Plane Algebraic Curves - Problem Set 3

due Tuesday, May 30

(1) For the following complex affine curves F and G, determine the points at infinity of their projective closures, and use Bézout's Theorem to read off the intersection multiplicities at all points of $F \cap G$.
(a) $F=x+y^{2}$ and $G=x+y^{2}-x^{3}$;
(b) $F=y^{2}-x^{2}+1$ and $G=(y+x+1)(y-x+1)$.
(2) For a projective curve F in the homogeneous coordinates x_{0}, x_{1}, x_{2} we define the associated Hessian to be $H_{F}:=\operatorname{det}\left(\frac{\partial^{2} F}{\partial x_{i} \lambda_{j}}\right)_{i, j=0,1,2}$.
(a) Show that the Hessian is compatible with coordinate transformations, i.e. if a projective coordinate transformation as in Exercise 3 of Problem Set 2 takes F to F^{\prime} then up to multiplication with a unit it takes H_{F} to $H_{F^{\prime}}$.
(b) Let $P \in F$ be a smooth point, and assume that the characteristic of K is 0 . Show that $H_{F}(P)=0$ if and only if $\mu_{P}\left(F, T_{P} F\right) \geq 3$. Such a point is called an inflection point of F.
(Hint: By (a) you may assume after a coordinate transformation that $P=(0: 0: 1)$ and $T_{P} F=x_{1}$.)
(3) Deduce the following real version of Bézout's Theorem from the complex case: If F and G are two real projective curves without common components then

$$
\sum_{P \in F \cap G} \mu_{P}(F, G)=\operatorname{deg} F \cdot \operatorname{deg} G \quad \bmod 2 .
$$

In particular, two real projective curves of odd degree always intersect in at least one point.
(4) Let F be a complex irreducible projective curve of degree d, and let $P \in \mathbb{P}^{2}$ be a point. We set $m:=m_{P}(F) \in \mathbb{N}$.
Show that for all but finitely many lines L in \mathbb{P}^{2} through P, the intersection $F \cap L$ consists of exactly $d-m$ points not equal to P.

