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7. Elliptic Curves

In this chapter, we will interrupt our general discussion of plane curves for a moment to study
(projective) curves of degree 3 in detail. We have seen already that this is the first interesting case of
curves in many respects: It is, for example, the lowest degree for which real or complex curves are
topologically interesting (see Propositions 5.10 and 5.16), and for which the Picard group is non-
trivial (see Example 6.33 and Proposition 6.34). We will show now that curves of degree 3 have in
fact a very rich structure, both from an algebraic and — over C — from an analytic point of view.
In the literature, they are usually called elliptic curves.

Definition 7.1 (Elliptic curves). An elliptic curve is simply a projective cubic curve (which is
smooth and defined over an algebraically closed field, in accordance with our convention at the
beginning of Chapter 6).

The term “elliptic curve” might sound confusing at first, because the shape of a plane cubic curve has
no similarities with an ellipse, not even over the real numbers (see e. g. Remark 5.8). The historical
reason for this name is that the formula for the circumference of an ellipse can be expressed in terms
of an integral over a plane cubic curve.

Probably the single most important (and surprising) result about elliptic curves is that they carry a
natural group structure. The easiest, or at least the most conceptual way to prove this is by showing
that an elliptic curve admits a natural bijection to its degree-0 Picard group. To establish this, we
need the following construction.

Construction 7.2. Let P and Q be two (not necessarily distinct) points
on an elliptic curve F. Then there is a unique line [ with P4+ Q < div/
on F, namely the line through P and Q if these points are distinct, and
the tangent line to F at P = Q otherwise. But div/ is an effective divisor
of degree 3 by Remark 6.27 (a), and hence there is a unique point R € F
(which need not be distinct from P and Q) with divl = P+ Q+ R. In the w(P',P')
following, we will denote this point R by y(P, Q). In short, it is just “the s

third point of intersection of the line through P and Q with F”.

Tv(r.0)

Lemma 7.3. For any three points P,Q,R on an elliptic curve F there is a point S on F such that
P+ Q ~ R+S, namely

S=y(y(P,0),R).
Proof. Applying Construction 7.2 to the points P and Q we find a line / with divi=P+ Q0+ y(P,Q)
on F. Similarly, for y(P,Q) and R we find a line I’ with div!’ = y(P,Q) + R+ w(w(P,Q),R). The
quotient of these lines is then a rational function on F, whose divisor is therefore linearly equivalent
to zero: We have

0~ divy, =P+ 0+ Y(R.0) ~ (W(P.O)+ R+ w(W(P,Q).R).
and hence, as claimed, P+ Q ~ R+ S with S = y(y(P,0Q),R). O
Proposition 7.4. Let Py be a fixed point on an elliptic curve F. Then the map
®: V(F) — Pic’F, P~ P— PRy
of Corollary 6.35 is a bijection.

Proof. As we already know by Corollary 6.35 that ® is injective, it remains to prove surjectivity. So
let D be an arbitrary element of Pic’F , which we can write as

D:P1+"'+Pm_Q1_"'_Qm
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for some m € Ny and not necessarily distinct points P, ..., P, Q1,...,0n € F. Assume first that
m > 2. By Lemma 7.3 there is then a point § € F with P + P, ~ Q1 + S, and hence

D~S+Py4- 4Py —Qr— - — O

Up to linear equivalence, we have thus reduced the number m of (positive and negative) points in D
by 1. Continuing this process as long as m > 2, we see that D ~ P — Q for some P,Q € F. In the
same way, Lemma 7.3 now gives us a point T with P+ Py~ Q+T,i.e. withD~P—-Q ~T —P,.
But this means that ®(T') = D, i. e. that ® is surjective. O

Remark 7.5. Let F be an elliptic curve. After choosing a base point Py € F', Proposition 7.4 gives
us a canonical bijection between the variety V(F) and the Abelian group Pic’ F, i.e. between two
very different types of mathematical objects. We can use it to give V(F) the structure of an Abelian
group, and Pic’ F the structure of a smooth projective variety.

In fact, it can be shown that Pic’ F can be made into a variety (the so-called Picard variety) for every
smooth projective curve F. In contrast, the statement that V (F) has a natural structure of an Abelian
group is very special to elliptic curves. Let us explore this group structure in more detail.

Construction 7.6 (The group structure on an elliptic curve). Let Py be a fixed base point on an
elliptic curve F. As in Remark 7.5, we can use Proposition 7.4 to define a group structure on V (F)
in such a way that the map ® becomes an isomorphism of groups. More precisely, if we denote this
group operation on V(F) by the symbol @ (to distinguish it from the addition of points in Div F or
PicF), then P® Q for P,Q € F is the unique point of F' satisfying

PP Q) =P(P)+P(Q),

where “+” denotes the addition of divisors in Pic’ F. We can use Lemma 7.3 to solve this for P& Q:

®(P)+2(Q))
P—P+0-R)

PO =" (
(
Y P+0-2R)
(
(

"R+ y(w(P,Q), ) —2R)
"y(y(P,0),R) — Py)
V(v (P,0),P).

(o
(o
S -
(o

In other words, to construct the point P& Q we draw a line through P and Q. Then we draw another
line through the third intersection point y(P,Q) of this line with F and the point Py. The third
intersection point of this second line with F is then P& Q, as in the picture below on the left.

Similarly, for the inverse © P of P in the above group structure we obtain

oP =o (—o(P))
=o' (R-P)
=0 YR+ -P-P)
E o' (P+ y(y(Py,Ry),P) — P~ P))

= l[/(l[/(P(),P()),P).

So to construct the inverse © P we draw the tangent to F' through Fy. Then we draw another line
through the other intersection point y(Py,Py) of this tangent with F and the point P. The third
intersection point of this second line with F is © P, as in the following picture.
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Note that, using this geometric description, the operation & could also be defined in a completely
elementary way, without referring to the theory of divisors. However, it would then be very difficult
to show that we obtain a group structure in this way, in particular to prove associativity.

Remark 7.7 (Non-algebraically closed fields). Let K’ be a subfield of K which is not necessarily
algebraically closed, such as R in C or a finite field in its algebraic closure. Assume that F € K'[x,y, 7]
is defined over K’. Note that for two points P,Q € V(F) N IP’%{/ on F with coordinates in K’ the point
y(P, Q) then lies in V(F) NP%, as well: The polynomial F restricted to the line through P and Q is
a cubic homogeneous polynomial over K’ that splits off two linear factors over K’ corresponding to
its zeros P and Q. Hence the remaining linear factor corresponding to y(P, Q) is also defined over
K’, which means that y(P,Q) € V(F)NP%,.

Choosing the base point Py in V(F) NP2, we can therefore restrict the group structure on V(F) to
V(F)N IP’%(,, obtaining a subgroup of V(F).
Exercise 7.8. Let F be an elliptic curve of the form
F=y7—x—Axz* —uz’
for some given A, € K (it can be shown that every elliptic curve can be brought into this form by

a change of coordinates if the characteristic of K is not 2 or 3). Pick the point Py = (0:1:0) € F as
the base point for the group structure on V (F).

For given points P and Q on F compute explicitly the coordinates of the sum P& Q and the inverse
6 P in terms of the coordinates of P and Q.

Example 7.9 (Elliptic Curve Cryptography). There is an interesting application of the group struc-
ture on an elliptic curve to cryptography. The key observation is that “multiplication is easy, but
division is hard”. More precisely, assume that we are given a specific elliptic curve F, and that we
choose a base point Py € F for the group structure as well as an additional point P € F. In view
of Remark 7.7, the ground field for the curve does not have to be algebraically closed; in fact, for
practical computations one will usually choose a finite field so that its elements can be stored in a
chunk of computer memory of fixed size without rounding errors. Then we observe the following:

(a) Given n € N, the n-fold addition n® P := P& --- @ P can be computed very quickly using
Exercise 7.8, even for very large n (think of numbers with hundreds of digits):

e By repeatedly applying the operation P — P& P, we can compute all points 2€ © P for
all k such that 2% < n.

e Now we just have to add these points 25 © P for all k such that the k-th digit in the
binary representation of n is 1.

This computes the point #® P in a time proportional to logn (i. e. in a very short time).

(b) On the other hand, given a sufficiently general point Q € V(F) it is essentially impossible
to compute an integer n € N such that n ® P = Q (in case such a number exists). Note that
this is not a mathematically precise statement — there is just no known algorithm that can
perform the “inverse” of the multiplication of (a) in shorter time than a simple trial-and-error
approach (which would be impractical for large n).

Let us now assume that Alice and Bob want to establish an encrypted communication over an inse-
cure channel, but that they have not met in person before, so that they could not secretly agree on
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a key for the encryption. Using the above idea, they can then agree (publicly) on a ground field K,
a specific elliptic curve F over K, a base point Py € V(F), and another point P € V(F). Now Alice
picks a secret (very large) integer n, computes n ® P as in (a), and sends (the coordinates of) this
point to Bob. In the same way, Bob chooses a secret number m, computes m ® P, and sends this
point to Alice.

As Alice knows her secret number n and the point m ® P from Bob, she can then compute the point
mn®P=n® (m®P). In the same way, Bob can compute this point as mn©P =m® (n® P) as
well. But except for the data of the chosen curve the only information they have exchanged publicly
was P, n® P, and m® P, and by (b) it is not possible in practice to recover n or m, and hence mn©® P,
from these data. Hence Alice and Bob can use (the coordinates of) mn ® P as a secret key for their
encrypted communication.

This method is actually used by many modern computer applications that need encryption, such
as popular instant messengers for secure communication and file encryption software. The most
common choice for the parameters is called Curve25519 in the literature, and uses the ground field
7./ pZ with the prime number p = 2235 — 19, the curve F = y?>z — x> — 486662x%z — xz2, the base
point Py = (0:1:0), and a point P € F withx =9 and z = 1 [W].

Exercise 7.10. Let F = y>z — x> — Axz” be an elliptic curve as in Exercise 7.8 with u = 0, defined
over a finite field of characteristic p (so that Z/pZ is a subfield of K). Show:

(a) If p =3 mod 4 then V(F) OJP’% /pz, contains exactly p+ 1 points.

(b) If p =1 mod 4 then the number of points of V(F) N ]P’% /pz, MAY also be smaller or bigger
than p + 1, but is always even.

Exercise 7.11. Let F = y?z — x> — Axz> — uz> be an elliptic curve as in Exercise 7.8.

Show that the subgroup {D € PicF : 2D ~ 0} of Pic F has exactly 4 elements and is isomorphic to
Z)27 x 727

(Hint: Translate the problem to the group structure on V(F).)

Let us now restrict our attention to the ground field C, so that an elliptic curve is topologically a
torus by Example 5.17 (a). In the remaining part of this chapter we want to see how these tori and
elliptic curves arise in complex analysis in a totally different way. As we have not developed any
analytic techniques in these notes we will only sketch most arguments; more details can be found
e.g. in [Ki, Section 5.1]. Let us start by giving a quick review of what we will need from standard
complex analysis. As usual, we will denote a complex variable in C by z. In contrast, for the rest
of this chapter the homogeneous coordinates of IE”%C will be called xg,x1,x; instead of x,y,z to avoid
confusion.

Remark 7.12 (Holomorphic and meromorphic functions). Let U C C be an open subset. Recall that
a function f: U — C is called holomorphic if it is complex differentiable at all points zg € U, i.e. if

the limit
f/(ZO) — lim f(Z) f(ZO)
=720 —20
exists. A function f: U — CU{eo} is called meromorphic if it is holomorphic except for some iso-
lated singularities which are all poles, i. e. if for all zg € U there is a number n € Z and a holomorphic
function f in a neighborhood of zg in U in which

f@)=(z—20)" f(2).

If f does not vanish identically in a neighborhood of zyp we can moreover assume that f(zg) # 0 in
this representation; the number 7 is then uniquely determined. We will call it the multiplicity of f
at zo and denote it by i, (f). It is obviously the analogue of the multiplicity of a rational function
as in Construction 6.6 and Proposition 6.10 (b). The notions of (orders of) zeros and poles are
used for meromorphic functions in the same way as for rational functions. Note that every rational
function (i. e. every quotient of polynomials) in z is clearly meromorphic; there are however many
more meromorphic than rational functions as e. g. the exponential function z — e?.
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Remark 7.13 (Properties of holomorphic and meromorphic functions). Although the definition of
holomorphic, i. e. complex differentiable functions is formally exactly the same as that of real differ-
entiable functions, the behavior of the complex and real cases is totally different. The most notable
differences that we will need are:

(a) Every holomorphic function f is analytic, i.e. it can be represented locally around every
point zg by its Taylor series. Consequently, a meromorphic function f of order n at zo can
locally be expanded in a Laurent series as f(z) = Y, cx (z — 20)¥, with n = p, () [G4,
Proposition 9.8]. The coefficient c_; of this series is called the residue of f at zo and denoted
by res;, f.

(b) (Residue Theorem) If v is a closed (positively oriented) path in C and f is a meromorphic
function in a neighborhood of 7y and its interior, without poles on ¥ itself, then

/ f(z)dz=2mi} res;, f,
Y 20

with the sum taken over all zg in the interior of 7y (at which f has poles) [G4, Proposition
11.14]. In particular, if f is holomorphic in the interior of y then this integral vanishes.

(c) (Liouville’s Theorem) Every function that is holomorphic and bounded on the whole com-
plex plane C is constant [G4, Proposition 8.2].

Construction 7.14 (Tori from lattices). As mentioned above, for
our applications to elliptic curves we have to construct a torus. Im

To do this, fix two complex numbers @, @, € C that are linearly * * ¢

independent over R, i.e. that do not lie on the same real line in C .

through the origin. Then * ® ®
A=70+Zw, ={mw, +nw, :mnecZ} CC Re

is called a lattice in C, as indicated by the points in the picture on 1

the right. It is an additive subgroup of C, and the quotient C/Ais ¢ ° ®

topologically a torus.

For the rest of this chapter, A will always be a fixed lattice in C. Note that functions on the torus C/A
correspond exactly to A-periodic functions on C, i.e. to functions f on C with f(z+ @) = f(z) for
all z € C and @ € A. In the following, we will use the concepts of functions on C/A and A-periodic
functions on C interchangeably.

It is our goal to show that the torus C/A can be identified with an elliptic curve in a natural way. Let
us start with a first auxiliary result that already indicates the similarities between the algebraic and
analytic setting: We will show the analytic analogue of Remark 6.27 (b), namely that a meromorphic
function on the torus C/A has equally many zeros as poles.

Lemma 7.15. Let f: C/A — CU{eo} be a non-zero meromorphic function. Then

Z .uzo(f) =0.

20€C/A

Proof sketch. Let ¥ be the path around a “parallelogram of period-

icity” as in the picture on the right, i. e. a parallelogram with side ° In.l °
vectors spanning A. We choose it so that the zeros and poles of f
do not lie on 7, and hence have a unique representative inside this o [ . / Y o
parallelogram. It follows that
!
/f (Z) dZ — O (*) —0—“—0—»Re
y f(2)
since the integrals along opposite sides of the parallelogram cancel o . °

each other due to the periodicity of f.
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On the other hand, we can compute this integral using the Residue Theorem of Remark 7.13 (b):

At a point zo with p (f) = n so that we can write f(z) = (z—z0)" f(z) with f holomorphic and
non-zero around zg as in Remark 7.12 we have

/ _ n—1 ¢ _ n g 7

Iesy, L = ICSy, n(Z ZO) f+ (Z~ ZO) f = (n + L;

f (z—z0)"f 2=z f

and hence we obtain by the Residue Theorem

) =),

/

/y];((;)dZZZni Y resZOf?:27ri Y ().

20€C/A 20€C/A

Comparing this with (x) then gives the desired result. O

Remark 7.16 (Residue Theorem on manifolds). In the same way as Remark 6.27 (b), Lemma 7.15
does not only hold for a torus C/A, but also for an arbitrary compact 1-dimensional complex mani-
fold X, and thus for any (smooth) complex projective curve. Let us briefly explain how to adapt the
proof of Lemma 7.15 to this more general case.

The main step in this generalization is to extend the concepts of path integrals and the Residue Theo-
rem from the complex plane to manifolds. This is not entirely straightforward, since the differential
dz in the integral depends on the choice of a local coordinate z on X. As a consequence, there is no
well-defined integral over a function on X since we would have to combine it with the coordinate-
dependent dz to integrate it. Instead, we have to combine a function with a differential to obtain
expressions of the form @ = fdg for (meromorphic) functions f and g that satisfy the usual rules of
differentiation. Such objects are called differential forms on X.

In these notes we will use differential forms only in a few side remarks that will not be needed later
on, and hence we will not introduce them rigorously. Let us just mention that integrals and the
Residue Theorem then behave as expected: For a closed path y and a differential form o on X not
having any poles on 7 itself, we can define an integral fya whose value can be computed by the

Residue Theorem
/a =2mi ZresPOC
Jy P

as in Remark 7.13 (b), where the sum is taken over all points P in the interior of ¥, and the residue
of o at a point P is defined similarly to Remark 7.13 (a).

An additional benefit of this version of the Residue Theorem on manifolds is that we can exchange
the roles of the interior and exterior of y: Consider a differential form « on X with poles at some
points (marked P; and P; in the picture below on the right). If we form the integral fyoc over a small
loop 7 that contains none of these points, the result will be O by the Residue Theorem. But we can
also swap the roles of the interior and exterior of y (without changing the value of the integral), so
that now all poles lie in the interior of 7, and the Residue Theorem gives us the sum over all residues
of a. Comparing these two results we see that

Z resp =0,
Pex

which is also sometimes called the Residue Theorem (for man-
ifolds) in the literature.

Applying this now to the differential form

[ , f'(z)
a=d(logf) = dz gives us resp dz =0,
f(2) Pez;’( f2)
and thus with the same (local) computation resp % dz = up(f) as in the proof of Lemma 7.15
Y ue(f) =0,
Pex

i.e. that f has equally many zeros as poles.
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But let us now return to our study of the torus C/A. The key ingredient to identify it with the points
of an elliptic curve is the following meromorphic function.

Proposition and Definition 7.17 (The Weierstrafl @-function). There is a meromorphic function
on C, called the Weierstrafy go-function (pronounced like the letter “p”), defined by

1 1
w=z X (o a)

It has poles of order 2 exactly at the lattice points.

Proof sketch. 1t is a standard fact that an (infinite) sum of holomorphic functions is holomorphic at
zo provided that the sum converges uniformly in a neighborhood of zy. We will only sketch the proof
of this convergence: Let zo € C\A be a fixed point that is not in the lattice. Then every summand is
a holomorphic function in a neighborhood of zg. The expansions of these summands for large ® are

1 1 1 1 27 1
m_ﬁzﬁ m—l ZE-I- termsoforderatleastg ,

[0

so the summands grow like 3. Let us add up these values according to the absolute value of .
Note that the number of lattice points with a given absolute value approximately equal to n € N is
roughly proportional to the area of the annulus with inner radius n — % and outer radius n + %, which
grows linearly with n. Hence the final sum is of the order ), n- n% =Y nLZ’ which is convergent.
Note that the sum would not have been convergent without the subtraction of the constant # in each
summand, as then the individual terms would grow like é, and therefore the final sum would be of
the type Yo, 1, which is divergent.

n=1 p>

Finally, the poles of order 2 at the points of A are clearly visible. g

Remark 7.18 (Properties of the g&-function). One can show that in an absolutely convergent series
as above all manipulations (reordering of the summands, term-wise differentiation) can be performed
as expected. In particular, the following properties of the @-function are obvious:

(a) The g-function is an even function, i.e. @(z) = @(—z) for all z € C. Hence its Laurent
series at 0 as in Remark 7.13 (a) contains only even exponents.

(b) Its derivative is £'(z) = Y pea ﬁ It is an odd function, i.e. '(z) = —@’'(—z) for all z.
In other words, its Laurent series at 0 contains only odd exponents. It has poles of order 3

exactly at the lattice points.

(c) The go-function is A-periodic, and hence gives a meromorphic function g : C/A — CU{e}.
To show this note first that &’ is A-periodic by (b). Now, for given zo € C and @ € A we
integrate &' along the path Y= ¥; + % + ¥3 + ¥4 shown in the picture below on the right.

Of course, the result is 0, since  is an integral of @’ Im
But also the integral along 9» cancels the integral along Zz nl® 0+ 0 °
1a as #'(z) is periodic. The integral along 73 is equal to '
2(—%9)— #2(5), so it vanishes as well since  is an even ® n
function. So we conclude that Re
0= [ p'(2)dz=p(20+0)—@(20), —y 2 o
b4l
i.e. that @ is A-periodic. * b *

Lemma 7.19 (Differential equation of the #-function). The @ -function satisfies a differential equa-
tion

P2 =9 +op@)?+api)+ce forallzeC

for some constants cg,cy,cp,c3 € C (depending on A).
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Proof sketch. By Remark 7.18 (b) we know that (£’)? is an even function with a pole of order 6 at
the origin. Hence its Laurent series around 0 is of the form

#'(2)? = % + az;44 + az;zz +ag + (terms of positive multiplicity at 0)

for some constants a_g,a_4,a_2,ag € C. The functions &3, £2, &, and 1 are also even and have
poles at the origin of order 6, 4, 2, and 0, respectively. Hence there are constants c3,c2,cq,co € C
such that the Laurent series of the linear combination

[@2):=9'(2) —c30(2) —c20(2)* —c10(z) o
has only positive powers of z. This means that f is holomorphic around the origin and vanishes at 0.

But & and &', and hence also f, are A-periodic by Remark 7.18 (c). Hence f is holomorphic
around all lattice points. Moreover, f is holomorphic around all other points as well, as £ and £’
are. Hence f is holomorphic on all of C.

The A-periodicity means that every value taken on by f is already assumed on the parallelogram
{x@; +ym; : x,y € [0,1]}. As f is continuous, its image on this compact parallelogram, and hence
on all of C, is bounded. So we see by Liouville’s Theorem of Remark 7.13 (c) that f must be
constant. But as we have already shown that f(0) = 0, it follows that f is the zero function, which
is exactly the statement of the lemma. 0

Remark 7.20. By an explicit computation one can show that the coefficients c3,c2, ¢, ¢ in Lemma
7.19 are given by

1 1
c3=4, =0, c;=—60 ) —, and co=-140 ) —.
wenvoy @ wenfoy @

The proof of Lemma 7.19 shows impressively the powerful methods of complex analysis: To prove
our differential equation, i. e. the equality of the two functions (£’)? and c3° + c2 92 + c1 2 + co,
it was sufficient to just compare four coefficients of their Laurent expansions at the origin — the rest
then follows entirely from general theory.

Note also that the differential equation of Lemma 7.19 is a (non-homogeneous) cubic equation in
the two functions g and ', which are A-periodic and thus well-defined on the quotient C/A. We
can therefore use it to obtain a map from C/A to an elliptic curve as follows.

Proposition 7.21 (Complex tori as elliptic curves). Consider the elliptic curve
F = x3x0 — c3x; — cax3xg — clxlx(z) — coxg

for the constants c3,ca,c1,c9 € C of Lemma 7.19. There is a bijection
W:C/A—=V(F), z— (1:9(2):'(2)).

Proof sketch. As g and ' are A-periodic and satisfy the differential equation of Lemma 7.19, it
is clear that W is well-defined as a map to V(F). Strictly speaking, for z = 0 we have to note that
£ and @' have poles of order 2 and 3, respectively, so that the given expression for ¥(0) is of the

form (1:c0:00). But by Remark 7.12 we can write #(z) = % and @'(z) = % locally around the
origin for some holomorphic functions f, g that do not vanish at 0, and so we have to interpret the

expression for ¥ as
W(0) = lim (1: £(2): ' (2)) = lim (2 :2.£(2):8(2)) = (0:0:1),
z—0 z—0
i.e. ¥(z) is well-defined at z = 0 as well.

Now let (xp:x1:x2) € V(F) be a given point; we have to show that it has exactly one inverse image
under ¥. By what we have just said this is obvious for the “point at infinity” (0:0:1), so let us
assume that we are not at this point and hence pass to inhomogeneous coordinates where xo = 1. We
thus have to show that there is exactly one (non-zero) z € C/A with @ (z) = x; and £’(z) = x,.

Recall that o, and thus also & — x;, has exactly one pole in C/A, namely the origin, and that this
pole is of order 2. Hence #& — x also has exactly two zeros (counted with multiplicities) in C/A by
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Lemma 7.15, i. e. there are two z € C/A with #(z) = x;. For such a point z we then have by Lemma
7.19

22 =30 + 202 +e1p2) +eo = e3x +eaxi +erxi +eo =53
since (1:x1:x2) € V(F). So there are two possibilities:

e '(z) =0: Then x, = 0 as well, and z is a double zero (i. e. the only zero) of the function
# —x1. So there is exactly one z € C/A with ¥(z) = (1: (2): 2'(2)) = (1:x1 :x2).

e ('(z) #0: Then z is only a simple zero of @ —x;. As & is even and &’ odd by Remark
7.18, we see that —z must be the other zero, and it satisfies &' (—z) = —’(z). Hence exactly
one of the equations £’ (z) = x, and @’'(—z) = x, holds, and the corresponding point is the
unique inverse image of (1:x; :x;) under V.

Altogether we conclude that ¥ is bijective, as we have claimed. g

Remark 7.22. In fact, the map ¥ of Proposition 7.21 is not just a bijection: Both C/A and V(F)
are 1-dimensional complex manifolds in a natural way, and W is even an isomorphism between these
two manifolds.

Remark 7.23 (Group structures on elliptic curves). With Proposition 7.21 we are again in a similar
situation as in Proposition 7.4: We have a bijection between a group C/A and a variety V (F), so that
the map W of the above proposition can be used to construct a group structure on V(F). In fact, we
will see in Exercise 7.25 that this group structure is precisely the same as that obtained by the map
® of Proposition 7.4 using divisors. But the algebraic properties of this group structure is a lot more
obvious in this new picture: For example, the points of order n are easily read off to be the n” points

1
— (i) + jop) for0<i,j<n.
n

Exercise 7.24. Let A be a lattice in C, and let P # Q be points in C/A. Show that there is no
meromorphic function on C/A with a simple zero at P, a simple pole at Q, and which is holomorphic
with non-zero value at all other points.

Note that we can view this as an analytic analogue of Proposition 6.34 for elliptic curves.

Exercise 7.25. Let F be an elliptic curve corresponding to a torus C/A as in Proposition 7.21. Show
that the group structure on V (F) induced by Pic® F as in Proposition 7.4 (using (0:0: 1) as the base
point) is the same as the one induced by the natural group structure of C/A.

Exercise 7.26. Let A C C be a lattice. Given two points z,w € C/A, it is very easy to find a natural
number n such that n-w = z (in the group structure of C/A), in case such a number exists. Why is
this no contradiction to the idea of the cryptographic application in Example 7.9?



