] we have f h = yz− x2 ∈ K[x,y,z], and then back again
( f h)i = y− x2 = f .

Construction 3.15 (Affine parts and projective closures).
(a) For a projective curve F its affine set of points is Vp(F)∩A2 = Va(F(z = 1)) = Va(F i).

We will therefore call F i the affine part of F . The points at infinity of F are given by
Vp(F(z = 0))⊂ P1.

(b) For an affine curve F we call Fh its projective closure. By Construction 3.13 it is a pro-
jective curve whose affine part is again F , and that does not contain the line at infinity as a
component.
However, Fh may contain points at infinity: If F = F0 + · · ·+Fd is the decomposition into
homogeneous parts as in Notation 2.16, we have Fh = zd F0 + zd−1 F1 + · · ·+Fd and hence
Fh(z = 0) = Fd . So the points at infinity of F are given by the projective zero locus of the
leading part of F .

Example 3.16 (Visualization of projective curves). To visualize a (real) projective curve F (that does
not have the line at infinity as a component), we will often just draw its affine set of points Va(F i),
and if desired in addition its points at infinity as directions in A2. The following picture shows in
this way the projective closures of the three types of real conics — a hyperbola, a parabola, and an
ellipse (resp. a circle) — where the dashed lines correspond to the points at infinity. We see that the
hyperbola has two points at infinity (namely (0:1 :0) and (1:0 :0) in the case below), the parabola
has one ((0:1 :0) below), and the circle no such point. Note that, including these additional points,
all three cases become topologically a loop, as the unbounded ends of the affine curves meet up at
the corresponding points at infinity. In fact, up to a change of coordinates, we will see in Exercise
3.28 that there is essentially only one type of real projective conic.

F = xy−1
Fh = xy− z2

points at infinity: xy = 0

F = x2 + y2−1
Fh = x2 + y2− z2

points at infinity: x2 + y2 = 0

F = y− x2

Fh = yz− x2

points at infinity: x2 = 0

(a) hyperbola (c) ellipse(b) parabola
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Remark 3.17 (Spaces of curves as projective spaces). For d ∈ N>0, the vector space of homoge-
neous polynomials of degree d in K[x,y,z] has dimension

(d+2
2

)
, hence it is isomorphic to Kn+1 with

n =
(d+2

2

)
− 1. By definition, a projective curve of degree d is then a non-zero point of this vector

space modulo scalars. Hence, the space of all such curves is just the projective space Pn, and thus
itself a projective variety.

It is in fact very special to algebraic geometry — and very powerful — that the spaces of (certain)
varieties are again varieties, and thus can be studied with exactly the same methods as the initial
objects themselves. In other categories this is usually far from being true: The space of all groups is
not a group, the space of all vector spaces is not a vector space, the space of all topological spaces is
not a topological space, and so on.

For the rest of this chapter, let us transfer our results on affine curves from Chapters 1 and 2 to the
projective case.

Remark 3.18 (Finiteness of zero loci). Let F and G be two projective curves. The finiteness results
of Lemma 1.11 and Proposition 1.12 (b) hold for the affine parts of F and G (for any choice of
coordinate determining the line at infinity), and thus for F and G themselves: V (F) is infinite if K
is algebraically closed, P2\V (F) is infinite if K is infinite, and V (F,G) is finite if F and G have no
common component.

Remark 3.19 (Recovering F from V (F)). Let F be a projective curve over an algebraically closed
field. We can write it as F = zm G for some m∈N and a curve G with z ̸ | G. Then G can be recovered
from Gi since G = (Gi)h by Construction 3.13, and Gi can be recovered from Va(Gi) =Vp(G)∩A2

and a multiplicity on each component by Remark 1.14.

As the components of F are just the components of G plus possibly the line at infinity z (with multi-
plicity m), this means that F can be reconstructed from V (F) and a multiplicity on each component,
just as in the affine case.

Construction 3.20 (Local rings of P2). For P ∈ P2 we define the local ring of P2 at P according to
Remark 3.7 (b) as

OP := OP2,P :=
{

f
g

: f ,g ∈ K[x,y,z] homogeneous of the same degree with g(P) ̸= 0
}
∪{0}

⊂ K(x,y,z).

As in Definition 2.1, these rings admit a well-defined evaluation map

OP→ K,
f
g
7→ f (P)

g(P)
with kernel

IP := IP2,P :=
{

f
g
∈ OP : f (P) = 0

}
⊂OP.

For a point P = (x0 :y0 :1) in the affine part of P2 it is easily checked that there is an isomorphism

OP2,(x0 :y0 :1)→ OA2,(x0,y0)
,

f
g
7→ f i

gi

compatible with the evaluation maps, and thus taking IP2,(x0 :y0 :1) to IA2,(x0,y0)
. Hence the local rings

are still the same as in the affine case — which is of course expected, as objects that are local around
a point in A2 should not be affected by adding points at infinity.

Construction 3.21 (Intersection multiplicities). Note that homogeneous polynomials are not ele-
ments of the local ring OP2,P. But for F1, . . . ,Fk homogeneous we can still define a generated ideal

⟨F1, . . . ,Fk ⟩=
{

f1

g1
F1 + · · ·+

fk

gk
Fk : fi = 0 or fi,gi ∈ K[x,y,z] homogeneous

with gi(P) ̸= 0 and deg( fiFi) = deggi for all i
}
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in OP. As in the affine case we can therefore define the intersection multiplicity of two curves F,G
at a point P ∈ P2 as

µP(F,G) := dim OP/⟨F,G⟩ ∈ N∪{∞}. (∗)
For a point P = (x0 :y0 :1) in the affine part of P2 one can verify directly that the isomor-
phism OP2,(x0 :y0 :1)

∼= OA2,(x0,y0)
of Construction 3.20 takes ⟨F,G⟩ to ⟨F i,Gi ⟩. Hence we have

µ(x0 :y0 :1)(F,G) = µ(x0,y0)(F
i,Gi), i. e. intersection multiplicities in the affine part can be computed

exactly as in Chapter 2. At other points, the multiplicity can be computed similarly by choosing
another (non-zero) coordinate to define the line at infinity as in Remark 3.4 (b). We will therefore
probably never use the global definition (∗) of the multiplicity above for actual computations; its
only purpose is to ensure that the result does not depend on the choice of coordinate defining the line
at infinity.

Moreover, in the same way as in Remark 2.4 (a) intersection multiplicities are invariant under pro-
jective coordinate transformations as in Exercise 3.10, and they satisfy all the other properties of the
multiplicities in Remark 2.4, Lemma 2.5, and Proposition 2.10.

Example 3.22. Let us compute the intersection multiplicity of the curve
F = yz− x2 (whose affine part is shown on the right) with the line G = z
at infinity at the common point P = (0:1 :0). For this we choose the
affine part given by y = 1 and affine coordinates x and z. We then obtain

µP(F,G) = µ(0,0)(z− x2,z) = 2

by Example 2.11.

F

Construction 3.23 (Tangents and multiplicities of points, smooth and singular points). The remain-
ing concepts of Chapter 2 are also transferred easiest to a projective curve F using affine parts. So
for a point P = (x0 :y0 :1) ∈ P2 in the affine part A2, we define the multiplicity mP(F) of F at P
to be m(x0,y0)(F

i) in the sense of Definition 2.18. A tangent to F at P is the projective closure of a
tangent to F i at (x0,y0). If P is not in the affine part, we choose a different coordinate for the line at
infinity as in Example 3.22 (it can be checked that this does not depend on the choice of coordinate).

We say that P ∈ F is a smooth or regular point if mP(F) = 1; its unique tangent is denoted TPF .
Otherwise, P is called a singular point of F . The curve F is said to be smooth or regular if all its
points are smooth; otherwise F is called singular.

As in the affine case, there is a simple criterion to determine all singular points of a given projective
curve. To prove it, we need a simple lemma first.

Lemma 3.24. For any homogeneous polynomial F ∈ K[x,y,z] of degree d we have

x
∂F
∂x

+ y
∂F
∂y

+ z
∂F
∂ z

= d F.

Proof. For F = ∑i+ j+k=d ai, j,k xiy jzk we have x ∂F
∂x = ∑i+ j+k=d iai, j,k xiy jzk. An analogous formula

holds for the other partial derivatives, and hence we conclude

x
∂F
∂x

+ y
∂F
∂y

+ z
∂F
∂ z

= ∑
i+ j+k=d

(i+ j+ k)ai, j,k xiy jzk = d F. □

Proposition 3.25 (Projective Jacobi Criterion). Let P be a point on a projective curve F.

(a) P is a singular point of F if and only if ∂F
∂x (P) =

∂F
∂y (P) =

∂F
∂ z (P) = 0.

(b) If P is a smooth point of F the tangent to F at P is given by

TPF =
∂F
∂x

(P) · x+ ∂F
∂y

(P) · y+ ∂F
∂ z

(P) · z.

Proof. Without loss of generality we may assume that P = (x0 :y0 :1) is in the affine part of F .
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(a) By the affine Jacobi criterion of Proposition 2.24 (a) we know that P is a singular point of
F if and only if ∂F i

∂x (x0,y0) =
∂F i

∂y (x0,y0) = 0. As dehomogenizing F (which is just setting
z = 1) commutes with taking partial derivatives with respect to x and y, this is equivalent to
∂F
∂x (P) =

∂F
∂y (P) = 0. This is in turn equivalent to ∂F

∂x (P) =
∂F
∂y (P) =

∂F
∂ z (P) = 0 by Lemma

3.24 since F(P) = 0 by assumption.

(b) By Proposition 2.24 (b) the affine tangent to F at P is given by

∂F i

∂x
(x0,y0) · (x− x0)+

∂F i

∂y
(x0,y0) · (y− y0)

=
∂F
∂x

(P) · x+ ∂F
∂y

(P) · y−
(

∂F
∂x

(P) · x0 +
∂F
∂y

(P) · y0

)
3.24
=

∂F
∂x

(P) · x+ ∂F
∂y

(P) · y+ ∂F
∂ z

(P).

By definition, TPF is now obtained by taking the projective closure, i. e. the homogenization
of this polynomial. □

Remark 3.26. If the ground field K has characteristic 0, Lemma 3.24 tells us for any point P ∈ P2

that the conditions ∂F
∂x (P) =

∂F
∂y (P) =

∂F
∂ z (P) = 0 already imply F(P) = 0. In contrast to the affine

case in Example 2.25, we therefore do not have to check explicitly that the point lies on the curve
when computing singular points with the Jacobi criterion.

05
Example 3.27. Let F = y2z− x2z− x3 be the projective closure of the
real affine curve y2− x2− x3 of Example 2.21 (b). We have

∂F
∂x

=−2xz−3x2,
∂F
∂y

= 2yz,
∂F
∂ z

= y2− x2.

It is checked immediately that the only common zero of these three poly-
nomials is the point (0:0 :1), i. e. the origin of the affine part of F . So by
Proposition 3.25 this is the only singular point of F (note that we have
already seen in Example 2.25 using the affine Jacobi criterion that the
origin is the only singular point of the affine part of F).

F

In particular, the point (0:1 :0) ∈ F at infinity is a smooth point of F , and the tangent to F there is
by Proposition 3.25

∂F
∂x

(0:1 :0) · x+ ∂F
∂y

(0:1 :0) · y+ ∂F
∂ z

(0:1 :0) · z = z,

i. e. the line at infinity.

Exercise 3.28. Let F and G be two real smooth projective conics with non-empty set of points.
Show that there is a projective coordinate transformation of P2 as in Exercise 3.10 that takes F to G.

Exercise 3.29. For a projective curve F in the homogeneous coordinates x0,x1,x2 we define the
associated Hessian to be HF := det

(
∂ 2F

∂xi∂x j

)
i, j=0,1,2.

(a) Show that the Hessian is compatible with coordinate transformations, i. e. if a projective
coordinate transformation as in Exercise 3.10 takes F to F ′ then up to multiplication with a
unit it takes HF to HF ′ .

(b) Let P ∈ F be a smooth point, and assume that the characteristic of the ground field K is 0.
Show that HF(P) = 0 if and only if µP(F,TPF)≥ 3. Such a point is called an inflection point
of F .

Hint: By part (a) and Exercise 3.10 you may assume after a coordinate transformation that
P = (0:0 :1) and TPF = x1.
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4. Bézout’s Theorem

Let F and G be two projective curves without common component. We have seen already in Remark
3.18 that the intersection F ∩G is finite in this case. Bézout’s Theorem, which is the main goal of
this chapter, will determine the number of these intersection points, where each such point P will be
counted with its intersection multiplicity µP(F,G).
In the same way as for the number of zeros of a univariate polynomial, the result will only be nice
(i. e. depend only on the degree of the polynomials) if we assume that the underlying ground field
is algebraically closed. To use this assumption we will need the following result from commutative
algebra that extends the defining property of an algebraically closed field to polynomials in several
variables.

Fact 4.1 (Hilbert’s Nullstellensatz). Recall that a field K is called algebraically closed if every
univariate polynomial f ∈ K[x] without a zero in K is constant.
An obvious generalization of this statement to the multivariate case (which can be proven easily
by induction of the number of variables) would be that every polynomial f ∈ K[x1, . . . ,xn] without
a zero in An is constant. However, there is a much stronger statement that also applies to several
polynomials at once, or more precisely to the ideal generated by them: Any ideal I in K[x1, . . . ,xn]
with V (I) = /0 over an algebraically closed field K is the unit ideal I = ⟨1⟩. This statement is
called by its German name Hilbert’s Nullstellensatz (“theorem of the zeros”) [G6, Remark 10.12].
Obviously, in the case n = 1 of polynomials in one variable, the ideal I must be generated by a single
polynomial f as K[x1] is a principal ideal domain, and thus Hilbert’s Nullstellensatz just reduces to
the original statement that f must be constant if it does not have a zero.

Although Bézout’s Theorem requires projective curves (as we have already motivated at the begin-
ning of Chapter 3), it is actually more convenient to perform almost all steps required in its proof for
the affine case. Our first step will be to compute the sum ∑P∈F∩G µP(F,G) of the local intersection
multiplicities of two affine curves F and G and express it in terms of one global object. In fact, in the
same way as µP(F,G) is by definition the dimension of the quotient of the local ring OP by the ideal
⟨F,G⟩, the sum of these multiplicities is just the dimension of the quotient of the global polynomial
ring K[x,y] by ⟨F,G⟩:
Lemma 4.2 (Summing up intersection multiplicities). Let F and G be two affine curves over K
with no common component (so tht F ∩G is finite by Remark 3.18). We consider the natural ring
homomorphism

ϕ : K[x,y]/⟨F,G⟩ → ∏
P∈F∩G

OP/⟨F,G⟩

that sends the class of a polynomial f ∈ K[x,y] to the class of f ∈ OP in each factor OP/⟨F,G⟩.

(a) The morphism ϕ is surjective.

(b) If K is algebraically closed then ϕ is an isomorphism.

In particular, we have ∑P µP(F,G)≤ dimK[x,y]/⟨F,G⟩, with equality if K is algebraically closed.

Proof.

(a) Let F ∩G = {P0, . . . ,Pm} with Pi = (xi,yi) for i = 0, . . . ,m. By Exercise 2.7 (a) there is a
number n ∈ N such that (x− xi)

n = (y− yi)
n = 0 ∈ OPi/⟨F,G⟩ for all i. For the polynomial

f := ∏
i:xi ̸=x0

(x− xi)
n · ∏

i:yi ̸=y0

(y− yi)
n ∈ K[x,y]

we then have g(P0) ̸= 0, so by Exercise 2.7 (b) there is a polynomial representative g∈K[x,y]
for 1

f ∈ OP0/⟨F,G⟩. The polynomial f g is then mapped by ϕ . . .
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• in the component OP0/⟨F,G⟩ to f g = f · 1
f = 1;

• in all other components OPi/⟨F,G⟩ for i > 0 to 0 since f = 0 ∈ OPi/⟨F,G⟩.
By symmetry, we can find in the same way for all i = 1, . . . ,m a polynomial that is mapped
by ϕ to 1 in the Pi-component and to 0 in all others. As the image of ϕ is a subring, it follows
that ϕ is surjective.

(b) In view of (a) it remains to be shown that ϕ is injective. So let f ∈ K[x,y] with ϕ( f ) = 0,
and consider the set I := {g ∈ K[x,y] : g f ∈ ⟨F,G⟩}. This is clearly an ideal containing
⟨F,G⟩ (usually called the ideal quotient ⟨F,G⟩ : ⟨ f ⟩). By the Nullstellensatz of Fact 4.1 it
suffices to prove that V (I) = /0, since then I = K[x,y], hence 1 ∈ I, i. e. f ∈ ⟨F,G⟩, and thus
f = 0 ∈ K[x,y]/⟨F,G⟩.
So assume that there is a point P∈V (I). As F,G∈ I we know that P∈ F∩G. Hence P is one
of the points in the product in the target space of ϕ , and so f = 0 ∈OP/⟨F,G⟩ as f ∈ kerϕ .
This means that f = a

g F + b
g G for some polynomials a,b,g ∈ K[x,y] with g(P) ̸= 0. But then

g f = aF +bG, hence g ∈ I, and as P ∈V (I) we arrive at the contradiction g(P) = 0. □

Remark 4.3. There are two ways to interpret the statement of Lemma 4.2:

(a) A case that often occurs in Lemma 4.2 is that F and G intersect transversely, i. e. that the
intersection multiplicities µP(F,G) at all P ∈ F ∩G are equal to 1. In this case every factor
OP/⟨F,G⟩ is isomorphic to K by Definition 2.3, and the morphism ϕ is just the combined
evaluation map at all points of F ∩G. The assertion of Lemma 4.2 (a) is then simply the in-
terpolation statement that we can always find a polynomial having prescribed values at these
points — which is probably not surprising, and is in fact already achieved by a suitable linear
combination of polynomials as in Step 1 in the proof. If the intersection is not transverse
and µP(F,G)> 1 at some point P, then the map ϕ remembers more information at P on the
polynomial than just its value, such as the values of some of its partial derivatives at P.

(b) If you have some commutative algebra background then you probably know the statement
of Lemma 4.2 already: As V (F,G) is 0-dimensional, the ring K[x,y]/⟨F,G⟩ is Artinian,
and thus by the Structure Theorem on Artinian rings it is isomorphic to the product of its
localizations at its various maximal ideals [G6, Proposition 7.20]. If K is algebraically closed
then these maximal ideals all correspond to points in A2 [G6, Corollary 10.10], and so the
map ϕ of the lemma is an isomorphism. If K is not necessarily algebraically closed then
there are maximal ideals of K[x,y]/⟨F,G⟩ that are not of this form and thus “missing” in the
target space of ϕ , so that ϕ is only surjective.

Of course, our goal must now be to compute the dimension of the quotient K[x,y]/⟨F,G⟩. In order
to do this, we need a lemma first that tells us how polynomials in the ideal ⟨F,G⟩ of K[x,y] can be
represented.

Lemma 4.4. Let F and G be two affine curves of degrees m := degF and n := degG, respectively,
such that their leading parts Fm and Gn (as in Notation 2.16) have no common component.

Then every f ∈ ⟨F,G⟩ ⊂ K[x,y] of degree d := deg f can be written as f = aF +bG for two polyno-
mials a and b with dega≤ d−m and degb≤ d−n.

Proof. As f ∈ ⟨F,G⟩we can write f = aF+bG for some a,b∈K[x,y]; choose such a representation
with dega minimal.

Assume for a contradiction that dega > d−m or degb > d−n. Then aF or bG contains a term of
degree bigger than d. As f = aF + bG has degree d this means that the leading terms of aF and
bG must cancel in f . Hence, if a∗ and b∗ denote the leading terms of a and b, respectively, we have
a∗Fm = −b∗Gn. But Fm and Gn have no common component by assumption, and so we must have
a∗ = cGn and b∗ =−cFm for some homogeneous polynomial c. This gives us a new representation

f = (a− cG)F +(b+ cF)G
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in which the leading term a∗ of a cancels the leading term cGn of cG in the first bracket. Hence
deg(a− cG)< dega, contradicting the minimality of dega. □

Lemma 4.5. Let F and G be affine curves with no common component, of degrees m := degF and
n := degG.

(a) dimK[x,y]/⟨F,G⟩ ≤ mn.

(b) If the leading parts Fm and Gn have no common component either then equality holds in (a).

Proof. For all d ≥ m+n consider the sequence of vector space homomorphisms

K[x,y]≤d−m×K[x,y]≤d−n
α−→ K[x,y]≤d

π−→ K[x,y]/⟨F,G⟩

(a,b) 7−→ aF +bG

where K[x,y]≤d denotes the vector subspace of K[x,y] of all polynomials of degree at most d, which
has dimension

(d+2
2

)
, and π is the quotient map.

The kernel of α consists of all pairs (a,b) of polynomials of degrees at most d −m and d − n,
respectively, with aF =−bG. As F and G have no common component, this is equivalent to a = cG
and b =−cF for some c ∈ K[x,y]≤d−m−n, so that

kerα = K[x,y]≤d−m−n · (G,−F). (1)

Moreover, it is obvious that
imα ⊂ kerπ. (2)

So we conclude with the homomorphism theorem

dimimπ =

(
d +2

2

)
−dimkerπ

(2)
≤

(
d +2

2

)
−dimimα

=

(
d +2

2

)
−
(

d−m+2
2

)
−
(

d−n+2
2

)
+dimkerα

(1)
=

(
d +2

2

)
−
(

d−m+2
2

)
−
(

d−n+2
2

)
+

(
d−m−n+2

2

)
= mn.

Note that this bound is independent of d (as long as d ≥m+n), and thus also holds for the projection
map π : K[x,y]→ K[x,y]/⟨F,G⟩ from the full polynomial ring, which is surjective. It follows that
dimK[x,y]/⟨F,G⟩ ≤ mn, which is (a).

For (b), it suffices to establish equality in (2) above, i. e. that kerπ ⊂ imα . But this is precisely the
statement of Lemma 4.4. □

We can now switch back to the projective case and prove the main result of this chapter.

Corollary 4.6 (Bézout’s Theorem). Let F and G be projective curves without common component
over an infinite field K. Then

∑
P∈F∩G

µP(F,G)≤ degF ·degG.

Moreover, equality holds if K is algebraically closed.

Proof. By Lemma 1.11 (b) there is a point Q in the affine part of P2 which does not lie on F i∪Gi,
i. e. neither on F nor on G. Moreover, as K is infinite but F ∩G finite by Proposition 1.12 (b), we
can pick a line L through Q which does not intersect F ∩G. Now we make a projective coordinate
transformation so that L becomes the line at infinity. Then neither F nor G contains the line at infinity
as a component (so that degF i = degF and degGi = degG), and all intersection points of F and G
lie in the affine part (i. e. they are also intersection points of the affine curves F i and Gi).
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Applying Lemma 4.2 (a) and 4.5 (a) to F i and Gi then yields

∑
P∈F∩G

µP(F,G) = ∑
P∈F i∩Gi

µP(F i,Gi)
4.2
≤ dimK[x,y]/⟨F i,Gi ⟩

4.5
≤ degF i ·degGi = degF ·degG. (∗)

Now let K be algebraically closed. Then the first inequality is actually an equality by Lemma 4.2
(b). Moreover, the leading parts of F i and Gi are homogeneous polynomials in two variables, and
hence a product of linear factors by Exercise 3.11 (b). But these factors correspond exactly to the
points at infinity of the two curves by Construction 3.15 (b). As there are no such common points by
our choice of L, we conclude that the leading parts of F i and Gi have no common component, and
thus by Lemma 4.5 (b) that the second inequality in (∗) is actually an equality as well. □

Remark 4.7 (Bézout’s Theorem over arbitrary ground fields). It can be shown that (the inequality
part of) Bézout’s Theorem holds in fact over arbitrary fields. The assumption of an infinite ground
field was only necessary for the strategy of our proof to choose coordinates so that all intersection
points of the curves lie in the affine part — which would not be possible over finite fields, since the
two curves might then intersect in every point of P2 (without having a common component).
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Remark 4.8. Let F and G be two projective curves without common component (over an infinite
ground field K).

(a) As the intersection multiplicity at each point of F ∩G is at least 1, it follows from Bézout’s
Theorem that F and G intersect in at most degF ·degG points (disregarding the multiplici-
ties).

(b) If K is algebraically closed, Bézout’s Theorem implies in particular that F and G intersect
in at least one point. Note that already this statement is non-trivial — and clearly false for
general ground fields, as then already V (F) might be empty.

(c) Moreover, Bézout’s Theorem shows that µP(F,G)≤ degF ·degG for all P ∈ P2. Of course,
this then holds for affine curves as well and can be used to improve Algorithm 2.12 to com-
pute µP(F,G) without having checked before whether F and G have a common component
through P (see also Remark 2.14): If the contributions to µP(F,G) collected by the algorithm
exceed degF · degG we can stop, knowing that F and G must have a common component
through P. This additional rule will make the algorithm terminate for all F and G, and means
that we can also use it to determine whether F and G have a common component through P.

Exercise 4.9. For the following complex affine curves F and G, determine the points at infinity of
their projective closures, and use Bézout’s Theorem to read off the intersection multiplicities at all
points of F ∩G.

(a) F = x+ y2 and G = x+ y2− x3;

(b) F = y2− x2 +1 and G = (y+ x+1)(y− x+1).

Exercise 4.10. Deduce the following real version of Bézout’s Theorem from the complex case: If F
and G are two real projective curves without common components then

∑
P∈F∩G

µP(F,G) = degF ·degG mod 2.

In particular, two real projective curves of odd degree always intersect in at least one point.

Exercise 4.11. Let F be a complex irreducible projective curve of degree d, and let P ∈ P2 be a
point. We set m := mP(F) ∈ N.

Show that for all but finitely many lines L in P2 through P, the intersection F ∩L consists of exactly
d−m points not equal to P.

We will discuss many examples and applications of Bézout’s Theorem in the next chapter. Instead,
at the end of this chapter let us prove another theorem that can be obtained by very similar methods
and that will be useful later on. It considers a smooth projective curve F over an algebraically closed



4. Bézout’s Theorem 33

field and states roughly that, for any two other curves G and H such that F intersects H everywhere
with at least the same multiplicity as G, the “remaining multiplicities” µP(F,H)− µP(F,G) can be
obtained by intersecting F with another curve.

Corollary 4.12 (Max Noether’s Theorem). Let F be a smooth projective curve over an alge-
braically closed field. Moreover, let G and H be two projective curves that do not have a common
component with F.

If µP(F,G) ≤ µP(F,H) for all points P ∈ F ∩G then there are homogeneous polynomials A and B
(of degrees degH−degF resp. degH−degG if non-zero), such that

(a) H = AF +BG;

(b) µP(F,H) = µP(F,G)+µP(F,B) for all P ∈ P2.

Proof. As in the proof of Corollary 4.6 we may assume by a projective coordinate transformation
that none of the curves contain the line at infinity as a component, and that all points of F ∩G lie in
the affine part of P2. We then have again degF i = degF , degGi = degG, degH i = degH, and the
leading parts of F i and Gi have no common component.

Now F is assumed to be smooth, and hence — working with the affine curves for a moment —
the assumption µP(F i,Gi) ≤ µP(F i,H i) implies ⟨F i,H i ⟩ ⊂ ⟨F i,Gi ⟩ in OP for all P ∈ F ∩G by
Proposition 2.26, and thus in particular H i ∈ ⟨F i,Gi ⟩ in OP. By Lemma 4.2 (b) we then have
H i ∈ ⟨F i,Gi ⟩ in K[x,y] as well. But as the leading parts of F i and Gi have no common component,
Lemma 4.4 gives us an equation

H i = aF i +bGi

for some polynomials a and b of degrees at most degH − degF and degH − degG, respectively.
Homogenizing this yields H, so a homogeneous polynomial of degree degH, and thus

H = zdegH−degF−degaah︸ ︷︷ ︸
=:A

F + zdegH−degG−degbbh︸ ︷︷ ︸
=:B

G,

which proves (a). But this also implies part (b), since by (the projective version of) the properties of
intersection multiplicities we have

µP(F,H) = µP(F,AF +BG)
2.4 (c)
= µP(F,BG)

2.10 (b)
= µP(F,B)+µP(F,G). □

Exercise 4.13 (Cayley-Bacharach ). Let F and G be smooth projective cubics over an algebraically
closed field that intersect in exactly 9 points P1, . . . ,P9. Moreover, let E be another cubic that also
contains the first eight points P1, . . . ,P8. Prove that E then also contains P9.

(Hint: Apply Max Noether’s Theorem to a suitable curve H.)

Exercise 4.14. Show by example that Max Noether’s Theorem is in general false . . .

(a) if the ground field is not algebraically closed; or

(b) if the curve F is not assumed to be smooth.
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5. Applications of Bézout’s Theorem

Bézout’s Theorem as in Corollary 4.6 is our first powerful result of algebraic geometry in these notes.
Let us now take some time to study several of its applications, which are in fact of very different
flavors.

The first application is not much more than an immediate remark; it states that every smooth projec-
tive curve over an algebraically closed field is irreducible. As smoothness is easy to check using the
Jacobi Criterion of Proposition 3.25 (a), this gives us a very useful sufficient criterion to determine
whether a given curve is irreducible (which is usually hard to figure out).

Proposition 5.1 (Irreducibility criterion). Every smooth projective curve over an algebraically
closed field is irreducible.

Proof. Let F = G ·H be a reducible projective curve. By Remark 4.8 (b) there is a point P ∈G∩H.
Then mP(F) = mP(G)+mP(H)≥ 1+1 = 2 by Remark 2.23, and so P is a singular point of F . □

Our next statement lies in the field of classical geometry. Over the real numbers it could in principle
be proven using elementary methods (and was in fact shown in this way in the first place), but
Bézout’s Theorem makes the proof much simpler.

Proposition 5.2 (Pascal’s Theorem). Let F be an irreducible projective conic with infinitely many
points (e. g. over an algebraically closed field, or an ellipse over R). Pick six distinct points P1, . . . ,P6
on F (that can be thought of as the vertices of a hexagon inscribed in F). Then the intersection points
of the opposite edges of the hexagon (i. e. P = P1P2 ∩P4P5, Q = P2P3 ∩P5P6, and R = P3P4 ∩P6P1,
where PiPj denotes the line through Pi and Pj) lie on a line.

P3

P4

P1

P2

P5
P6

P
R

Q

F

Proof. Consider the two (reducible) cubics G1 = P1P2∪P3P4∪P5P6 and G2 = P2P3∪P4P5∪P6P1. In
accordance with Bézout’s Theorem, they intersect in the 9 points P1, . . . ,P6,P,Q,R.

Now pick any point S∈F not equal to the previously chosen ones. Of course there are λ1,λ2 ∈K, not
both zero, such that the cubic G := λ1G1 +λ2G2 vanishes at S (since G(S) = 0 is one homogeneous
linear equation in two variables λ1,λ2). Then F meets G in the 7 points P1, . . . ,P6,S, and so by
Bézout’s Theorem these two curves must have a common component. As degF = 2, degG = 3, and
F is irreducible, the only possibility for this is that G contains the factor F , so that G = F ·L for a
line L.

But P,Q,R lie on G (as they lie on G1 and G2) and not on F , so they must be on the line L. □

Exercise 5.3. Prove the following converse of Pascal’s Theorem:

Let P1, . . . ,P6 ∈ P2 be distinct points so that the six lines P1P2,P2P3, . . . ,P5P6,P6P1 (which can be
thought of as the sides of the hexagon with vertices P1, . . . ,P6) are also distinct. Let P = P1P2∩P4P5,
Q = P2P3 ∩P5P6, R = P3P4 ∩P6P1 be the intersection points of opposite sides of the hexagon. If
P,Q,R lie on a line, then P1, . . . ,P6 lie on a conic.
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Let us next address the question how many singular points we can have on a given projective curve.
Exercise 2.30 (b) implies that, for an irreducible curve (over a field of characteristic 0), the number
of singular points is always finite. Using Bézout’s Theorem, we can now also give an upper bound
for this number.

Example 5.4 (Singular points in low degrees). Let F be an irreducible projective curve with infin-
itely many points (e. g. over an algebraically closed field).

(a) If degF = 1 then F is a line, which never has any singular points.

(b) If degF = 2 we claim that F has again no singular points. To show this, assume to the
contrary that P ∈ F is a singular point, and choose any other point Q ∈ F . Let G be the line
through P and Q.

As P is a singular point of F , we know by Corollary 2.22 that µP(F,G)≥ 2. Hence the total
intersection multiplicity of F and G is at least

µP(F,G)+µQ(F,G)≥ 2+1 = 3,

which is bigger than degF · degG = 2. So by Bézout’s Theorem F and G must have a
common component — which is impossible since F and G are irreducible.

(c) As for degree 3 we have already seen in Example 3.27 that the cubic F = y2z− x2z− x3 has
exactly one singular point; since F does not contain a line it is also irreducible. In fact, we
will see below that a smooth irreducible cubic can have at most one singular point.

The idea to prove such bounds on the number of singular points is very similar to (b) above: Find
a suitable curve G through the assumed singular points and some other points of F , and compute
the total intersection multiplicity of F and G, where each singular point of F can be counted with
multiplicity at least 2. If this total number exceeds degF ·degG we arrive at a contradiction, i. e. the
assumed number of singular points was too high.

In order to make this idea into an exact proof, we need an auxiliary lemma first that tells us how we
can find curves (such as G above) through a given number of points.

Lemma 5.5 (Curves through given points). Let d ∈ N>0. For any n :=
(d+2

2

)
−1 given points in P2

there is a projective curve of degree d passing through them.

Proof. As in Remark 3.17, the vector space of all homogeneous polynomials of degree d in K[x,y,z]
has dimension n+1. Its elements are polynomials of the form F = ∑i+ j+k=d ai, j,kxiy jzk, where ai, j,k
are the n+1 coordinates of F .

Now note that, for a given point P = (x0 :y0 :z0), the condition F(P) = ∑i+ j+k=d ai, j,kxi
0y j

0zk
0

!
= 0 is

just a linear equation in these coordinates. Hence, the condition that F vanishes at n given points
is a system of n linear equations in n+ 1 variables. By linear algebra, such a system always has a
non-trivial solution, which then is a curve of degree d passing through all the given points. □

Proposition 5.6. Let F be an irreducible projective curve of degree d with infinitely many points
(e. g. over an algebraically closed field). Then F has at most

(d−1
2

)
singular points.

Proof. By Example 5.4 it suffices to prove the proposition for curves of
degree d ≥ 3. Assume for a contradiction that there are distinct singu-
lar points P1, . . . ,P(d−1

2 )+1 of F . Moreover, pick d− 3 arbitrary further
distinct points Q1, . . . ,Qd−3 on F , so that the total number of points is(

d−1
2

)
+1+d−3 =

(
d
2

)
−1.

FG

P2

P1

Q1

By Lemma 5.5, there is therefore a curve G of degree d − 2 through all these points. As F is
irreducible and of bigger degree than G, the curves F and G cannot have a common component.
Hence Corollary 4.6 shows that F and G can intersect in at most degF · degG = d(d− 2) points,
counted with multiplicities. But the intersection multiplicity at all Pi is at least 2 by Corollary 2.22
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since F is singular there. Hence the number of intersection points that we know already, counted
with their respective multiplicities, is at least

2 ·
((

d−1
2

)
+1

)
+(d−3) = d(d−2)+1 > d(d−2),

which is a contradiction. □

Exercise 5.7.
(a) Show that a (not necessarily irreducible) reduced curve of degree d in P2 has at most

(d
2

)
singular points.

(b) Find an example for each d in which this maximal number of singular points is actually
reached.

Let us now study smooth curves in more detail. An interesting topic that we have neglected entirely
so far is the topology of such curves when we consider them over the real or complex numbers,
e. g. their number of connected components in the usual topology. We will now see that Bézout’s
Theorem is able to answer such questions.

Of course, for these results we will need some techniques and statements from topology that have
not been discussed in these notes. The following proofs in this chapter should therefore rather be
considered as sketch proofs, which can be made into exact arguments with the necessary topolog-
ical background. However, all topological results that we will need should be intuitively clear —
although their exact proofs are often quite technical. Let us start with the real case, as real curves
are topologically simpler than complex ones.

Remark 5.8 (Loops of real projective curves). Let F be a smooth projective curve over R. In the
usual topology, its set of points V (F) is then a compact 1-dimensional manifold (see Remark 2.28
(a)). This just means that V (F) is a disjoint union of finitely many connected components, each
of which is homeomorphic to a circle. We will refer to these components as loops of F . In the
following pictures, we will often just draw the affine part of F ; a point at infinity in such a loop will
then show up as two unbounded ends of the curve. Note that the curve can consist of several loops
even if it is irreducible (see Example 1.7 (c)).07

A convenient way to construct such curves is by deformations of singular curves. For example,
consider (the projective closure of) the affine cubic F = y2− x2− x3 with a node at the origin as in
Example 2.21 (b) and the picture below on the left. In this picture, we have indicated in addition in
which regions of A2\V (F) the polynomial F is negative resp. positive. Together with its one point
at infinity, the projective closure of F is homeomorphic to two circles glued together at a point.

F F− ε F + ε

−

+

+

− −

+

+

− −

+

+

−

Let us now perturb F and consider (the projective closures of) the curves F± ε for a small number
ε ∈ R>0 instead. Of course, this will only change the regions in which this polynomial is negative
resp. positive by a little bit — but the origin, which was on the curve before, now lies in the negative
(for F−ε) resp. positive (for F +ε) region. This leads to smooth cubics with one or two loops as in
the picture above, depending on the sign of the perturbation.

The same technique applied to a singular quartic curve, e. g. the union of two ellipses given by
F = (x2 +2y2−1)(y2 +2x2−1), yields two or four loops as in the following picture.
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F F− ε F + ε

+

+

−−

−

−

+

+

−−

−

−

+

+

−−

−

−

Remark 5.9 (Even and odd loops). Although all loops of real smooth curves are homeomorphic to a
circle, there are two different kinds of them when we consider their embeddings in projective space.
To understand this, recall from Remark 3.6 (a) that P2

R is obtained from the upper half sphere (which
we will draw topologically as an disc below) by identifying opposite points on the boundary, as in
the following picture on the left.

P2
R P2

R P2
R

identify Odd loopEven loop

P P

Q

P

P

Q

The consequence of this is that we have two different types of loops. An even loop is a loop such that
its complement has two connected components, which we might call its “interior” (shown in dark
in the picture above, homeomorphic to a disc) and “exterior” (homeomorphic to a Möbius strip),
respectively. In contrast, an odd loop does not divide P2

R into two regions; its complement is a single
component homeomorphic to a disc. Note that the distinction between even and odd is not whether
the affine part of the curve is bounded: Whereas an odd loop always has to be unbounded, an even
loop may well be unbounded, too. Instead, if you know some topology you will probably recognize
that the statement being made here is just that the fundamental group π1(P2

R) is isomorphic to Z/2Z;
the two types of loops simply correspond to the two elements of this group.

In principle, a real curve can have even as well as odd loops. There is one restriction however: As
the complement of an odd loop is simply a disc, all other loops in this complement will have an
interior and exterior, so that they are even. In other words, a real smooth curve can have at most one
odd loop.

We are now ready to find a bound on the number of loops in an irreducible smooth curve in P2
R

of a given degree. Interestingly, the idea in its proof is almost identical to that of Proposition 5.6,
although the resulting statement is quite different.

Proposition 5.10 (Harnack’s Theorem). An irreducible smooth curve of degree d in P2
R has at

most
(d−1

2

)
+1 loops.

Example 5.11. A line (d = 1) has always exactly one loop. An irreducible smooth conic (d = 2) is
a hyperbola, parabola, or ellipse as in Example 3.16, so in every case the number of loops is again
1 (after adding the points at infinity). For d = 3 Harnack’s Theorem gives a maximum number of 2
loops, and for d = 4 we get at most 4 loops. We have just seen examples of these numbers of loops
in Remark 5.8. In fact, one can show that the bound given in Harnack’s theorem is sharp, i. e. that
for every d one can find real smooth curves of degree d with exactly

(d−1
2

)
+1 loops.
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Proof sketch of Proposition 5.10. Let F be a real irreducible smooth
projective curve of degree d; by Example 5.11 it suffices to consider
the case d ≥ 3. Assume that the statement of the proposition is false,
i. e. that there are at least

(d−1
2

)
+ 2 loops. We have seen in Remark 5.9

that at least
(d−1

2

)
+ 1 of these loops must be even. Hence we can pick

points P1, . . . ,P(d−1
2 )+1 on distinct even loops of F , and d−3 more points

Q1, . . . ,Qd−3 on another loop (which might be even or odd). So, as in the
proof of Proposition 5.6, we have a total of

(d
2

)
−1 points.

FGP1

P̃1

P̃2

P2 Q1

Again as in the proof of Proposition 5.6, it now follows that there is a real curve G of degree at
most d−2 passing through all these points. As F is irreducible and has bigger degree than G, these
two curves cannot have a common component, so Bézout’s Theorem as in Corollary 4.6 implies that
they intersect in at most d(d− 2) points, counted with multiplicities. But recall from Remark 5.9
that the even loops of F containing the points Pi divide the real projective plane into two regions,
hence if G enters the interior of such a loop it has to exit it again at another point P̃i of the same loop
as in the picture above (it may also happen that G is singular or tangent to F at Pi, in which case
µPi(F,G) ≥ 2 by Corollary 2.22). So in any case the total number of intersection points, counted
with their respective multiplicities, is at least

2 ·
((

d−1
2

)
+1

)
+(d−3) = d(d−2)+1 > d(d−2),

which is a contradiction. □

Let us now turn to the case of complex curves. Of course, their topology is entirely different, as they
are 2-dimensional spaces and thus surfaces in the usual topology. In fact, we have seen such a case
already in Example 0.2 of the introduction.

Remark 5.12 (Topology of complex curves). Let F be a smooth projective curve over C. Similarly
to the real case, its set of points V (F) is then a compact 1-dimensional complex manifold, and hence
a compact 2-dimensional real manifold. Moreover, one can show:

(a) V (F) is always an oriented manifold, i. e. a “two-sided surface”, as opposed to e. g. a Möbius
strip. To see this, note that all tangents TPF for P ∈ F are 1-dimensional complex vector
spaces after shifting P to the origin, and hence admit a well-defined multiplication with the
imaginary unit i. Geometrically, this means that all tangent planes to the surface have a well-
defined notion of a positive rotation by 90 degrees, varying continuously with P — which
defines an orientation of the surface.

(b) In contrast to the real case that we have just studied, V (F) is always connected. In short,
the reason for this is that the notion of degree as well as Bézout’s Theorem can be extended
to compact oriented 2-dimensional submanifolds of P2

C. Hence, if V (F) had (at least) two
connected components X1 and X2, each of them would be a compact oriented 2-dimensional
manifold itself, and there would thus be well-defined degrees degX1,degX2 ∈ N>0. But
then X1 and X2 would have to intersect in degX1 ·degX2 points (counted with multiplicities),
which is obviously a contradiction.

Of course, the methods needed to prove Bézout’s Theorem in the topological setting are
entirely different from ours in Chapter 4. If you know some algebraic topology, the statement
here is that the 2-dimensional homology group H2(P2

C,Z) is isomorphic to Z. With this
isomorphism, the class of a compact oriented 2-dimensional submanifold in H2(P2

C,Z) is
a positive number, and the intersection product H2(P2

C,Z)×H2(P2
C,Z)→ H0(P2

C,Z) ∼= Z
(using Poincaré duality) is just the product of these numbers.
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It is now a (non-trivial but intuitive) topological result that a con-
nected compact orientable 2-dimensional manifold X is always
homeomorphic to a sphere with some finite number of “handles”.
This number of handles is called the (topological) genus of X .
Hence every curve in P2

C can be assigned a genus that describes its
topological type. The picture on the right shows a complex curve
of genus 2.

We will see in Definition 8.10 that there is also an algebraic way to assign a genus to a smooth
projective curve. It is then applicable to any (algebraically closed) ground field, coincides with the
topological genus over C and plays an important role in the study of functions on the curve. Our
goal for the rest of this chapter however will just be to compute the topological genus of a smooth
complex projective curve in terms of its degree. To do this, we will need the following technique
from topology.

Construction 5.13 (Cell decompositions). Let X be a compact 2-dimensional manifold. A cell
decomposition of X is given by writing X topologically as a finite disjoint union of points, (open)
lines, and (open) discs. This decomposition should be “nice” in a certain sense, e. g. the boundary
points of every line in the decomposition must be points of the decomposition. We do not want to
give a precise definition here (which would necessarily be technical), but only remark that every
“reasonable” decomposition that one could think of will be allowed. For example, the following
picture shows three valid decompositions of the complex curve P1

C, which is topologically a sphere
by Remark 3.6 (b).

In the left two pictures, we have 1 point, 1 line, and 2 discs (the two halves of the sphere), whereas
in the picture on the right we have 2 points, 4 lines, and 4 discs.

Of course, there are many possibilities for cell decompositions of X . But there is an important
number that does not depend on the chosen decomposition:

Lemma and Definition 5.14 (Euler characteristic). Let X be a compact 2-dimensional manifold.
Consider a cell decomposition of X, consisting of σ0 points, σ1 lines, and σ2 discs. Then the number

χ := σ0−σ1 +σ2

depends only on X, and not on the chosen decomposition. We call it the (topological) Euler charac-
teristic of X.

Proof sketch. Let us first consider the case when we move from one decomposition to a finer one,
i. e. if we add points or lines to the decomposition. Such a process is always obtained by performing
the following steps a finite number of times:

• Adding another point on a line: In this case we raise σ0 and σ1 by 1 as in the picture below,
hence the alternating sum χ = σ0−σ1 +σ2 does not change.

• Adding another line in a disc: In this case we raise σ1 and σ2 by 1, so again χ remains
invariant.
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add a
point

add a
line

We conclude that the alternating sum σ0−σ1 +σ2 does not change under refinements. But any two
decompositions have a common refinement — which is essentially given by taking all the points and
lines in both decompositions, and maybe adding more points where two such lines intersect. For
example, in Construction 5.13 the decomposition in the picture on the right is a common refinement
of the other two. Hence the Euler characteristic is independent of the chosen decomposition. □

Example 5.15 (Euler characteristic ↔ genus). Let X be
a connected compact orientable 2-dimensional manifold of
genus g, and consider the cell decomposition of X as shown
on the right. It has σ0 = 2g+2 points, σ1 = 4g+4 lines, and
4 discs, and hence we conclude that the Euler characteristic
of X is

χ = σ0−σ1 +σ2 = 2−2g.

In other words, the genus is given in terms of the Euler characteristic as g = 1− χ

2 .

We are now ready to compute the genus of a smooth curve in P2
C.

Proposition 5.16 (Topological degree-genus formula). A smooth curve of degree d in P2
C has

topological genus
(d−1

2

)
.

Proof sketch. Let F be a smooth curve of degree d in P2
C. By a projective coordinate transformation

we can assume that (0:1 :0) /∈ F . Then

π : V (F)→ P1
C, (x :y :z) 7→ (x :z)

is a well-defined map that can be interpreted as a projection,
since in the affine part where z = 1 it is given by (x,y) 7→ x as in
the picture on the right. Let us study its inverse images of a fixed
point (x :z) ∈ P1

C. Of course, they are given by the values of y
such that F(x,y,z) = 0, so that there are exactly d such points
— unless the polynomial F(x, · ,z) has a multiple zero in y at a
point in the inverse image, which happens if and only if F and
∂F
∂y are simultaneously zero there.

π

P1
C

V (F)

π(Q)

Q P

π(P)

If we choose our original coordinate transformation general enough, exactly two of the zeros of
F(x, · ,z) will coincide at these points in the common zero locus of F and ∂F

∂y , so that ∂ 2F
∂y2 ̸= 0 there

and π−1(x :z) consists of d−1 instead of d points. These points, as e. g. P in the picture above, are
usually called the ramification points of π . Note that the picture might be a bit misleading since it
suggests that V (F) is singular at P, which is not the case. The correct topological picture of the map
is impossible to draw however since it would require the real 4-dimensional space A2

C.08

At such a ramification point P we have µP(F, ∂F
∂y ) = 1 by Corollary 2.22, since in affine coordinates

with P = (x0,y0) the tangents to the two curves are by Proposition 2.24 (b)

TPF =
∂F
∂x

(P) · (x− x0)+
∂F
∂y

(P)︸ ︷︷ ︸
=0

·(y− y0) and TP
∂F
∂y

=
∂ 2F
∂x∂y

(P) · (x− x0)+
∂ 2F
∂y2 (P)︸ ︷︷ ︸
̸=0

·(y− y0),

which are clearly distinct. Hence by Bézout’s Theorem there are exactly degF ·deg ∂F
∂y = d(d−1)

ramification points.
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Let us now pick a sufficiently fine cell decomposition of P1
C, containing all images of the ramifi-

cation points as points of the decomposition. If σ0,σ1,σ2 denote the number of points, lines, and
discs in this decomposition, respectively, we have σ0−σ1 +σ2 = 2 by Example 5.15 since P1

C is
topologically a sphere, i. e. of genus 0. Now lift this cell decomposition to a decomposition of V (F)
by taking all inverse images of the cells of P1

C. By our above argument, all cells will have exactly d
inverse images — except for the images of the d(d−1) ramification points, which have one inverse
image less. So the resulting decomposition of V (F) has dσ0− d(d− 1) points, dσ1 lines, and dσ2
discs. Hence by Lemma 5.14 the Euler characteristic of V (F) is

χ = dσ0−d(d−1)−dσ1 +dσ2 = 2d−d(d−1) = 3d−d2,

which means by Example 5.15 that its genus is

g = 1− χ

2
=

1
2
(d2−3d +2) =

(
d−1

2

)
. □

Example 5.17.
(a) A smooth curve of degree 1 or 2 in P2

C has topological genus 0, i. e. it is homeomorphic to a
sphere. A smooth cubic has genus 1, so it is topologically a torus. We will study such cubic
curves in detail in Chapter 7.

(b) Not every natural number can occur as the topological genus of a smooth complex plane
curve: For example, there is no smooth complex plane curve of genus 2 since there is no
d ∈ N with

(d−1
2

)
= 2.
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6. Functions and Divisors

Up to now we have essentially studied curves for themselves, i. e. no functions on them or maps
between them. In fact, as we restrict ourselves to plane curves in these notes it does not make
too much sense to consider maps between them as these maps would then somehow have to be
compatible with the embeddings in the plane, which is quite restrictive and not very natural. But it
is still very fruitful to consider functions on plane curves, i. e. maps to the ground field K, as we will
see in the following chapters.

It turns out that the theory of such functions on curves is significantly easier from an algebraic point
of view if we restrict to smooth and irreducible curves over an algebraically closed field (where
irreducibility is automatic for projective curves by Proposition 5.1). So let us make the convention:

From now on, the ground field K is always assumed to be algebraically closed.

Curves are always assumed to be smooth and irreducible.

In particular, by Remarks 1.14 and 3.19 we can then think of a curve as a subset of A2 resp. P2.

Let us start by studying polynomial functions on affine curves.

Definition 6.1 (Affine coordinate rings). Let F be a (smooth and irreducible) affine curve (over an
algebraically closed field K). We call

A(F) := K[x,y]/⟨F ⟩
the coordinate ring of F .

In order to avoid overly complicated notations, we will not use any special symbols to denote the
equivalence classes in A(F), but rather write e. g. f ∈ K[x,y] or f ∈ A(F) for a polynomial resp. its
equivalence class modulo F .

Remark 6.2 (A(F) as ring of polynomial functions). Clearly, the elements of A(F) determine well-
defined polynomial functions on V (F) ⊂ A2 to K by evaluation. Conversely, two polynomials f ,g
in K[x,y] determine the same polynomial function on V (F) if and only if f −g is identically zero on
V (F), i. e. V (F) ⊂ V ( f − g). But as F is irreducible (and the ground field is algebraically closed)
this is equivalent to F | f − g by Corollary 1.13, and thus to f = g ∈ A(F). In other words, we see
that A(F) is exactly the ring of polynomial functions on the curve.

Remark 6.3 (Algebraic properties of A(F)).
(a) As the curve F is assumed to be irreducible, the coordinate ring A(F) is an integral domain:

If f g = 0 ∈ A(F) this means that F | f g, hence F | f or F |g, which means that f = 0 or g = 0
in A(F).

(b) In contrast to the polynomial ring K[x,y], the coordinate ring A(F) of an affine curve is in
general not a unique factorization domain as in Fact 1.2. Actually, determining whether a
given coordinate ring A(F) is factorial or not is in general a difficult problem. In these notes
we will not study this question in detail; we just have to remember that it does not make
sense to talk about irreducible decompositions of elements of A(F).

As A(F) is an integral domain we can also construct its quotient field, corresponding to functions on
the curve that are given by quotients of polynomials. Just as in Definition 2.1 this gives rise to local
rings describing such functions that have a well-defined value at a given point, and thus also on a
neighborhood of this point.
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Definition 6.4 (Rational functions and local rings). Let F be an affine curve.

(a) The quotient field (see Construction 1.10)

K(F) := QuotA(F) =

{
f
g

: f ,g ∈ A(F) with g ̸= 0
}

of the coordinate ring is called the field of rational functions on F .

(b) A rational function ϕ ∈ K(F) is called regular at a point P ∈ F if it can be written as ϕ = f
g

with f ,g∈ A(F) and g(P) ̸= 0. The regular functions at P form a subring of K(F) containing
A(F) denoted by

OF,P :=
{

f
g

: f ,g ∈ A(F) with g(P) ̸= 0
}
⊂ K(F).

This ring of regular functions at P is called the local ring of F at P.

(c) There is a well-defined evaluation map

OF,P→ K,
f
g
7→ f (P)

g(P)

which we will simply write as ϕ 7→ ϕ(P) for ϕ ∈ OF,P, and whose kernel is

IF,P :=
{

f
g

: f ,g ∈ A(F) with f (P) = 0 and g(P) ̸= 0
}
.

Remark 6.5 (Algebraic interpretation of local rings). As in the case of the ring OA2,P in Remark
2.2, the rings OF,P are also local rings in the algebraic sense that they contain exactly one maximal
ideal, namely IF,P. The proof of this statement is the same as before: If I is an ideal in OF,P which
is not a subset of IF,P then there is an element f

g ∈ I with f (P) ̸= 0 and g(P) ̸= 0. But this is then a
unit in OF,P, so that I = OF,P.

Alternatively, just as in Remark 2.2 the ring OF,P is the localization of A(F) at the maximal ideal
⟨x− x0,y− y0 ⟩ with P = (x0,y0), and thus a local ring.

It is straightforward to transfer our notion of intersection multiplicity of two curves to a definition
of multiplicity of a polynomial or rational function (and hence also of elements of local rings) on a
curve. It should be thought of as the order of a zero or pole of such a function as in the introduction
to Chapter 2 — an interpretation that will become even more natural in Proposition 6.10 and Remark
6.11.

Construction 6.6 (Multiplicities of rational functions). Let P be a point on an affine curve F .

(a) For a polynomial function f ∈ A(F) we define its multiplicity at P to be

µP( f ) := µP(F, f ) 2.3
= dimOA2,P/⟨F, f ⟩ ∈ N∪{∞}.

Note that this is well-defined since f = g∈ A(F) implies g = f +hF for some polynomial h,
and thus µP(F, f ) = µP(F,g) by Remark 2.4 (c). By Exercises 2.7 and 2.8 this multiplicity
is infinite if and only if f and F have a common component through P, i. e. (since F is
irreducible) if and only if f = 0 ∈ A(F).

The most important property of this multiplicity is that it is additive: By Proposition 2.10 (b)
we have

µP( f g) = µP( f )+µP(g)

for any f ,g ∈ A(F).

(b) For a rational function ϕ = f
g ∈ K(F) the multiplicity at P is defined by

µP(ϕ) := µP( f )−µP(g) ∈ Z∪{∞}.
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Again this is well-defined: As g ̸= 0∈ A(F) we have µP(g)< ∞ by (a), and if f
g = f ′

g′ ∈K(F)

then f g′ = g f ′ ∈ A(F), so that

µP( f )−µP(g) = µP( f ′)−µP(g′)

by the additivity of multiplicities of polynomial functions. Moreover, the multiplicity µP(ϕ)
is infinite if and only if µP( f ) is infinite, i. e. if and only if f = 0, and thus ϕ = 0.

The additivity of multiplicities immediately extends to rational functions as well: For ϕ = f
g

and ψ = f ′
g′ in K(F) we have

µP(ϕψ) = µP

(
f f ′

gg′

)
= µP( f f ′)−µP(gg′) = µP( f )+µP( f ′)−µP(g)−µP(g′)

= µP(ϕ)+µP(ψ).

In particular, as the multiplicity is finite for elements of K(F)∗ this means that µP is a group
homomorphism from K(F)∗ to Z.

If a (polynomial or rational) function has multiplicity n > 0 at P we say that it has a zero of order n
at P; if n < 0 we say that it has a pole of order −n at P.

Example 6.7. Consider the rational function ϕ = y
x on the (complex)

affine curve F = y2 + y+ x2. A picture of the real points of F is shown
in the picture on the right. Using the rules of Chapter 2 for computing
intersection multiplicities we obtain at the origin

µ0(x) = µ0(x,y2− y− x2) = µ0(x,y2− y) = 1

and µ0(y) = µ0(y,y2− y− x2) = µ0(y,x2) = 2,

F

which is also easy to interpret geometrically by Corollary 2.22 as y is the tangent to F there. We
conclude that µ0(ϕ) = 2−1 = 1, i. e. that ϕ has a zero of order 1 at the origin.

Exercise 6.8. Let P be a point on an affine curve F . Check that the local rings of A2 and F at P are
related by OF,P ∼= OA2,P/⟨F ⟩, and hence that µP( f ) = dimOF,P/⟨ f ⟩ for all f ∈ A(F).

Remark 6.9 (Multiplicities of regular functions). If ϕ ∈ OF,P is an element of the local ring we
can write it as ϕ = f

g , where f ,g ∈ A(F) with g(P) ̸= 0. As this means that µP(g) = 0, we see that
µP(ϕ) = µP( f )≥ 0: Elements of the local ring cannot have a pole there. In particular, if ϕ is a unit
then µP(ϕ

−1) =−µP(ϕ)≥ 0 as well, and we must have µP(ϕ) = 0.

One would probably expect that the converse holds as well, i. e. that a rational function without a
pole at P is regular at P. Note however that this is not obvious from the definitions, as it might happen
just as in Example 6.7 that ϕ = f

g with µP( f )≥ µP(g)> 0: In this case we have µP(ϕ)≥ 0 but ϕ is
not given as a quotient with non-vanishing denominator, so that it is not visibly regular. Nevertheless
this statement turns out to be true as we will show in the next proposition: It is a consequence of the
fact that OF,P is what is called a discrete valuation ring in commutative algebra (see also Remark
2.28 (c)).

Proposition 6.10 (OF,P is a discrete valuation ring). Let P be a point on an affine curve F.

(a) The ideal IF,P is principal, i. e. it can be written as IF,P = ⟨ t ⟩ for some t ∈ OF,P (which is
unique up to units). We call t a local coordinate for F at P.

(b) Given a local coordinate t for F at P, every non-zero rational function ϕ ∈ K(F)∗ can be
written uniquely as ϕ = ctn for a unit c ∈ OF,P and n ∈ Z, namely for n = µP(ϕ).

In particular, we have ϕ ∈ OF,P if and only if µP(ϕ)≥ 0, i. e. if and only if ϕ does not have
a pole at P.
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Proof.

(a) Let t be (the class of) a line through P which is not the tangent TPF , so that µP(t) = 1 by
Corollary 2.22. As t vanishes at P we have t ∈ IF,P, and thus

1 = µP(t)
6.8
= dimOF,P/⟨ t ⟩ ≥ dimOF,P/IF,P ≥ 1,

where the last inequality holds as the constant function 1 is a non-zero element of OF,P/IF,P.
We conclude that we must have equality, and thus IF,P = ⟨ t ⟩.

(b) We can write ϕ = f
g with f ,g ∈ A(F)\{0}. For m = µP( f ), i. e. µP( f ) = µP(tm), we then

have ⟨F, f ⟩ = ⟨F, tm ⟩ in OA2,P by Proposition 2.26. This means that ⟨ f ⟩ = ⟨ tm ⟩ in OF,P
by Exercise 6.8, and hence that f = d tm ∈ OF,P for a unit d. In the same way we can write
g = etr for a unit e and r = µP(g), and hence ϕ = ctn with c = d

e and n = m− r as desired.

The number n in such a representation is clearly unique: As units have multiplicity 0 by
Remark 6.9 we must have n = µP(ctn) = µP(ϕ).

In particular, if n≥ 0 then clearly ϕ = ctn ∈ OF,P; the converse follows again from Remark
6.9. □

Remark 6.11 (Discrete valuation rings in commutative algebra). Over the ground field K = C, the
local coordinate t in Proposition 6.10 can be thought of as an analytic local coordinate around P on
the 1-dimensional complex manifold V (F) as in Remark 2.28 (b). Consequently, the multiplicity of
a function at P just specifies how often this coordinate t can be split off as a linear factor.

As we have mentioned already, in commutative algebra a local ring with the properties of Proposition
6.10 is called a discrete valuation ring; the multiplicity µP(ϕ) is therefore also often called the
valuation of ϕ . Moreover, Proposition 6.10 (b) means that (in contrast to the ring A(F), see Remark
6.3 (b)), OF,P is a factorial ring again, with t as the only irreducible element. Despite its more
complicated construction, the local ring OF,P is therefore much simpler than A(F) from an algebraic
point of view, and we will often prefer to work with it rather than with polynomials.

The structure of a discrete valuation ring also allows to compute the multiplicity of the sum of two
rational functions.
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Corollary 6.12. Let P be a point on a curve F. For any two rational functions ϕ,ψ ∈K(F) we have

µP(ϕ +ψ)≥min(µP(ϕ),µP(ψ)),

with equality holding if µP(ϕ) ̸= µP(ψ).

Proof. We may restrict to the case when ϕ and ψ are non-zero, as the statement is trivial otherwise.
By symmetry we may also assume that n := µP(ϕ) ≤ m := µP(ψ). Proposition 6.10 then tells us
that we can write ϕ = ctn and ψ = d tm for some units c and d and a local coordinate t, and thus

µP(ϕ +ψ) = µP

(
ctn

(
1+

d
c

tm−n
))

= µP(ctn)+µP

(
1+

d
c

tm−n︸ ︷︷ ︸
∈OF,P

) 6.9
≥ µP(ctn) = n. (∗)

Moreover, if n ̸= m then 1+ d
c tm−n has value 1 at P and hence is a unit in OF,P, which means by

Remark 6.9 again that we have equality in (∗). □

As a final result on affine curves, we can now show that rational functions that are required to be
regular at every point of the curve are exactly the polynomial functions, i. e. the elements of the
coordinate ring.

Proposition 6.13 (Global regular functions on affine curves). Let F be an affine curve. Then⋂
P∈F

OF,P = A(F) ⊂ K(F).
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Proof. Clearly, all polynomial functions in A(F) are everywhere regular, so it remains to prove the
converse. For ϕ ∈

⋂
P∈F OF,P ⊂ K(F) consider the ideal I := {g ∈ K[x,y] : gϕ ∈ A(F)}. Then

V (I) = /0: If we had a point P ∈ V (I), it would follow first of all that P ∈ F since F ∈ I. Hence we
have ϕ ∈ OF,P, i. e. we can write ϕ = f

g for polynomials f and g with g(P) ̸= 0. As gϕ = f ∈ A(F)

this means that g ∈ I, leading to the contradiction g(P) = 0 since P ∈V (I).

We conclude that V (I) = /0, and hence by the Nullstellensatz of Fact 4.1 that I =K[x,y], which means
that 1 ∈ I, i. e. ϕ ∈ A(F). □

Let us now pass on to projective curves, which will be our main objects of interest for the rest of
these notes. The constructions of rational functions, local rings, and multiplicities in this case are
essentially analogous to the ones considered above, taking care of the fact as in Remark 3.7 that
we need to consider homogeneous polynomials resp. quotients of homogeneous polynomials of the
same degree.

Definition 6.14 (Homogeneous coordinate rings). Let F be a projective curve.

(a) We call
S(F) := K[x,y,z]/⟨F ⟩

the (homogeneous) coordinate ring of F . As in Remark 6.3 in the affine case, it is an
integral domain as F is still assumed to be irreducible.

(b) A non-zero element f ∈ S(F) is called homogeneous of degree d if it can be represented
by a homogeneous polynomial of degree d in K[x,y,z]. The vector space of these elements,
together with 0, will be denoted Sd(F).

Remark 6.15 (Direct sum decomposition of S(F)). Even if the representative modulo F of an ele-
ment in S(F) is not unique, we claim that we still have a direct sum decomposition

S(F) =
⊕
d∈N

Sd(F).

In fact, it is obvious that S(F) is the sum of all Sd(F), so let us show that this sum is direct. To do
this, assume that f0 + · · ·+ fn = 0 ∈ S(F) for some polynomials f0, . . . , fn such that fd is zero or
homogeneous of degree d for all d = 0, . . . ,n. This means that f0 + · · ·+ fn = gF for a polynomial
g. Taking the degree-d part of this equation then tells us that fd = gd−degF F (where gk denotes the
degree-k part of g as in Notation 2.16), and thus fd = 0 ∈ S(F) for all d.

Construction 6.16 (Rational functions and local rings). Let F be a projective curve.

(a) The field of rational functions on F is defined as

K(F) :=
{

f
g

: f ,g ∈ Sd(F) for some d ∈ N,g ̸= 0
}
⊂ QuotS(F).

(b) Analogously to Definition 6.4, we call a rational function ϕ ∈K(F) regular at a point P∈ F
if it can be written as ϕ = f

g with f ,g∈ S(F) homogeneous of the same degree and g(P) ̸= 0.
The regular functions at P form a subring

OF,P :=
{

f
g
∈ K(F) : g(P) ̸= 0

}
of K(F) called the local ring of F at P.

(c) The ring of regular functions admits an evaluation map OF,P→ K, ϕ 7→ ϕ(P) with kernel
IF,P := {ϕ ∈ OF,P : ϕ(P) = 0}.

Construction 6.17 (Multiplicities of rational functions). Let P be a point on a projective curve F .

(a) For a homogeneous element f ∈ S(F) we define the multiplicity at P as

µP( f ) := µP(F, f ) 3.21
= dimOP2,P/⟨F, f ⟩ ∈ N∪{∞}.
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(b) The multiplicity of a rational function ϕ = f
g ∈ K(F) at P is defined as

µP(ϕ) := µP( f )−µP(g).

It follows in the same way as in the affine case in Construction 6.6 that these multiplicities are well-
defined, zero exactly for the zero element of S(F) resp. K(F), and additive. The notions of (orders
of) zeros and poles are also carried over directly.

Remark 6.18 (Affine and projective local rings). As in Construction 3.20, for a point P = (x0 :y0 :1)
on a projective curve F one can check that there is an isomorphism

OF,(x0 :y0 :1)→ OF i,(x0,y0)
,

f
g
7→ f i

gi

sending IF,(x0 :y0 :1) to IF i,(x0,y0)
. Hence the algebraic properties of the local ring as e. g. in Proposition

6.10, Remark 6.11, and Corollary 6.12 carry over directly from the affine to the projective case.

Exercise 6.19. Consider the rational function ϕ = x2

y2+yz on the projective curve F = y2z+ x3− xz2.
Moreover, let P = (0:0 :1) ∈ F .

(a) Compute the order n = µP(ϕ).

(b) Determine a local coordinate t ∈ OF,P.

(c) Give an explicit description of ϕ in the form ϕ = ctn for a unit c ∈ OF,P, where c should
be written as f

g for some homogeneous f ,g ∈ S(F) of the same degree with f (P) ̸= 0 and
g(P) ̸= 0.

Exercise 6.20.

(a) Let P be a point on an affine curve F . Show that there is a rational function ϕ ∈ K(F) which
has exactly one pole which is of order 1 and at P, i. e. such that µP(ϕ) =−1 and µQ(ϕ)≥ 0
for all Q ̸= P.

(b) Let P1 and P2 be distinct points on a projective conic F . Show that there is a rational function
ϕ ∈ K(F) with µP1(ϕ) = 1, µP2(ϕ) =−1, and µP(ϕ) = 0 at all other points P of F .

Exercise 6.21. Let F be an affine curve. Prove that the affine field of rational functions K(F) is
isomorphic to the projective one K(Fh).

Before we continue our study of multiplicities of rational functions on projective curves let us in-
troduce the so-called divisors, a very convenient piece of notation that allows us to consider the
multiplicities at all points of curve at once. We could have done this already in the affine case, but
have chosen not to do so as we will only consider projective curves from now on.

Definition 6.22 (Divisors). Let F be a projective curve.

(a) A divisor on F is a formal finite linear combination a1P1 + · · ·+ anPn of distinct points
P1, . . . ,Pn ∈F with integer coefficients a1, . . . ,an ∈Z for some n∈N. Obviously, the divisors
on F form an Abelian group under pointwise addition of the coefficients. We will denote it
by DivF .

Equivalently, in algebraic terms DivF is just the free Abelian group generated by the points
of F (i. e. the group of maps V (F)→ Z being non-zero at only finitely many points; with a
point mapping to its coefficient in the sense above).

(b) A divisor D = a1P1 + · · ·+anPn as above is called effective, written D ≥ 0, if ai ≥ 0 for all
i = 1, . . . ,n. If D1,D2 are two divisors with D2−D1 effective, we also write this as D2 ≥D1
or D1 ≤D2. In other words, we have D2 ≥D1 if and only if the coefficient of any point in D2
is greater than or equal to the coefficient of this point in D1. Note that this defines a partial
order on DivF .
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(c) The degree of a divisor D = a1P1 + · · ·+ anPn is the number degD := a1 + · · ·+ an ∈ Z.
Obviously, the degree is a group homomorphism deg: DivF → Z. Its kernel is denoted by

Div0 F = {D ∈ DivF : degD = 0}.

Note that the name “divisor” in this context is entirely unrelated to the idea of elements of rings
dividing one another. Instead, divisors are just given by multiplicities attached to all points on a
curve, as appearing naturally in the following situations.

Construction 6.23 (Divisors from polynomials and rational functions). Again, let F be a projective
curve. The multiplicities of polynomials and rational functions of Construction 6.17 allow us to
define divisors on F as follows.

(a) For a non-zero homogeneous polynomial f ∈ S(F)\{0} the divisor of f is defined to be

div f := ∑
P∈F

µP( f ) ·P ∈ DivF.

Hence, the effective divisor div f contains the data of the zeros of f together with their
multiplicities. Note that the sum runs formally over all points of F — but as the number of
zeros of f is finite by Remark 3.18, there are only finitely many points in this sum with a
non-zero multiplicity, so that we obtain a well-defined divisor.

(b) Similarly, for a non-zero rational function ϕ ∈ K(F)∗ we set

divϕ := ∑
P∈F

µP(ϕ) ·P ∈ DivF.

This divisor is not effective; it encodes the zeros and poles of ϕ together with their mul-
tiplicities. By definition, if we write ϕ = f

g as a quotient of two non-zero homogeneous
polynomials f ,g ∈ S(F)\{0} of the same degree then divϕ = div f −divg.

Example 6.24. Consider the rational function ϕ = y
x on the projective curve F = y2 + yz+ x2 over

C, i. e. on the projective closure of the affine curve in Example 6.7. We have seen in this example
that ϕ has a zero of order 1 at (0:0 :1). Apart from this point, it is easy to check that the only other
point at which y or x vanishes is (0: −1:1), where

µ(0:−1:1)(ϕ) = µ(0:−1:1)(y)−µ(0:−1:1)(x) = 0−1 =−1.

Hence the divisor of ϕ is
divϕ = 1 · (0:0 :1)−1 · (0: −1:1).

Exercise 6.25. Let F = y2z− x3 + xz2. Compute the divisor div y
z on F .

Remark 6.26 (Additivity of multiplicities for divisors). Let F be a projective curve. The additivity
of multiplicities as in Constructions 6.6 and 6.17 translates immediately into the following statements
for divisors:

(a) For two homogeneous polynomials f ,g ∈ S(F)\{0} we get

div( f g) = ∑
P∈F

µP( f g) ·P = ∑
P∈F

µP( f ) ·P+ ∑
P∈F

µP(g) ·P

= div f +divg.

(b) In the same way we obtain

div(ϕψ) = divϕ +divψ

for any two non-zero rational functions ϕ,ψ ∈ K(F)∗. In particular, this means that the map
div : K(F)∗→ DivF is a group homomorphism.

It is also very useful to translate the important theorems of Bézout and Max Noether of Chapter 4
into the language of divisors.

Remark 6.27 (Bézout’s Theorem for divisors). For a projective curve F , Bézout’s Theorem of
Corollary 4.6 implies for the degrees of the divisors of Construction 6.23:
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(a) for a non-zero homogeneous polynomial f ∈ S(F)\{0}
degdiv f = ∑

P∈F
µP( f ) = ∑

P∈F
µP(F, f ) = degF ·deg f ;

(b) for a non-zero rational function ϕ ∈ K(F)∗ (which we can write as ϕ = f
g with f and g

non-zero and homogeneous of the same degree)

degdivϕ = degdiv f −degdivg
(a)
= degF ·deg f −degF ·degg = 0,

i. e. that “a rational function on a projective curve has equally many zeros as poles”. In
particular, the image of the group homomorphism div : K(F)∗→ DivF of Remark 6.26 (b)
lies in Div0 F .

Proposition 6.28 (Max Noether’s Theorem for divisors). Let F be a projective curve. Moreover, let
g,h ∈ S(F) be non-zero homogeneous polynomials with divg≤ divh.

Then there is a homogeneous polynomial b ∈ S(F) (of degree degh− degg) with h = bg in S(F),
and thus with divh = divb+divg.

Proof. As divg≤ divh means µP(g)≤ µP(h) for all P ∈ F , Max Noether’s Theorem as in Corollary
4.12 (a) implies that there are homogeneous polynomials a and b (of degrees degh− degF and
degh− degg, respectively) such that h = aF + bg in K[x,y,z], and hence h = bg in S(F). The
equation divh = divb+divg now follows directly from Remark 6.26 (a) (or Corollary 4.12 (b)). □

As a first consequence of these statements we can identify the rational functions that are regular at
every point of the curve. Analogously to Proposition 6.13 we expect such functions to be polynomi-
als — but in the projective case polynomials are only well-defined functions if they are constants:

Corollary 6.29 (Global regular functions on projective curves). Let F be a projective curve. Then⋂
P∈F

OF,P = K ⊂ K(F),

i. e. the only rational functions that are everywhere regular on F are constants.

Proof. Let ϕ = f
g ∈K(F) be regular at all points P∈F . This means that 0≤ µP(ϕ) = µP( f )−µP(g)

for all P, and hence that divg≤ div f . As f and g have the same degree, Proposition 6.28 then implies
that f = cg for a constant c, and hence that ϕ = f

g = c is a constant. □

Remark 6.30 (Recovering rational functions from their divisors). Corollary 6.29 implies that a
rational function ϕ ∈ K(F)∗ on a projective curve F is determined up to scalars by its divisor divϕ:
If ψ is another rational function with divψ = divϕ then div ψ

ϕ
= 0 by Remark 6.26 (b), hence ψ

ϕ
is

some constant c ∈ K∗ by Corollary 6.29, and thus ψ = cϕ .

By definition, the group DivF of divisors on a projective curve F is a very large free Abelian group.
As such, it is not very interesting from a group-theoretic point of view. It turns out that we can get a
much smaller and more interesting group by considering a certain quotient of DivF as follows.

Definition 6.31 (Divisor classes and Picard groups). Let F be a projective curve.

(a) A divisor on F is called principal if it is the divisor of a non-zero rational function as in
Construction 6.23 (b). The set of all principal divisors will be denoted by

PrinF := {divϕ : ϕ ∈ K(F)∗}.
As the image of the group homomorphism div : K(F)∗ → DivF of Remark 6.26 (b) it is
clearly a subgroup of DivF , and by Remark 6.27 (b) also of Div0 F .

(b) The quotient group
PicF := DivF/PrinF

is called the Picard group or group of divisor classes on F . Two divisors D1 and D2 defining
the same element in PicF , i. e. with D1−D2 = divϕ for a rational function ϕ ∈ K(F)∗, are
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said to be linearly equivalent, written D1 ∼ D2. Restricting to divisors of degree 0, we also
set

Pic0 F := Div0 F/PrinF,
which is a subgroup of PicF .

10

Remark 6.32. By the homomorphism theorem, the degree of divisors induces isomorphisms
DivF/Div0 F ∼= Z and PicF/Pic0 F ∼= Z. This means that the Picard group PicF and its degree-0
part Pic0 F carry essentially the same information. It just depends on the specific application in mind
whether it is more convenient to work with PicF or Pic0 F .

Example 6.33 (Picard groups for curves of degree at most 2).
(a) Let F be a projective line. For any point P ∈ F let lP be a line through P different from F ,

so that P is the only intersection point of F and lP (with multiplicity 1), and hence div lP = P
on F . For another point Q ∈ F we then obtain a rational function lP

lQ
whose divisor is P−Q,

so that P−Q∼ 0 by definition of linear equivalence.

Now any divisor D of degree 0 can be written as D = P1 + · · ·+Pn−Q1−·· ·−Qn for some
points P1, . . . ,Pn,Q1, . . . ,Qn on F , and hence we conclude that

D = (P1−Q1)+ · · ·+(Pn−Qn)∼ 0,

so that Pic0 F = {0} is the trivial group.

(b) If F is a projective conic we have seen in Exercise 6.20 (b) that for any two points P and Q
on F there is again a rational function with divisor P−Q, so that P ∼ Q. So we conclude
again that Pic0 F = {0} in the same way as in (a).

For curves of bigger degree however, the Picard group is never trivial:

Proposition 6.34. Let F be a curve of degree d ≥ 3. Then P ̸∼ Q for any two distinct points P and
Q on F. In particular, Pic0 F is non-trivial.

Proof. Assume that P ∼ Q, i. e. that P−Q = div f
g for some homogeneous polynomials f and g of

the same degree. Pick any line l through Q, so that div l = E +Q for an effective divisor E of degree
degE = d−1≥ 2. As

div( f l) = divg+div
f
g
+div l = divg+P−Q+E +Q = divg+E +P≥ divg

it follows from Max Noether’s Theorem in Proposition 6.28 that there is a line l′ with div l′ = E +P.

But degE ≥ 2 means that E contains at least two points (or one point with multiplicity at least 2).
Hence l and l′ have to pass through them (resp. be tangent to F at the one point with multiplicity at
least 2). As this fixes the line uniquely, it follows that l = l′, and thus that P = Q.

We conclude that P ̸∼ Q for P ̸= Q, and thus that P−Q ̸= 0 ∈ Pic0 F . □

Corollary 6.35 (Embedding of a curve in its Picard group). Let P0 be a fixed base point on a pro-
jective curve F of degree at least 3. Then the map

Φ : V (F)→ Pic0 F, P 7→ P−P0

is injective.

Proof. If Φ(P) = Φ(Q) then P−P0 ∼ Q−P0, hence P ∼ Q, and thus P = Q as points in V (F) by
Proposition 6.34. □

Remark 6.36. For a projective curve F of degree degF ≥ 3, Corollary 6.35 gives us a natural
embedding (after choosing a base point) of the curve F into its degree-0 Picard group Pic0 F . This
is a very interesting statement, as it gives us a natural map between mathematical objects of totally
different types (namely a variety and a group).

In the next chapter we will see that this map is even a bijection if degF = 3, making this correspon-
dence between varieties and groups even more surprising and useful.
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Exercise 6.37.
(a) Let F be a projective curve, and let f be a homogeneous polynomial with div f = D+E for

two divisors D and E on F . Show: If D′ is linearly equivalent to D and D′+E is effective
then there is a homogeneous polynomial g with divg = D′+E.

(b) Let P,Q,R,S be four distinct points on a cubic curve F . Show that P+Q∼ R+S if and only
if the intersection point of the lines PQ and RS lies on F .
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7. Elliptic Curves

In this chapter, we will interrupt our general discussion of plane curves for a moment to study
(projective) curves of degree 3 in detail. We have seen already that this is the first interesting case of
curves in many respects: It is, for example, the lowest degree for which real or complex curves are
topologically interesting (see Propositions 5.10 and 5.16), and for which the Picard group is non-
trivial (see Example 6.33 and Proposition 6.34). We will show now that curves of degree 3 have in
fact a very rich structure, both from an algebraic and — over C — from an analytic point of view.
In the literature, they are usually called elliptic curves.

Definition 7.1 (Elliptic curves). An elliptic curve is simply a projective cubic curve (which is
smooth and defined over an algebraically closed field, in accordance with our convention at the
beginning of Chapter 6).

The term “elliptic curve” might sound confusing at first, because the shape of a plane cubic curve has
no similarities with an ellipse, not even over the real numbers (see e. g. Remark 5.8). The historical
reason for this name is that the formula for the circumference of an ellipse can be expressed in terms
of an integral over a plane cubic curve.

Probably the single most important (and surprising) result about elliptic curves is that they carry a
natural group structure. The easiest, or at least the most conceptual way to prove this is by showing
that an elliptic curve admits a natural bijection to its degree-0 Picard group. To establish this, we
need the following construction.

Construction 7.2. Let P and Q be two (not necessarily distinct) points
on an elliptic curve F . Then there is a unique line l with P+Q ≤ div l
on F , namely the line through P and Q if these points are distinct, and
the tangent line to F at P = Q otherwise. But div l is an effective divisor
of degree 3 by Remark 6.27 (a), and hence there is a unique point R ∈ F
(which need not be distinct from P and Q) with div l = P+Q+R. In the
following, we will denote this point R by ψ(P,Q). In short, it is just “the
third point of intersection of the line through P and Q with F”.

F

ψ(P,Q)

P′
ψ(P′,P′)

Q
P

Lemma 7.3. For any three points P,Q,R on an elliptic curve F there is a point S on F such that
P+Q∼ R+S, namely

S = ψ(ψ(P,Q),R).

Proof. Applying Construction 7.2 to the points P and Q we find a line l with div l = P+Q+ψ(P,Q)
on F . Similarly, for ψ(P,Q) and R we find a line l′ with div l′ = ψ(P,Q)+R+ψ(ψ(P,Q),R). The
quotient of these lines is then a rational function on F , whose divisor is therefore linearly equivalent
to zero: We have

0∼ div
l
l′
= P+Q+ψ(P,Q)− (ψ(P,Q)+R+ψ(ψ(P,Q),R)),

and hence, as claimed, P+Q∼ R+S with S = ψ(ψ(P,Q),R). □

Proposition 7.4. Let P0 be a fixed point on an elliptic curve F. Then the map

Φ : V (F)→ Pic0 F, P 7→ P−P0

of Corollary 6.35 is a bijection.

Proof. As we already know by Corollary 6.35 that Φ is injective, it remains to prove surjectivity. So
let D be an arbitrary element of Pic0 F , which we can write as

D = P1 + · · ·+Pm−Q1−·· ·−Qm
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for some m ∈ N>0 and not necessarily distinct points P1, . . . ,Pm,Q1, . . . ,Qm ∈ F . Assume first that
m≥ 2. By Lemma 7.3 there is then a point S ∈ F with P1 +P2 ∼ Q1 +S, and hence

D∼ S+P3 + · · ·+Pm−Q2−·· ·−Qm.

Up to linear equivalence, we have thus reduced the number m of (positive and negative) points in D
by 1. Continuing this process as long as m ≥ 2, we see that D ∼ P−Q for some P,Q ∈ F . In the
same way, Lemma 7.3 now gives us a point T with P+P0 ∼ Q+T , i. e. with D∼ P−Q∼ T −P0.
But this means that Φ(T ) = D, i. e. that Φ is surjective. □

Remark 7.5. Let F be an elliptic curve. After choosing a base point P0 ∈ F , Proposition 7.4 gives
us a canonical bijection between the variety V (F) and the Abelian group Pic0 F , i. e. between two
very different types of mathematical objects. We can use it to give V (F) the structure of an Abelian
group, and Pic0 F the structure of a smooth projective variety.

In fact, it can be shown that Pic0 F can be made into a variety (the so-called Picard variety) for every
smooth projective curve F . In contrast, the statement that V (F) has a natural structure of an Abelian
group is very special to elliptic curves. Let us explore this group structure in more detail.

Construction 7.6 (The group structure on an elliptic curve). Let P0 be a fixed base point on an
elliptic curve F . As in Remark 7.5, we can use Proposition 7.4 to define a group structure on V (F)
in such a way that the map Φ becomes an isomorphism of groups. More precisely, if we denote this
group operation on V (F) by the symbol ⊕ (to distinguish it from the addition of points in DivF or
PicF), then P⊕Q for P,Q ∈ F is the unique point of F satisfying

Φ(P⊕Q) = Φ(P)+Φ(Q),

where “+” denotes the addition of divisors in Pic0 F . We can use Lemma 7.3 to solve this for P⊕Q:

P⊕Q = Φ
−1(Φ(P)+Φ(Q))

= Φ
−1(P−P0 +Q−P0)

= Φ
−1(P+Q−2P0)

7.3
= Φ

−1(P0 +ψ(ψ(P,Q),P0)−2P0)

= Φ
−1(ψ(ψ(P,Q),P0)−P0)

= ψ(ψ(P,Q),P0).

In other words, to construct the point P⊕Q we draw a line through P and Q. Then we draw another
line through the third intersection point ψ(P,Q) of this line with F and the point P0. The third
intersection point of this second line with F is then P⊕Q, as in the picture below on the left.

Similarly, for the inverse ⊖P of P in the above group structure we obtain

⊖P = Φ
−1(−Φ(P))

= Φ
−1(P0−P)

= Φ
−1(P0 +P0−P−P0)

7.3
= Φ

−1(P+ψ(ψ(P0,P0),P)−P−P0)

= ψ(ψ(P0,P0),P).

So to construct the inverse ⊖P we draw the tangent to F through P0. Then we draw another line
through the other intersection point ψ(P0,P0) of this tangent with F and the point P. The third
intersection point of this second line with F is ⊖P, as in the following picture.
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F F

Q P

P0

P⊕Q

⊖P P

P0

Note that, using this geometric description, the operation ⊕ could also be defined in a completely
elementary way, without referring to the theory of divisors. However, it would then be very difficult
to show that we obtain a group structure in this way, in particular to prove associativity.

Remark 7.7 (Non-algebraically closed fields). Let K′ be a subfield of K which is not necessarily
algebraically closed, such as R in C or a finite field in its algebraic closure. Assume that F ∈K′[x,y,z]
is defined over K′. Note that for two points P,Q ∈V (F)∩P2

K′ on F with coordinates in K′ the point
ψ(P,Q) then lies in V (F)∩P2

K′ as well: The polynomial F restricted to the line through P and Q is
a cubic homogeneous polynomial over K′ that splits off two linear factors over K′ corresponding to
its zeros P and Q. Hence the remaining linear factor corresponding to ψ(P,Q) is also defined over
K′, which means that ψ(P,Q) ∈V (F)∩P2

K′ .

Choosing the base point P0 in V (F)∩P2
K′ , we can therefore restrict the group structure on V (F) to

V (F)∩P2
K′ , obtaining a subgroup of V (F).

Exercise 7.8. Let F be an elliptic curve of the form

F = y2z− x3−λxz2−µz3

for some given λ ,µ ∈ K (it can be shown that every elliptic curve can be brought into this form by
a change of coordinates if the characteristic of K is not 2 or 3). Pick the point P0 = (0:1 :0) ∈ F as
the base point for the group structure on V (F).

For given points P and Q on F compute explicitly the coordinates of the sum P⊕Q and the inverse
⊖P in terms of the coordinates of P and Q.

Example 7.9 (Elliptic Curve Cryptography). There is an interesting application of the group struc-
ture on an elliptic curve to cryptography. The key observation is that “multiplication is easy, but
division is hard”. More precisely, assume that we are given a specific elliptic curve F , and that we
choose a base point P0 ∈ F for the group structure as well as an additional point P ∈ F . In view
of Remark 7.7, the ground field for the curve does not have to be algebraically closed; in fact, for
practical computations one will usually choose a finite field so that its elements can be stored in a
chunk of computer memory of fixed size without rounding errors. Then we observe the following:

(a) Given n ∈ N, the n-fold addition n⊙P := P⊕·· ·⊕P can be computed very quickly using
Exercise 7.8, even for very large n (think of numbers with hundreds of digits):

• By repeatedly applying the operation P 7→ P⊕P, we can compute all points 2k⊙P for
all k such that 2k ≤ n.

• Now we just have to add these points 2k⊙P for all k such that the k-th digit in the
binary representation of n is 1.

This computes the point n⊙P in a time proportional to logn (i. e. in a very short time).

(b) On the other hand, given a sufficiently general point Q ∈ V (F) it is essentially impossible
to compute an integer n ∈ N such that n⊙P = Q (in case such a number exists). Note that
this is not a mathematically precise statement — there is just no known algorithm that can
perform the “inverse” of the multiplication of (a) in shorter time than a simple trial-and-error
approach (which would be impractical for large n).

Let us now assume that Alice and Bob want to establish an encrypted communication over an inse-
cure channel, but that they have not met in person before, so that they could not secretly agree on
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a key for the encryption. Using the above idea, they can then agree (publicly) on a ground field K,
a specific elliptic curve F over K, a base point P0 ∈ V (F), and another point P ∈ V (F). Now Alice
picks a secret (very large) integer n, computes n⊙P as in (a), and sends (the coordinates of) this
point to Bob. In the same way, Bob chooses a secret number m, computes m⊙P, and sends this
point to Alice.
As Alice knows her secret number n and the point m⊙P from Bob, she can then compute the point
mn⊙P = n⊙ (m⊙P). In the same way, Bob can compute this point as mn⊙P = m⊙ (n⊙P) as
well. But except for the data of the chosen curve the only information they have exchanged publicly
was P, n⊙P, and m⊙P, and by (b) it is not possible in practice to recover n or m, and hence mn⊙P,
from these data. Hence Alice and Bob can use (the coordinates of) mn⊙P as a secret key for their
encrypted communication.
This method is actually used by many modern computer applications that need encryption, such
as popular instant messengers for secure communication and file encryption software. The most
common choice for the parameters is called Curve25519 in the literature, and uses the ground field
Z/pZ with the prime number p = 2255− 19, the curve F = y2z− x3− 486662x2z− xz2, the base
point P0 = (0:1 :0), and a point P ∈ F with x = 9 and z = 1 [W].

Exercise 7.10. Let F = y2z− x3−λxz2 be an elliptic curve as in Exercise 7.8 with µ = 0, defined
over a finite field of characteristic p (so that Z/pZ is a subfield of K). Show:

(a) If p = 3 mod 4 then V (F)∩P2
Z/pZ contains exactly p+1 points.

(b) If p = 1 mod 4 then the number of points of V (F)∩P2
Z/pZ may also be smaller or bigger

than p+1, but is always even.

Exercise 7.11. Let F = y2z− x3−λxz2−µz3 be an elliptic curve as in Exercise 7.8.
Show that the subgroup {D ∈ PicF : 2D ∼ 0} of PicF has exactly 4 elements and is isomorphic to
Z/2Z×Z/2Z.
(Hint: Translate the problem to the group structure on V (F).)

11
Let us now restrict our attention to the ground field C, so that an elliptic curve is topologically a
torus by Example 5.17 (a). In the remaining part of this chapter we want to see how these tori and
elliptic curves arise in complex analysis in a totally different way. As we have not developed any
analytic techniques in these notes we will only sketch most arguments; more details can be found
e. g. in [Ki, Section 5.1]. Let us start by giving a quick review of what we will need from standard
complex analysis. As usual, we will denote a complex variable in C by z. In contrast, for the rest
of this chapter the homogeneous coordinates of P2

C will be called x0,x1,x2 instead of x,y,z to avoid
confusion.

Remark 7.12 (Holomorphic and meromorphic functions). Let U ⊂C be an open subset. Recall that
a function f : U →C is called holomorphic if it is complex differentiable at all points z0 ∈U , i. e. if
the limit

f ′(z0) := lim
z→z0

f (z)− f (z0)

z− z0
exists. A function f : U → C∪{∞} is called meromorphic if it is holomorphic except for some iso-
lated singularities which are all poles, i. e. if for all z0 ∈U there is a number n∈Z and a holomorphic
function f̃ in a neighborhood of z0 in U in which

f (z) = (z− z0)
n · f̃ (z).

If f does not vanish identically in a neighborhood of z0 we can moreover assume that f̃ (z0) ̸= 0 in
this representation; the number n is then uniquely determined. We will call it the multiplicity of f
at z0 and denote it by µz0( f ). It is obviously the analogue of the multiplicity of a rational function
as in Construction 6.6 and Proposition 6.10 (b). The notions of (orders of) zeros and poles are
used for meromorphic functions in the same way as for rational functions. Note that every rational
function (i. e. every quotient of polynomials) in z is clearly meromorphic; there are however many
more meromorphic than rational functions as e. g. the exponential function z 7→ ez.
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Remark 7.13 (Properties of holomorphic and meromorphic functions). Although the definition of
holomorphic, i. e. complex differentiable functions is formally exactly the same as that of real differ-
entiable functions, the behavior of the complex and real cases is totally different. The most notable
differences that we will need are:

(a) Every holomorphic function f is analytic, i. e. it can be represented locally around every
point z0 by its Taylor series. Consequently, a meromorphic function f of order n at z0 can
locally be expanded in a Laurent series as f (z) = ∑

∞
k=n ck (z− z0)

k, with n = µz0( f ) [G4,
Proposition 9.8]. The coefficient c−1 of this series is called the residue of f at z0 and denoted
by resz0 f .

(b) (Residue Theorem) If γ is a closed (positively oriented) path in C and f is a meromorphic
function in a neighborhood of γ and its interior, without poles on γ itself, then∫

γ

f (z)dz = 2πi ∑
z0

resz0 f ,

with the sum taken over all z0 in the interior of γ (at which f has poles) [G4, Proposition
11.14]. In particular, if f is holomorphic in the interior of γ then this integral vanishes.

(c) (Liouville’s Theorem) Every function that is holomorphic and bounded on the whole com-
plex plane C is constant [G4, Proposition 8.2].

Construction 7.14 (Tori from lattices). As mentioned above, for
our applications to elliptic curves we have to construct a torus.
To do this, fix two complex numbers ω1,ω2 ∈ C that are linearly
independent over R, i. e. that do not lie on the same real line in C
through the origin. Then

Λ = Zω1 +Zω2 = {mω1 +nω2 : m,n ∈ Z} ⊂ C
is called a lattice in C, as indicated by the points in the picture on
the right. It is an additive subgroup of C, and the quotient C/Λ is
topologically a torus.

Re
ω1

ω2

Im

For the rest of this chapter, Λ will always be a fixed lattice in C. Note that functions on the torus C/Λ

correspond exactly to Λ-periodic functions on C, i. e. to functions f on C with f (z+ω) = f (z) for
all z ∈C and ω ∈ Λ. In the following, we will use the concepts of functions on C/Λ and Λ-periodic
functions on C interchangeably.

It is our goal to show that the torus C/Λ can be identified with an elliptic curve in a natural way. Let
us start with a first auxiliary result that already indicates the similarities between the algebraic and
analytic setting: We will show the analytic analogue of Remark 6.27 (b), namely that a meromorphic
function on the torus C/Λ has equally many zeros as poles.

Lemma 7.15. Let f : C/Λ→ C∪{∞} be a non-zero meromorphic function. Then

∑
z0∈C/Λ

µz0( f ) = 0.

Proof sketch. Let γ be the path around a “parallelogram of period-
icity” as in the picture on the right, i. e. a parallelogram with side
vectors spanning Λ. We choose it so that the zeros and poles of f
do not lie on γ , and hence have a unique representative inside this
parallelogram. It follows that∫

γ

f ′(z)
f (z)

dz = 0 (∗)

since the integrals along opposite sides of the parallelogram cancel
each other due to the periodicity of f .

Re

Im

γ
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On the other hand, we can compute this integral using the Residue Theorem of Remark 7.13 (b):
At a point z0 with µz0( f ) = n so that we can write f (z) = (z− z0)

n f̃ (z) with f̃ holomorphic and
non-zero around z0 as in Remark 7.12 we have

resz0

f ′

f
= resz0

n(z− z0)
n−1 f̃ +(z− z0)

n f̃ ′

(z− z0)n f̃
= resz0

(
n

z− z0
+

f̃ ′

f̃

)
= n = µz0( f ),

and hence we obtain by the Residue Theorem∫
γ

f ′(z)
f (z)

dz = 2πi ∑
z0∈C/Λ

resz0

f ′

f
= 2πi ∑

z0∈C/Λ

µz0( f ).

Comparing this with (∗) then gives the desired result. □

Remark 7.16 (Residue Theorem on manifolds). In the same way as Remark 6.27 (b), Lemma 7.15
does not only hold for a torus C/Λ, but also for an arbitrary compact 1-dimensional complex mani-
fold X , and thus for any (smooth) complex projective curve. Let us briefly explain how to adapt the
proof of Lemma 7.15 to this more general case.

The main step in this generalization is to extend the concepts of path integrals and the Residue Theo-
rem from the complex plane to manifolds. This is not entirely straightforward, since the differential
dz in the integral depends on the choice of a local coordinate z on X . As a consequence, there is no
well-defined integral over a function on X since we would have to combine it with the coordinate-
dependent dz to integrate it. Instead, we have to combine a function with a differential to obtain
expressions of the form α = f dg for (meromorphic) functions f and g that satisfy the usual rules of
differentiation. Such objects are called differential forms on X .

In these notes we will use differential forms only in a few side remarks that will not be needed later
on, and hence we will not introduce them rigorously. Let us just mention that integrals and the
Residue Theorem then behave as expected: For a closed path γ and a differential form α on X not
having any poles on γ itself, we can define an integral

∫
γ

α whose value can be computed by the
Residue Theorem ∫

γ

α = 2πi ∑
P

resP α

as in Remark 7.13 (b), where the sum is taken over all points P in the interior of γ , and the residue
of α at a point P is defined similarly to Remark 7.13 (a).

An additional benefit of this version of the Residue Theorem on manifolds is that we can exchange
the roles of the interior and exterior of γ: Consider a differential form α on X with poles at some
points (marked P1 and P2 in the picture below on the right). If we form the integral

∫
γ

α over a small
loop γ that contains none of these points, the result will be 0 by the Residue Theorem. But we can
also swap the roles of the interior and exterior of γ (without changing the value of the integral), so
that now all poles lie in the interior of γ , and the Residue Theorem gives us the sum over all residues
of α . Comparing these two results we see that

∑
P∈X

resP α = 0,

which is also sometimes called the Residue Theorem (for man-
ifolds) in the literature.

Applying this now to the differential form

α = d(log f ) =
f ′(z)
f (z)

dz gives us ∑
P∈X

resP
f ′(z)
f (z)

dz = 0, γ

P2

P1

X

and thus with the same (local) computation resP
f ′(z)
f (z) dz = µP( f ) as in the proof of Lemma 7.15

∑
P∈X

µP( f ) = 0,

i. e. that f has equally many zeros as poles.
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But let us now return to our study of the torus C/Λ. The key ingredient to identify it with the points
of an elliptic curve is the following meromorphic function.

Proposition and Definition 7.17 (The Weierstraß ℘-function). There is a meromorphic function ℘

on C, called the Weierstraß ℘-function (pronounced like the letter “p”), defined by

℘(z) =
1
z2 + ∑

ω∈Λ\{0}

(
1

(z−ω)2 −
1

ω2

)
.

It has poles of order 2 exactly at the lattice points.

Proof sketch. It is a standard fact that an (infinite) sum of holomorphic functions is holomorphic at
z0 provided that the sum converges uniformly in a neighborhood of z0. We will only sketch the proof
of this convergence: Let z0 ∈ C\Λ be a fixed point that is not in the lattice. Then every summand is
a holomorphic function in a neighborhood of z0. The expansions of these summands for large ω are

1
(z−ω)2 −

1
ω2 =

1
ω2

(
1

(1− z
ω
)2 −1

)
=

2z
ω3 +

(
terms of order at least

1
ω4

)
,

so the summands grow like ω3. Let us add up these values according to the absolute value of ω .
Note that the number of lattice points with a given absolute value approximately equal to n ∈ N is
roughly proportional to the area of the annulus with inner radius n− 1

2 and outer radius n+ 1
2 , which

grows linearly with n. Hence the final sum is of the order ∑
∞
n=1 n · 1

n3 = ∑
∞
n=1

1
n2 , which is convergent.

Note that the sum would not have been convergent without the subtraction of the constant 1
ω2 in each

summand, as then the individual terms would grow like 1
ω2 , and therefore the final sum would be of

the type ∑
∞
n=1

1
n , which is divergent.

Finally, the poles of order 2 at the points of Λ are clearly visible. □

Remark 7.18 (Properties of the ℘-function). One can show that in an absolutely convergent series
as above all manipulations (reordering of the summands, term-wise differentiation) can be performed
as expected. In particular, the following properties of the ℘-function are obvious:

(a) The ℘-function is an even function, i. e. ℘(z) =℘(−z) for all z ∈ C. Hence its Laurent
series at 0 as in Remark 7.13 (a) contains only even exponents.

(b) Its derivative is ℘′(z) = ∑ω∈Λ
−2

(z−ω)3 . It is an odd function, i. e. ℘′(z) =−℘′(−z) for all z.
In other words, its Laurent series at 0 contains only odd exponents. It has poles of order 3
exactly at the lattice points.

(c) The℘-function is Λ-periodic, and hence gives a meromorphic function℘ : C/Λ→C∪{∞}.
To show this note first that ℘′ is Λ-periodic by (b). Now, for given z0 ∈ C and ω ∈ Λ we
integrate ℘′ along the path γ = γ1 + γ2 + γ3 + γ4 shown in the picture below on the right.

Of course, the result is 0, since ℘ is an integral of ℘′.
But also the integral along γ2 cancels the integral along
γ4 as ℘′(z) is periodic. The integral along γ3 is equal to
℘(−ω

2 )−℘(ω

2 ), so it vanishes as well since℘ is an even
function. So we conclude that

0 =
∫

γ1

℘
′(z)dz =℘(z0 +ω)−℘(z0),

i. e. that ℘ is Λ-periodic.

Re

Im

ω−ω

2
ω

2

γ3

z0 +ω

γ2γ4

z0
γ1

Lemma 7.19 (Differential equation of the℘-function). The℘-function satisfies a differential equa-
tion

℘
′(z)2 = c3℘(z)3 + c2℘(z)2 + c1℘(z)+ c0 for all z ∈ C

for some constants c0,c1,c2,c3 ∈ C (depending on Λ).
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Proof sketch. By Remark 7.18 (b) we know that (℘′)2 is an even function with a pole of order 6 at
the origin. Hence its Laurent series around 0 is of the form

℘
′(z)2 =

a−6

z6 +
a−4

z4 +
a−2

z2 +a0 +(terms of positive multiplicity at 0)

for some constants a−6,a−4,a−2,a0 ∈ C. The functions ℘3, ℘2, ℘, and 1 are also even and have
poles at the origin of order 6, 4, 2, and 0, respectively. Hence there are constants c3,c2,c1,c0 ∈ C
such that the Laurent series of the linear combination

f (z) :=℘
′(z)2− c3℘(z)3− c2℘(z)2− c1℘(z)− c0

has only positive powers of z. This means that f is holomorphic around the origin and vanishes at 0.

But ℘ and ℘′, and hence also f , are Λ-periodic by Remark 7.18 (c). Hence f is holomorphic
around all lattice points. Moreover, f is holomorphic around all other points as well, as ℘ and ℘′

are. Hence f is holomorphic on all of C.

The Λ-periodicity means that every value taken on by f is already assumed on the parallelogram
{xω1 + yω2 : x,y ∈ [0,1]}. As f is continuous, its image on this compact parallelogram, and hence
on all of C, is bounded. So we see by Liouville’s Theorem of Remark 7.13 (c) that f must be
constant. But as we have already shown that f (0) = 0, it follows that f is the zero function, which
is exactly the statement of the lemma. □

Remark 7.20. By an explicit computation one can show that the coefficients c3,c2,c1,c0 in Lemma
7.19 are given by

c3 = 4, c2 = 0, c1 =−60 ∑
ω∈Λ\{0}

1
ω4 , and c0 =−140 ∑

ω∈Λ\{0}

1
ω6 .

The proof of Lemma 7.19 shows impressively the powerful methods of complex analysis: To prove
our differential equation, i. e. the equality of the two functions (℘′)2 and c3℘

3 + c2℘
2 + c1℘+ c0,

it was sufficient to just compare four coefficients of their Laurent expansions at the origin — the rest
then follows entirely from general theory.

Note also that the differential equation of Lemma 7.19 is a (non-homogeneous) cubic equation in
the two functions ℘ and ℘′, which are Λ-periodic and thus well-defined on the quotient C/Λ. We
can therefore use it to obtain a map from C/Λ to an elliptic curve as follows.

Proposition 7.21 (Complex tori as elliptic curves). Consider the elliptic curve

F = x2
2x0− c3x3

1− c2x2
1x0− c1x1x2

0− c0x3
0

for the constants c3,c2,c1,c0 ∈ C of Lemma 7.19. There is a bijection

Ψ : C/Λ→V (F), z 7→ (1:℘(z) :℘′(z)).

Proof sketch. As ℘ and ℘′ are Λ-periodic and satisfy the differential equation of Lemma 7.19, it
is clear that Ψ is well-defined as a map to V (F). Strictly speaking, for z = 0 we have to note that
℘ and ℘′ have poles of order 2 and 3, respectively, so that the given expression for Ψ(0) is of the
form (1:∞ :∞). But by Remark 7.12 we can write ℘(z) = f (z)

z2 and ℘′(z) = g(z)
z3 locally around the

origin for some holomorphic functions f ,g that do not vanish at 0, and so we have to interpret the
expression for Ψ as

Ψ(0) = lim
z→0

(1:℘(z) :℘′(z)) = lim
z→0

(z3 :z f (z) :g(z)) = (0:0 :1),

i. e. Ψ(z) is well-defined at z = 0 as well.

Now let (x0 :x1 :x2) ∈V (F) be a given point; we have to show that it has exactly one inverse image
under Ψ. By what we have just said this is obvious for the “point at infinity” (0:0 :1), so let us
assume that we are not at this point and hence pass to inhomogeneous coordinates where x0 = 1. We
thus have to show that there is exactly one (non-zero) z ∈ C/Λ with ℘(z) = x1 and ℘′(z) = x2.

Recall that ℘, and thus also ℘− x1, has exactly one pole in C/Λ, namely the origin, and that this
pole is of order 2. Hence ℘− x1 also has exactly two zeros (counted with multiplicities) in C/Λ by
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Lemma 7.15, i. e. there are two z ∈C/Λ with ℘(z) = x1. For such a point z we then have by Lemma
7.19

℘
′(z)2 = c3℘(z)3 + c2℘(z)2 + c1℘(z)+ c0 = c3 x3

1 + c2 x2
1 + c1 x1 + c0 = x2

2

since (1:x1 :x2) ∈V (F). So there are two possibilities:

• ℘′(z) = 0: Then x2 = 0 as well, and z is a double zero (i. e. the only zero) of the function
℘− x1. So there is exactly one z ∈ C/Λ with Ψ(z) = (1:℘(z) :℘′(z)) = (1:x1 :x2).

• ℘′(z) ̸= 0: Then z is only a simple zero of ℘− x1. As ℘ is even and ℘′ odd by Remark
7.18, we see that−z must be the other zero, and it satisfies℘′(−z) =−℘′(z). Hence exactly
one of the equations ℘′(z) = x2 and ℘′(−z) = x2 holds, and the corresponding point is the
unique inverse image of (1:x1 :x2) under Ψ.

Altogether we conclude that Ψ is bijective, as we have claimed. □

Remark 7.22. In fact, the map Ψ of Proposition 7.21 is not just a bijection: Both C/Λ and V (F)
are 1-dimensional complex manifolds in a natural way, and Ψ is even an isomorphism between these
two manifolds.

Remark 7.23 (Group structures on elliptic curves). With Proposition 7.21 we are again in a similar
situation as in Proposition 7.4: We have a bijection between a group C/Λ and a variety V (F), so that
the map Ψ of the above proposition can be used to construct a group structure on V (F). In fact, we
will see in Exercise 7.25 that this group structure is precisely the same as that obtained by the map
Φ of Proposition 7.4 using divisors. But the algebraic properties of this group structure is a lot more
obvious in this new picture: For example, the points of order n are easily read off to be the n2 points

1
n
(iω1 + jω2) for 0≤ i, j < n.

Exercise 7.24. Let Λ be a lattice in C, and let P ̸= Q be points in C/Λ. Show that there is no
meromorphic function on C/Λ with a simple zero at P, a simple pole at Q, and which is holomorphic
with non-zero value at all other points.

Note that we can view this as an analytic analogue of Proposition 6.34 for elliptic curves.

Exercise 7.25. Let F be an elliptic curve corresponding to a torus C/Λ as in Proposition 7.21. Show
that the group structure on V (F) induced by Pic0 F as in Proposition 7.4 (using (0:0 :1) as the base
point) is the same as the one induced by the natural group structure of C/Λ.

Exercise 7.26. Let Λ⊂ C be a lattice. Given two points z,w ∈ C/Λ, it is very easy to find a natural
number n such that n ·w = z (in the group structure of C/Λ), in case such a number exists. Why is
this no contradiction to the idea of the cryptographic application in Example 7.9?

12
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8. The Riemann-Roch Theorem

In the previous two chapters we have introduced and studied rational and regular functions on pro-
jective curves. As our last goal in these notes we now want to address the question how many such
functions there are on a given projective curve (which, as before, will always be assumed to be
smooth over an algebraically closed field).
But before we can try to solve this problem we first have to figure out what the precise question
should be, i. e. which functions we want to consider and what exactly we mean by “how many”.
Note that we know already by Corollary 6.29 that global regular functions on a projective curve
are always constant, and thus not very interesting. On the other hand, to obtain arbitrary rational
functions we can take any quotient of two homogeneous polynomials of the same degree, so that
we clearly get an infinite-dimensional vector space of such functions. Hence the most interesting
question is to study something between regular and rational functions: rational functions which are
everywhere regular, except for some specific points at which we allow poles of a given maximal
order (or require zeros of a certain order). We will see that such functions form finite-dimensional
vector spaces, so that we can then ask for their dimensions.
The conditions of allowing poles or requiring zeros at specified points is described best using the
language of divisors. This leads to the following spaces that we will consider in this chapter.

Construction 8.1 (L(D) and l(D)). Let D be a divisor on a projective curve F . We set

L(D) := {ϕ ∈ K(F)∗ : divϕ +D≥ 0}∪{0}.
If D = ∑P∈F aP ·P, i. e. aP denotes the coefficient of P in D, the condition divϕ +D ≥ 0 obviously
means µP(ϕ)+aP ≥ 0, i. e. µP(ϕ)≥−aP, for all points P ∈ F . Hence, except for the zero function,
L(D) consists by construction of all rational functions ϕ ∈ K(F)∗ that are just regular at all points of
F , except that

(a) ϕ may have a pole of order at most aP at P for all P with aP > 0, and
(b) ϕ must have a zero of order at least −aP at P for all P with aP < 0.

Note that L(D) is a vector space over K: For all λ ∈ K and ϕ,ψ ∈ L(D), i. e. such that µP(ϕ)≥−aP
and µP(ψ)≥−aP for all P ∈ F , we have

µP(ϕ +ψ)≥−aP by Corollary 6.12 and µP(λϕ) = µP(ϕ)≥−aP by Construction 6.6 (b)

for all P, and thus ϕ +ψ ∈ L(D) and λϕ ∈ L(D). Hence we can define

l(D) := dimL(D) ∈ N∪{∞}.

As motivated above, it is the goal of this chapter to compute these dimensions l(D). Unfortunately,
we will not be able to do this for all D, since in general l(D) depends on the precise position of
the points occurring in D in a complicated way. However, the Riemann-Roch Theorem in Corollary
8.17 will allow to compute l(D) in many cases just from the degree of D, which is of course easy
to read off. The formula will also involve the genus of the curve — a concept that we have already
seen over C from a topological point of view in Remark 5.12. As a byproduct of our work, we will
therefore also give an algebraic definition of the genus of a curve, which is then applicable to any
algebraically closed ground field.
But let us start with a few simple examples in which l(D) is easy to determine.

Example 8.2.
(a) For the divisor D = 0 the space L(D) = L(0) is by definition just the set of all rational

functions that are regular at every point of the curve. Hence by Corollary 6.29 we have
L(0) = K, and thus l(0) = 1.
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(b) For any divisor D with degD < 0 we have L(D) = {0} and thus l(D) = 0: If there was a
non-zero element ϕ ∈ L(D) we would have divϕ +D≥ 0, and hence degdivϕ +degD≥ 0
by taking degrees. But this is a contradiction to degD < 0 since degdivϕ = 0 by Remark
6.27 (b).

Remark 8.3. Let D be a divisor on a projective curve F .

(a) If D′ is another divisor on F with D≤ D′ then L(D)⊂ L(D′) and hence l(D)≤ l(D′), since
divϕ +D≥ 0 clearly implies divϕ +D′ ≥ divϕ +D≥ 0.

(b) If D′ ∼ D is linearly equivalent, i. e. D−D′ = divψ for a rational function ψ ∈ K(F)∗, then
L(D)→ L(D′), ϕ 7→ψϕ is an isomorphism of vector spaces (with inverse ϕ 7→ ϕ

ψ
) since the

condition divϕ +D≥ 0 is equivalent to div(ψϕ)+D′ ≥ 0. Hence we have l(D) = l(D′) in
this case.

In particular, the notion l( ·) is also well-defined for elements of the Picard group PicF . In
the following, we will also use it in this extended way.

Many of our strategies to compute the numbers l(D) will be inductive, i. e. relate l(D) to l(D±P)
for a point P on the curve. Of particular importance will therefore be the following result, which
tells us that l(D) changes at most by 1 when adding or subtracting a point from D.

Lemma 8.4. Let D be a divisor on a projective curve F.

(a) For any point P ∈ F we have l(D+P) = l(D) or l(D+P) = l(D)+1.

(b) For any divisor D′ ≥ D we have l(D)≤ l(D′)≤ l(D)+deg(D′−D).

Proof.

(a) As D≤ D+P we have L(D)⊂ L(D+P), and hence l(D)≤ l(D+P), by Remark 8.3 (a).

Now let aP be the coefficient of P in D, so that aP + 1 is the coefficient of P in D+ P.
Consider the linear map

Φ : L(D+P)→ K, ϕ 7→ (taP+1
ϕ)(P),

where t is a local coordinate around P as in Proposition 6.10. Note that this evaluation of
taP+1ϕ at P is well-defined, since for ϕ ∈ L(D+P)\{0} we have

µP(taP+1
ϕ) = µP(ϕ)+aP +1≥ 0 (∗)

(where the last inequality follows from Construction 8.1), so that taP+1ϕ is regular at P by
Proposition 6.10 (b).

The kernel of Φ consists exactly of the rational functions for which taP+1ϕ has a zero at P,
i. e. for which we have strict inequality in (∗). As this is equivalent to µP(ϕ)+ aP ≥ 0 and
thus to divϕ +D ≥ 0, we conclude that kerΦ = L(D). The homomorphism theorem thus
yields

L(D+P)/L(D)∼= imΦ ⊂ K,

which means that l(D+P) = l(D) (in case imΦ = {0}) or l(D+P) = l(D)+ 1 (in case
imΦ = K).

(b) This follows immediately from (a) by induction on deg(D′−D), since D′ is obtained from
D by adding deg(D′−D) points. □

Remark 8.5. The proof of Lemma 8.4 (a) also has a simple analytic interpretation in case of the
ground field K =C. As the multiplicity of a rational function ϕ ∈ L(D+P) at P is at least−aP−1, its
Laurent expansion as in Remark 7.13 (a) can be taken to start with the power t−aP−1 of an (analytic)
local coordinate t. Inside L(D+P), the subspace L(D) now consists of exactly those functions for
which the t−aP−1-coefficient of this expansion vanishes. As this coefficient is one complex number,
its vanishing imposes one condition on L(D+P) — which can be trivially satisfied by all elements
of L(D+P) already (in which case l(D) = l(D+P)) or not (in which case l(D) = l(D+P)−1).
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Corollary 8.6. For any divisor D with degD≥ 0 on a projective curve F we have l(D)≤ degD+1.

In particular, the number l(D) is always finite.

Proof. Let n = degD+1, and choose a point P ∈ F . Then deg(D−nP) = degD−n = −1 < 0, so
that l(D−nP) = 0 by Example 8.2 (b). It follows by Lemma 8.4 (b) that

l(D)≤ l(D−nP)+deg(nP) = 0+n = degD+1. □

Example 8.7.
(a) Let D be a divisor with degD ≥ 0 on a projective curve F of degree 1 or 2. We claim that

then l(D) = degD+ 1, i. e. that we have equality in Corollary 8.6. In particular, together
with Example 8.2 (b) this finishes the computation of all l(D) on curves of degree 1 or 2.

To prove this, recall that Pic0 F = {0} by Example 6.33, and hence PicF ∼= Z by Remark
6.32, with an isomorphism given by the degree of divisors. If we pick any two distinct points
P,Q ∈ F this means first of all that D ∼ nP with n := degD. Moreover, as P ∼ Q there is a
rational function ϕ ∈ K(F)∗ with divϕ = Q−P. We then have divϕk = kQ− kP and hence
ϕk ∈ L(kP)\L((k−1)P) for all k ∈ N>0, so that the inclusions

K
8.2 (a)
= L(0)⊂ L(P)⊂ L(2P)⊂ ·· · ⊂ L(nP)

of Remark 8.3 (a) are all strict. Taking dimensions, we conclude that l(nP) ≥ n+ 1, hence
in fact l(nP) = n+1 by Corollary 8.6, and thus l(D) = degD+1 by Remark 8.3 (b).

(b) Let P be a point on a projective curve F of degree at least 3. We will show that then l(P) = 1,
i. e. that in this case we have a strict inequality in Corollary 8.6.

Consider any non-zero element ϕ ∈ L(P). By definition, this rational function may then have
a pole of order 1 at P but must be regular at all other points of F , so that divϕ = Q−P for
some point Q by Remark 6.27 (b). But by Proposition 6.34 this is impossible unless Q = P,
which means that ϕ is a constant. Conversely, the constant functions are clearly contained
in L(P), and thus we see that L(P) = K, i. e. that l(P) = 1.

(c) Now consider the divisor P−Q for two distinct points P and Q on a projective curve of
degree at least 3. By (b) and Remark 8.3 (a) we have L(P−Q)⊂ L(P) = K, so the elements
of L(P−Q) must be constant functions. But a constant does not have a zero at Q unless it is
0. Hence we see that L(P−Q) = {0}, and thus l(P−Q) = 0.

Exercise 8.8. Let F be a projective curve of degree d; without loss of generality we may assume that
F ̸= z. As usual, we will denote the vector space of homogeneous polynomials in x,y,z of degree n
by K[x,y,z]n.

For all n≥ d, show for the divisor D := n divz:

(a) There is an exact sequence

0−→ K[x,y,z]n−d
·F−→ K[x,y,z]n

:zn
−→ L(D)−→ 0.

(b) l(D) = degD+1−
(d−1

2

)
.

Remark 8.9 (l(D) does not only depend on degD). Note that on a projective curve F of degree at
least 3 we have by Examples 8.2 (a) and 8.7 (c)

l(0) = 1 and l(P−Q) = 0

for any two distinct points P,Q ∈ F . In particular, as both divisors 0 and P−Q have degree 0 we
see that in general the value l(D) does not depend on the degree degD alone, but also on the exact
positions of the points in D.

However, complementing the upper bound for l(D) of Corollary 8.6 we can now also give a lower
bound that depends only on degD. In fact, the difference between these two bounds turns out to be
exactly the genus of the curve that we have already seen over C in Remark 5.12. We will use this
observation as the definition of the genus in the algebraic setting.
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Proposition and Definition 8.10. Let F be a projective curve of degree d.

(a) (Riemann’s Theorem) There is a unique smallest integer g, depending only on F, such that

l(D)≥ degD+1−g (∗)
for any divisor D. We call g the (algebraic) genus of F.

(b) (Algebraic degree-genus formula) The algebraic genus of F is given by g =
(d−1

2

)
.

In particular, for K = C it coincides with the topological genus of Remark 5.12 and Propo-
sition 5.16.

Proof. If we set g =
(d−1

2

)
, Exercise 8.8 shows that there are divisors on F for which (∗) holds with

equality. Hence, to prove both parts of the proposition, it suffices to prove that the inequality (∗) is
true for every divisor D on F . To show this, note first:

(1) If (∗) holds for any divisor D, it also holds for any linearly equivalent divisor D′ ∼ D, since
by Remarks 6.27 (b) and 8.3 (b) both sides of the inequality do not change when passing
from D to D′.

(2) If (∗) holds for any divisor D, it also holds for any divisor D′ ≤D: From l(D)≥ degD+1−g
it follows that

l(D′)
8.4
≥ l(D)−deg(D−D′)≥ degD+1−g−deg(D−D′) = degD′+1−g.

Now let D be any divisor on F , which we can write as D = P1 + · · ·+ Pn − E for some points
P1, . . . ,Pn ∈ F and an effective divisor E. As the points P1, . . . ,Pn are allowed to appear in E we may
assume in this representation that n≥ d. For every i = 1, . . . ,n choose a line li through Pi (which is
not equal to F). Then the divisor

D′ := D+div
zn

l1 · · · · · ln
is linearly equivalent to D, and satisfies

D′ = P1 + · · ·+Pn−E +n divz−
n

∑
i=1

div li ≤ P1 + · · ·+Pn−E +n divz−P1−·· ·−Pn ≤ n divz

since div li ≥ Pi for all i. But now (∗) holds for divzn by Exercise 8.8, hence also for D′ by (2), and
thus for D by (1). □

Summarizing, we now know by Corollary 8.6 and Proposition 8.10 (a) that

degD+1−g≤ l(D)≤ degD+1

for every divisor D with degD≥ 0 on a projective curve F of genus g. We have also seen in Remark
8.9 already that we cannot expect an exact formula for l(D) in terms of degD alone. Nevertheless,
one can make the above inequalities into an equality: It turns out that for every divisor D the differ-
ence between l(D) and degD+ 1− g can be identified as l(D′) for another divisor D′ that is easily
computable from D. To show this, we need the following special divisor on F .

Definition 8.11 (Canonical divisor). Let F be a projective curve of degree d. For any line l (not
equal to F) we call

KF := (d−3) div l ∈ PicF
the canonical divisor (class) of F . (Note that for the element of PicF it does not matter which line
we take: For any other line l′ we have div l ∼ div l′ as div l

l′ ∈ PrinF .)

Remark 8.12 (Canonical divisors are canonical). It is hard to deny that our definition of the canoni-
cal divisor KF of a projective curve F looks very artificial: It is not clear why divisor classes of lines
and the choice of factor d−3 should lead to an object that plays a special role for F .

In fact, the usual definition of canonical divisors of curves in the literature is entirely different and
much more natural (i. e. “canonical”): One can introduce differential forms on F in a way similar
to the complex analytic setting in Remark 7.16, i. e. formal expressions of the form α = f dg for
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rational functions f and g that satisfy the usual rules of differentiation. They are natural objects
on F that do not require any choices to define them, and in the same way as for rational functions
one can associate multiplicities µP(α) to a differential form α at a point P ∈ F . Combining these
multiplicities for all points P ∈ F one obtains a divisor divα ∈ DivF , again in the same way as for
rational functions.

It turns out that the divisors of any two differential forms are linearly equivalent, so that we obtain a
well-defined and natural element KF of PicF as the divisor class of any differential form. This is the
usual definition of the canonical divisor class KF . It is then a computation to show that in the case
of a projective plane curve this canonical divisor is equal to the one of Definition 8.11. We just took
this formula as a definition of KF in order to avoid a detailed discussion of differential forms.

13

Lemma 8.13 (Degree of the canonical divisor). For any projective curve F of genus g we have
degKF = 2g−2.

Proof. By Remark 6.27 (a) we have for a curve F of degree d

degKF = (d−3) degdiv l = (d−3)d = 2
(

d−1
2

)
−2,

so the result follows from the degree-genus formula g =
(d−1

2

)
of Proposition 8.10 (b). □

The key property of the canonical divisor that will allow us to make Riemann’s Theorem of Propo-
sition 8.10 into an equality is the following.

Lemma 8.14. For any point P on a projective curve F we have l(KF +P) = l(KF).

Proof. If d := degF ≤ 2 then g = 0 by Proposition 8.10 (b), and hence degKF = −2 by Lemma
8.13. So in this case the degrees of both KF and KF +P are negative, which means by Example 8.2
(b) that l(KF +P) = l(KF) = 0. We can therefore assume from now on that d ≥ 3.

Choose any line l through P that is not the tangent TPF . The divisor div l−P is then effective and
does not contain P. Moreover, in this proof we will use this line l in Definition 8.11 to regard KF as
a divisor (and not just a divisor class). It then clearly suffices to prove that L(KF +P) = L(KF). By
Remark 8.3 (a) the inclusion “⊃” is automatic, so we will show “⊂”.

To do this, let ϕ = f
g be a non-zero element of L(KF +P), so that divϕ +KF +P≥ 0. By Definition

8.11 this can be rewritten as

div( f ld−2)≥ divg+div l−P≥ divg.

Max Noether’s Theorem as in Proposition 6.28 then implies that there is a homogeneous polynomial
h of degree d−2 with

divh = div( f ld−2)−divg≥ div l−P. (∗)
For all Q ̸= P this means that µQ(F,h)≥ µQ(F, l), and hence ⟨F,h⟩ ⊂ ⟨F, l ⟩ in OP2,Q by Proposition
2.26. But then also ⟨ l,h⟩ ⊂ ⟨F, l ⟩ in OP2,Q, which in turn yields µQ(l,h)≥ µQ(F, l). Taking the sum
of these numbers for all Q ̸= P we get

∑
Q ̸=P

µQ(l,h)≥ ∑
Q ̸=P

µQ(F, l) = deg(div l−P) = d−1.

But as h has degree d− 2, Bézout’s Theorem as in Corollary 4.6 implies that h must contain l as a
factor. Hence we have divh≥ div l, and so by (∗)

div( f ld−2)−divg≥ div l,

which means that divϕ +KF ≥ 0, and thus ϕ ∈ L(KF). □

Remark 8.15. Over the complex numbers, Lemma 8.14 is just a simple consequence of the Residue
Theorem: In Remark 7.16 we have already seen that the sum of the residues of a differential form α

on a projective curve F is 0. In particular, it follows that α cannot have exactly one non-zero residue,
and thus that it is impossible for α to have exactly one pole at a point P which is in addition of order
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1 (since by definition the residue would then be non-zero there). Applying this to the differential
form ϕα for any rational function ϕ this means in the language of divisors that

div(ϕα)+P≥ 0 implies div(ϕα)≥ 0,

i. e. that
divϕ +divα +P≥ 0 implies divϕ +divα ≥ 0.

But by Construction 8.1 this is just the same as saying that L(divα +P) = L(divα). Hence we
have l(divα +P) = l(divα) — which is exactly the statement of Lemma 8.14 since divα = KF by
Remark 8.12.

Using Lemma 8.14 we can now finally add an additional “correction term” to the inequality in
Riemann’s Theorem of Proposition 8.10 to make it into an equality. Surprisingly, it turns out that
it essentially suffices to prove that the inequality still holds after adding the correction term, with
equality then following from this very easily.

Lemma 8.16. Let F be a projective curve of genus g. Then

l(D)− l(KF −D)≥ degD+1−g

for all divisors D on F.

Proof. We will prove the statement by descending induction on degD. For the start of the induction,
note that for all divisors with degD > 2g− 2 we have deg(KF −D) < 0 by Lemma 8.13, hence
l(KF −D) = 0 by Example 8.2 (b), and so the statement is just Riemann’s Theorem of Proposition
8.10.

For the induction step assume that the statement holds for a divisor D; we will show that it holds for
D−P for any point P ∈ F . As we already know that

l(D−P)− l(KF −D+P)≥ l(D)−1− (l(KF −D)+1) (Lemma 8.4)
≥ degD+1−g−2 (induction assumption)

= deg(D−P)−g

it suffices to prove that the first inequality in this computation is strict. So assume for a contradiction
that it is not, i. e. that l(D−P) = l(D)− 1 and l(KF −D+P) = l(KF −D)+ 1. By Remark 8.3
(a) this means that L(D−P) ⊊ L(D) and L(KF −D) ⊊ L(KF −D+P), i. e. that there are rational
functions

ϕ ∈ L(D)\L(D−P), i. e. divϕ +D≥ 0 with equality at P,

and ψ ∈ L(KF −D+P)\L(KF −D), i. e. divψ +KF −D+P≥ 0 with equality at P,

where “equality at P” means that the point P appears with coefficient 0 on the left hand side of the
inequalities. But then multiplying these two functions we obtain

div(ϕψ)+KF +P≥ 0 with equality at P, i. e. ϕψ ∈ L(KF +P)\L(KF)

in contradiction to Lemma 8.14. □

Corollary 8.17 (Riemann-Roch). Let D be a divisor on a projective curve F of genus g. Then

l(D)− l(KF −D) = degD+1−g.

Proof. Applying Lemma 8.16 to the divisor KF −D we obtain

l(KF −D)− l(D)≥ deg(KF −D)+1−g 8.13
= 2g−2−degD+1−g,

or in other words
l(D)− l(KF −D)≤ degD+1−g.

Combining this with the statement of Lemma 8.16 for the divisor D yields immediately the desired
equation. □
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Remark 8.18.
(a) For the divisor D = 0 we have l(0) = 1 by Example 8.2 (a). We thus get from Corollary 8.17

1− l(KF) = deg0+1−g,

and hence g = l(KF). Sometimes in the literature this is taken as the definition of the genus
of a projective curve.

(b) If D is a divisor on a projective curve F of genus g with degD > 2g− 2, then the divisor
KF −D has negative degree by Lemma 8.13, so that l(KF −D) = 0 by Example 8.2 (b), and
thus we get by the Riemann-Roch Theorem

l(D) = degD+1−g.

Hence in this case of a divisor of large enough degree we can actually compute the dimension
l(D) just in terms of the degree of D. In fact, most applications of the Riemann-Roch theorem
will just use this weaker statement.

Note that for curves of genus 0 this statement just reproduces our result for projective curves
of degree at most 2 from Example 8.7 (a).

Exercise 8.19 (l(D) for elliptic curves). Let D be a divisor on an elliptic curve F , and denote by ⊕
the group structure of Chapter 7. Show that l(D) is given by the following rules:

(a) If degD < 0 then l(D) = 0.

(b) If degD > 0 then l(D) = degD.

(c) If degD = 0 we can write D = P1 + · · · + Pn − Q1 − ·· · − Qn for some n ∈ N and
P1, . . . ,Pn,Q1, . . . ,Qn ∈ F , and we have

l(D) =

{
1 if P1⊕·· ·⊕Pn = Q1⊕·· ·⊕Qn,

0 otherwise.

Exercise 8.20. Let P be a point on a projective curve F . Prove that there is a rational function on F
that has a pole (of any order) at P, and is regular at all other points of F .

14
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Theorem
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