Plane Algebraic Curves - Problem Set 4

due Tuesday, June 13

(1) Show by example that Max Noether's Theorem as in Corollary 4.12 is in general false ...
(a) if the ground field is not algebraically closed; or
(b) if the curve F is not assumed to be smooth.
(2) Prove the following converse of Pascal's Theorem:

Let $P_{1}, \ldots, P_{6} \in \mathbb{P}^{2}$ be distinct points so that the six lines $\overline{P_{1} P_{2}}, \overline{P_{2} P_{3}}, \ldots, \overline{P_{5} P_{6}}, \overline{P_{6} P_{1}}$ (which can be thought of as the sides of the hexagon with vertices P_{1}, \ldots, P_{6}) are also distinct. Let $P=\overline{P_{1} P_{2}} \cap \overline{P_{4} P_{5}}$, $Q=\overline{P_{2} P_{3}} \cap \overline{P_{5} P_{6}}, R=\overline{P_{3} P_{4}} \cap \overline{P_{6} P_{1}}$ be the intersection points of opposite sides of the hexagon. If P, Q, R lie on a line, then P_{1}, \ldots, P_{6} lie on a conic.
(3) (a) Show that a (not necessarily irreducible) reduced curve of degree d in \mathbb{P}^{2} has at most $\binom{d}{2}$ singular points.
(b) Find an example for each d in which this maximal number of singular points is actually reached.
(4) Use Max Noether's Theorem to show the following statements about smooth projective cubics F and G over an algebraically closed field:
(a) (Cayley-Bacharach Theorem) Assume that F and G intersect in exactly 9 points P_{1}, \ldots, P_{9}. Moreover, let E be another cubic that also contains the first eight points P_{1}, \ldots, P_{8}. Prove that E then also contains P_{9}.
(b) Any line through two inflection points of F as in Exercise 2 of Problem Set 3 passes through a third inflection point of F.

