Plane Algebraic Curves – Problem Set 6

due Tuesday, July 11

(1) Let F be an elliptic curve of the form

$$F = y^2 z - x^3 - \lambda x z^2 - \mu z^3$$

for some given $\lambda, \mu \in K$ (it can be shown that every elliptic curve can be brought into this form by a change of coordinates if the characteristic of *K* is not 2 or 3). Pick the point $P_0 = (0:1:0) \in F$ as the base point for the group structure on V(F).

For given points *P* and *Q* on *F* compute explicitly the coordinates of the sum $P \oplus Q$ and the inverse $\ominus P$ in terms of the coordinates of *P* and *Q*.

- (2) Let $F = y^2 z x^3 \lambda x z^2$ be an elliptic curve as in Exercise 1 with $\mu = 0$, defined over a finite field of characteristic *p* (so that $\mathbb{Z}/p\mathbb{Z}$ is a subfield of *K*). Show:
 - (a) If $p = 3 \mod 4$ then $V(F) \cap \mathbb{P}^2_{\mathbb{Z}/p\mathbb{Z}}$ contains exactly p + 1 points.
 - (b) If $p = 1 \mod 4$ then the number of points of $V(F) \cap \mathbb{P}^2_{\mathbb{Z}/p\mathbb{Z}}$ may also be smaller or bigger than p+1, but is always even.
- (3) Let Λ be a lattice in \mathbb{C} , and let $P \neq Q$ be points in \mathbb{C}/Λ . Show that there is no meromorphic function on \mathbb{C}/Λ with a simple zero at *P*, a simple pole at *Q*, and which is holomorphic with non-zero value at all other points.

(Note that we can view this as an analytic analogue of the statement proven in class that two points $P \neq Q$ on a smooth projective curve *F* are never linearly equivalent, i. e. that there is no rational function φ on *F* with div $\varphi = P - Q$.)

(4) Let F be a smooth projective curve of degree d. For a divisor D on F we set

$$L(D) := \{ \varphi \in K(F)^* : \operatorname{div} \varphi + D \ge 0 \} \cup \{ 0 \} \quad \subset K(F).$$

Moreover, by V_n we denote the vector space of homogeneous polynomials in x, y, z of degree n. For all $n \ge d$, show for the divisor $D := n \operatorname{div} z$:

(a) L(D) is a vector space fitting into an exact sequence

$$0 \longrightarrow V_{n-d} \xrightarrow{\cdot F} V_n \xrightarrow{:z^n} L(D) \longrightarrow 0.$$

(b) dim $L(D) = \deg D + 1 - \binom{d-1}{2}$.