Plane Algebraic Curves – Problem Set 5

due Tuesday, June 27

- (1) Consider the rational function $\varphi = \frac{x^2}{y^2 + yz}$ on the projective curve $F = y^2 z + x^3 xz^2$. Moreover, let $P = (0:0:1) \in F$.
 - (a) Compute the order $n = \mu_P(\varphi)$.
 - (b) Determine a local parameter $t \in \mathcal{O}_{F,P}$.
 - (c) Give an explicit description of φ in the form $\varphi = ct^n$ for some $c \in \mathscr{O}_{F,P}^*$, where *c* should be written as $\frac{f}{g}$ for some homogeneous $f, g \in S(F)$ of the same degree with $f(P) \neq 0$ and $g(P) \neq 0$.
- (2) (a) Let *P* be a point on an affine curve *F*. Show that there is a rational function $\varphi \in K(F)$ which has exactly one pole which is simple and at *P*, i. e. such that $\mu_P(\varphi) = -1$ and $\mu_Q(\varphi) \ge 0$ for all $Q \ne P$.
 - (b) Let P_1 and P_2 be distinct points on a projective conic *F*. Show that there is a rational function $\varphi \in K(F)$ with $\mu_{P_1}(\varphi) = 1$, $\mu_{P_2}(\varphi) = -1$, and $\mu_P(F) = 0$ at all other points *P* of *F*.
- (3) Let P be a point on an affine curve F. Show that there are ring isomorphisms
 - (a) $\mathscr{O}_{F,P} \cong \mathscr{O}_{\mathbb{A}^2,P}/\langle F \rangle$;
 - (b) $K(F) \cong K(F^{h})$.
- (4) (a) Let *F* be a projective curve, and let *f* be a homogeneous polynomial with div f = D + E for two divisors *D* and *E* on *F*. Show: If *D'* is linearly equivalent to *D* and *D'* + *E* is effective then there is a homogeneous polynomial *g* with div g = D' + E.
 - (b) Let P, Q, R, S be four distinct points on a cubic curve F. Show that $P + Q \sim R + S$ if and only if the intersection point of the lines \overline{PQ} and \overline{RS} lies on F.