Plane Algebraic Curves - Problem Set 2

due Tuesday, May 16

(1) (a) Find all singular points of the curve $F=\left(x^{2}+y^{2}-1\right)^{3}+10 x^{2} y^{2} \in \mathbb{R}[x, y]$, and determine the multiplicities and tangents to F at these points.
(b) Show that an irreducible curve F over a field of characteristic 0 has only finitely many singular points.
Can you find weaker assumptions on F that also imply that F has only finitely many singular points?
(2) Show:
(a) If $F, G \in K\left[x_{0}, \ldots, x_{n}\right]$ are polynomials such that $F \mid G$ and G is homogeneous, then F is homogeneous.
(b) Every homogeneous polynomial in two variables over an algebraically closed field is a product of linear polynomials.
(3) By a projective coordinate transformation we mean a map $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ of the form

$$
\left(x_{0}: \cdots: x_{n}\right) \mapsto\left(f_{0}\left(x_{0}, \ldots, x_{n}\right): \cdots: f_{n}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

for linearly independent homogeneous linear polynomials $f_{0}, \ldots, f_{n} \in K\left[x_{0}, \ldots, x_{n}\right]$.
(a) Let $P_{1}, \ldots, P_{n+2} \in \mathbb{P}^{n}$ be points such that any $n+1$ of them are linearly independent in K^{n+1}, and in the same way let $Q_{1}, \ldots, Q_{n+2} \in \mathbb{P}^{n}$ be points such that any $n+1$ of them are linearly independent. Show that there is a projective coordinate transformation f with $f\left(P_{i}\right)=Q_{i}$ for all $i=1, \ldots, n+2$.
(b) Let F and G be two real smooth projective conics with non-empty set of points. Show that there is a projective coordinate transformation of \mathbb{P}^{2} that takes F to G.
(4) Let P be a point on an affine curve F. We say that P is a cusp if $m_{P}(F)=2$, there is exactly one tangent L to F at P, and $\mu_{P}(F, L)=3$.
(a) Give an example of a real curve with a cusp, and draw a picture of it.
(b) If F has a cusp at P, prove that F has only one irreducible component passing through P.
(c) If F and G have a cusp at P, what is the minimum possible value for the intersection multiplicity $\mu_{P}(F, G) ?$

