Plane Algebraic Curves - Problem Set 1

due Tuesday, May 2

(1) Draw the real curves $F=x^{2}+y^{2}+2 y$ and $G=y^{3} x^{6}-y^{6} x^{2}$, determine their irreducible decompositions, their intersection points, and their intersection multiplicity at the origin.
(Hint: To determine the intersection multiplicity, it is useful to use the additivity of the multiplicities, together with the property $\mu_{0}(F, G)=\mu_{0}(F, G+H F)$ for all polynomials F, G, H.)
(2) Let $F=x^{2}+y^{2}-1 \in K[x, y]$ be the "unit circle" over K. Assume that the characteristic of K is not 2 , i. e. that $1+1 \neq 0$ in K.
(a) Considering the intersection points of an arbitrary line L (with slope t) through $(-1,0)$ with F, show that the set of points of F is

$$
V(F)=\{(-1,0)\} \cup\left\{\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right): t \in K \text { with } 1+t^{2} \neq 0\right\} .
$$

(b) Prove that the integer solutions (a, b, c) of the equation $a^{2}+b^{2}=c^{2}$ (the so-called Pythagorean triples) are, up to permuting a and b, ex-
 actly the triples of the form $\lambda\left(u^{2}-v^{2}, 2 u v, u^{2}+v^{2}\right)$ with $\lambda, u, v \in \mathbb{Z}$.
(3) Let $F, G \in K[x, y]$ be two curves without a common component that passes through the origin. Show:
(a) There is a number $n \in \mathbb{N}$ such that $x^{n}=y^{n}=0$ in $\mathscr{O}_{0} /\langle F, G\rangle$.
(b) Every element of $\mathscr{O}_{0} /\langle F, G\rangle$ has a polynomial representative.
(c) $\mu_{0}(F, G)<\infty$.
(4) Let $F, G \in K[x, y]$ be two curves that pass through the origin. Show:
(a) If F and G have no common component then the family $\left(F^{n}\right)_{n \in \mathbb{N}}$ is linearly independent in $\mathscr{O}_{0} /\langle G\rangle$.
(b) If F and G have a common component that passes through the origin then $\mu_{0}(F, G)=\infty$.

Please put your solutions (in groups of up to 3 people) in Cedric's mailbox next to room 48-210, or submit them in the OLAT course as a PDF file.

