Plane Algebraic Curves - Problem Set 5

due Tuesday, June 27

(1) Consider the rational function $\varphi=\frac{x^{2}}{y^{2}+y z}$ on the projective curve $F=y^{2} z+x^{3}-x z^{2}$. Moreover, let $P=(0: 0: 1) \in F$.
(a) Compute the order $n=\mu_{P}(\varphi)$.
(b) Determine a local parameter $t \in \mathscr{O}_{F, P}$.
(c) Give an explicit description of φ in the form $\varphi=c t^{n}$ for some $c \in \mathscr{O}_{F, P}^{*}$, where c should be written as $\frac{f}{g}$ for some homogeneous $f, g \in S(F)$ of the same degree with $f(P) \neq 0$ and $g(P) \neq 0$.
(2) (a) Let P be a point on an affine curve F. Show that there is a rational function $\varphi \in K(F)$ which has exactly one pole which is simple and at P, i. e. such that $\mu_{P}(\varphi)=-1$ and $\mu_{Q}(\varphi) \geq 0$ for all $Q \neq P$.
(b) Let P_{1} and P_{2} be distinct points on a projective conic F. Show that there is a rational function $\varphi \in K(F)$ with $\mu_{P_{1}}(\varphi)=1, \mu_{P_{2}}(\varphi)=-1$, and $\mu_{P}(F)=0$ at all other points P of F.
(3) Let P be a point on an affine curve F. Show that there are ring isomorphisms
(a) $\mathscr{O}_{F, P} \cong \mathscr{O}_{\mathbb{A}^{2}, P} /\langle F\rangle$;
(b) $K(F) \cong K\left(F^{\mathrm{h}}\right)$.
(4) (a) Let F be a projective curve, and let f be a homogeneous polynomial with $\operatorname{div} f=D+E$ for two divisors D and E on F. Show: If D^{\prime} is linearly equivalent to D and $D^{\prime}+E$ is effective then there is a homogeneous polynomial g with $\operatorname{div} g=D^{\prime}+E$.
(b) Let P, Q, R, S be four distinct points on a cubic curve F. Show that $P+Q \sim R+S$ if and only if the intersection point of the lines $\overline{P Q}$ and $\overline{R S}$ lies on F.

