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6. Functions and Divisors

Up to now we have essentially studied curves for themselves, i. e. no functions on them or maps
between them. In fact, as we restrict ourselves to plane curves in these notes it does not make
too much sense to consider maps between them as these maps would then somehow have to be
compatible with the embeddings in the plane, which is quite restrictive and not very natural. But it
is still very fruitful to consider functions on plane curves, i. e. maps to the ground field K, as we will
see in the following chapters.

It turns out that the theory of such functions on curves is significantly easier from an algebraic point
of view if we restrict to smooth and irreducible curves over an algebraically closed field (where
irreducibility is automatic for projective curves by Proposition 5.1). So let us make the convention:

From now on, the ground field K is always assumed to be algebraically closed.

Curves are always assumed to be smooth and irreducible.

In particular, by Remarks 1.14 and 3.19 we can then think of a curve as a subset of A2 resp. P2.

Let us start by studying polynomial functions on affine curves.

Definition 6.1 (Affine coordinate rings). Let F be a (smooth and irreducible) affine curve (over an
algebraically closed field K). We call

A(F) := K[x,y]/⟨F ⟩
the coordinate ring of F .

In order to avoid overly complicated notations, we will not use any special symbols to denote the
equivalence classes in A(F), but rather write e. g. f ∈ K[x,y] or f ∈ A(F) for a polynomial resp. its
equivalence class modulo F .

Remark 6.2 (A(F) as ring of polynomial functions). Clearly, the elements of A(F) determine well-
defined polynomial functions on V (F) ⊂ A2 to K by evaluation. Conversely, two polynomials f ,g
in K[x,y] determine the same polynomial function on V (F) if and only if f −g is identically zero on
V (F), i. e. V (F) ⊂ V ( f − g). But as F is irreducible (and the ground field is algebraically closed)
this is equivalent to F | f − g by Corollary 1.13, and thus to f = g ∈ A(F). In other words, we see
that A(F) is exactly the ring of polynomial functions on the curve.

Remark 6.3 (Algebraic properties of A(F)).
(a) As the curve F is assumed to be irreducible, the coordinate ring A(F) is an integral domain:

If f g = 0 ∈ A(F) this means that F | f g, hence F | f or F |g, which means that f = 0 or g = 0
in A(F).

(b) In contrast to the polynomial ring K[x,y], the coordinate ring A(F) of an affine curve is in
general not a unique factorization domain as in Fact 1.2. Actually, determining whether a
given coordinate ring A(F) is factorial or not is in general a difficult problem. In these notes
we will not study this question in detail; we just have to remember that it does not make
sense to talk about irreducible decompositions of elements of A(F).

As A(F) is an integral domain we can also construct its quotient field, corresponding to functions on
the curve that are given by quotients of polynomials. Just as in Definition 2.1 this gives rise to local
rings describing such functions that have a well-defined value at a given point, and thus also on a
neighborhood of this point.
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Definition 6.4 (Rational functions and local rings). Let F be an affine curve.

(a) The quotient field (see Construction 1.10)

K(F) := QuotA(F) =

{
f
g

: f ,g ∈ A(F) with g ̸= 0
}

of the coordinate ring is called the field of rational functions on F .

(b) A rational function ϕ ∈ K(F) is called regular at a point P ∈ F if it can be written as ϕ = f
g

with f ,g∈ A(F) and g(P) ̸= 0. The regular functions at P form a subring of K(F) containing
A(F) denoted by

OF,P :=
{

f
g

: f ,g ∈ A(F) with g(P) ̸= 0
}
⊂ K(F).

This ring of regular functions at P is called the local ring of F at P.

(c) There is a well-defined evaluation map

OF,P→ K,
f
g
7→ f (P)

g(P)

which we will simply write as ϕ 7→ ϕ(P) for ϕ ∈ OF,P, and whose kernel is

IF,P :=
{

f
g

: f ,g ∈ A(F) with f (P) = 0 and g(P) ̸= 0
}
.

Remark 6.5 (Algebraic interpretation of local rings). As in the case of the ring OA2,P in Remark
2.2, the rings OF,P are also local rings in the algebraic sense that they contain exactly one maximal
ideal, namely IF,P. The proof of this statement is the same as before: If I is an ideal in OF,P which
is not a subset of IF,P then there is an element f

g ∈ I with f (P) ̸= 0 and g(P) ̸= 0. But this is then a
unit in OF,P, so that I = OF,P.

Alternatively, just as in Remark 2.2 the ring OF,P is the localization of A(F) at the maximal ideal
⟨x− x0,y− y0 ⟩ with P = (x0,y0), and thus a local ring.

It is straightforward to transfer our notion of intersection multiplicity of two curves to a definition
of multiplicity of a polynomial or rational function (and hence also of elements of local rings) on a
curve. It should be thought of as the order of a zero or pole of such a function as in the introduction
to Chapter 2 — an interpretation that will become even more natural in Proposition 6.10 and Remark
6.11.

Construction 6.6 (Multiplicities of rational functions). Let P be a point on an affine curve F .

(a) For a polynomial function f ∈ A(F) we define its multiplicity at P to be

µP( f ) := µP(F, f ) 2.3
= dimOA2,P/⟨F, f ⟩ ∈ N∪{∞}.

Note that this is well-defined since f = g∈ A(F) implies g = f +hF for some polynomial h,
and thus µP(F, f ) = µP(F,g) by Remark 2.4 (c). By Exercises 2.7 and 2.8 this multiplicity
is infinite if and only if f and F have a common component through P, i. e. (since F is
irreducible) if and only if f = 0 ∈ A(F).

The most important property of this multiplicity is that it is additive: By Proposition 2.10 (b)
we have

µP( f g) = µP( f )+µP(g)

for any f ,g ∈ A(F).

(b) For a rational function ϕ = f
g ∈ K(F) the multiplicity at P is defined by

µP(ϕ) := µP( f )−µP(g) ∈ Z∪{∞}.
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Again this is well-defined: As g ̸= 0∈ A(F) we have µP(g)< ∞ by (a), and if f
g = f ′

g′ ∈K(F)

then f g′ = g f ′ ∈ A(F), so that

µP( f )−µP(g) = µP( f ′)−µP(g′)

by the additivity of multiplicities of polynomial functions. Moreover, the multiplicity µP(ϕ)
is infinite if and only if µP( f ) is infinite, i. e. if and only if f = 0, and thus ϕ = 0.

The additivity of multiplicities immediately extends to rational functions as well: For ϕ = f
g

and ψ = f ′
g′ in K(F) we have

µP(ϕψ) = µP

(
f f ′

gg′

)
= µP( f f ′)−µP(gg′) = µP( f )+µP( f ′)−µP(g)−µP(g′)

= µP(ϕ)+µP(ψ).

In particular, as the multiplicity is finite for elements of K(F)∗ this means that µP is a group
homomorphism from K(F)∗ to Z.

If a (polynomial or rational) function has multiplicity n > 0 at P we say that it has a zero of order n
at P; if n < 0 we say that it has a pole of order −n at P.

Example 6.7. Consider the rational function ϕ = y
x on the (complex)

affine curve F = y2 + y+ x2. A picture of the real points of F is shown
in the picture on the right. Using the rules of Chapter 2 for computing
intersection multiplicities we obtain at the origin

µ0(x) = µ0(x,y2− y− x2) = µ0(x,y2− y) = 1

and µ0(y) = µ0(y,y2− y− x2) = µ0(y,x2) = 2,

F

which is also easy to interpret geometrically by Corollary 2.22 as y is the tangent to F there. We
conclude that µ0(ϕ) = 2−1 = 1, i. e. that ϕ has a zero of order 1 at the origin.

Exercise 6.8. Let P be a point on an affine curve F . Check that the local rings of A2 and F at P are
related by OF,P ∼= OA2,P/⟨F ⟩, and hence that µP( f ) = dimOF,P/⟨ f ⟩ for all f ∈ A(F).

Remark 6.9 (Multiplicities of regular functions). If ϕ ∈ OF,P is an element of the local ring we
can write it as ϕ = f

g , where f ,g ∈ A(F) with g(P) ̸= 0. As this means that µP(g) = 0, we see that
µP(ϕ) = µP( f )≥ 0: Elements of the local ring cannot have a pole there. In particular, if ϕ is a unit
then µP(ϕ

−1) =−µP(ϕ)≥ 0 as well, and we must have µP(ϕ) = 0.

One would probably expect that the converse holds as well, i. e. that a rational function without a
pole at P is regular at P. Note however that this is not obvious from the definitions, as it might happen
just as in Example 6.7 that ϕ = f

g with µP( f )≥ µP(g)> 0: In this case we have µP(ϕ)≥ 0 but ϕ is
not given as a quotient with non-vanishing denominator, so that it is not visibly regular. Nevertheless
this statement turns out to be true as we will show in the next proposition: It is a consequence of the
fact that OF,P is what is called a discrete valuation ring in commutative algebra (see also Remark
2.28 (c)).

Proposition 6.10 (OF,P is a discrete valuation ring). Let P be a point on an affine curve F.

(a) The ideal IF,P is principal, i. e. it can be written as IF,P = ⟨ t ⟩ for some t ∈ OF,P (which is
unique up to units). We call t a local coordinate for F at P.

(b) Given a local coordinate t for F at P, every non-zero rational function ϕ ∈ K(F)∗ can be
written uniquely as ϕ = ctn for a unit c ∈ OF,P and n ∈ Z, namely for n = µP(ϕ).

In particular, we have ϕ ∈ OF,P if and only if µP(ϕ)≥ 0, i. e. if and only if ϕ does not have
a pole at P.
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Proof.

(a) Let t be (the class of) a line through P which is not the tangent TPF , so that µP(t) = 1 by
Corollary 2.22. As t vanishes at P we have t ∈ IF,P, and thus

1 = µP(t)
6.8
= dimOF,P/⟨ t ⟩ ≥ dimOF,P/IF,P ≥ 1,

where the last inequality holds as the constant function 1 is a non-zero element of OF,P/IF,P.
We conclude that we must have equality, and thus IF,P = ⟨ t ⟩.

(b) We can write ϕ = f
g with f ,g ∈ A(F)\{0}. For m = µP( f ), i. e. µP( f ) = µP(tm), we then

have ⟨F, f ⟩ = ⟨F, tm ⟩ in OA2,P by Proposition 2.26. This means that ⟨ f ⟩ = ⟨ tm ⟩ in OF,P
by Exercise 6.8, and hence that f = d tm ∈ OF,P for a unit d. In the same way we can write
g = etr for a unit e and r = µP(g), and hence ϕ = ctn with c = d

e and n = m− r as desired.

The number n in such a representation is clearly unique: As units have multiplicity 0 by
Remark 6.9 we must have n = µP(ctn) = µP(ϕ).

In particular, if n≥ 0 then clearly ϕ = ctn ∈ OF,P; the converse follows again from Remark
6.9. □

Remark 6.11 (Discrete valuation rings in commutative algebra). Over the ground field K = C, the
local coordinate t in Proposition 6.10 can be thought of as an analytic local coordinate around P on
the 1-dimensional complex manifold V (F) as in Remark 2.28 (b). Consequently, the multiplicity of
a function at P just specifies how often this coordinate t can be split off as a linear factor.

As we have mentioned already, in commutative algebra a local ring with the properties of Proposition
6.10 is called a discrete valuation ring; the multiplicity µP(ϕ) is therefore also often called the
valuation of ϕ . Moreover, Proposition 6.10 (b) means that (in contrast to the ring A(F), see Remark
6.3 (b)), OF,P is a factorial ring again, with t as the only irreducible element. Despite its more
complicated construction, the local ring OF,P is therefore much simpler than A(F) from an algebraic
point of view, and we will often prefer to work with it rather than with polynomials.

The structure of a discrete valuation ring also allows to compute the multiplicity of the sum of two
rational functions.

09

Corollary 6.12. Let P be a point on a curve F. For any two rational functions ϕ,ψ ∈K(F) we have

µP(ϕ +ψ)≥min(µP(ϕ),µP(ψ)),

with equality holding if µP(ϕ) ̸= µP(ψ).

Proof. We may restrict to the case when ϕ and ψ are non-zero, as the statement is trivial otherwise.
By symmetry we may also assume that n := µP(ϕ) ≤ m := µP(ψ). Proposition 6.10 then tells us
that we can write ϕ = ctn and ψ = d tm for some units c and d and a local coordinate t, and thus

µP(ϕ +ψ) = µP

(
ctn

(
1+

d
c

tm−n
))

= µP(ctn)+µP

(
1+

d
c

tm−n︸ ︷︷ ︸
∈OF,P

) 6.9
≥ µP(ctn) = n. (∗)

Moreover, if n ̸= m then 1+ d
c tm−n has value 1 at P and hence is a unit in OF,P, which means by

Remark 6.9 again that we have equality in (∗). □

As a final result on affine curves, we can now show that rational functions that are required to be
regular at every point of the curve are exactly the polynomial functions, i. e. the elements of the
coordinate ring.

Proposition 6.13 (Global regular functions on affine curves). Let F be an affine curve. Then⋂
P∈F

OF,P = A(F) ⊂ K(F).
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Proof. Clearly, all polynomial functions in A(F) are everywhere regular, so it remains to prove the
converse. For ϕ ∈

⋂
P∈F OF,P ⊂ K(F) consider the ideal I := {g ∈ K[x,y] : gϕ ∈ A(F)}. Then

V (I) = /0: If we had a point P ∈ V (I), it would follow first of all that P ∈ F since F ∈ I. Hence we
have ϕ ∈ OF,P, i. e. we can write ϕ = f

g for polynomials f and g with g(P) ̸= 0. As gϕ = f ∈ A(F)

this means that g ∈ I, leading to the contradiction g(P) = 0 since P ∈V (I).

We conclude that V (I) = /0, and hence by the Nullstellensatz of Fact 4.1 that I =K[x,y], which means
that 1 ∈ I, i. e. ϕ ∈ A(F). □

Let us now pass on to projective curves, which will be our main objects of interest for the rest of
these notes. The constructions of rational functions, local rings, and multiplicities in this case are
essentially analogous to the ones considered above, taking care of the fact as in Remark 3.7 that
we need to consider homogeneous polynomials resp. quotients of homogeneous polynomials of the
same degree.

Definition 6.14 (Homogeneous coordinate rings). Let F be a projective curve.

(a) We call
S(F) := K[x,y,z]/⟨F ⟩

the (homogeneous) coordinate ring of F . As in Remark 6.3 in the affine case, it is an
integral domain as F is still assumed to be irreducible.

(b) A non-zero element f ∈ S(F) is called homogeneous of degree d if it can be represented
by a homogeneous polynomial of degree d in K[x,y,z]. The vector space of these elements,
together with 0, will be denoted Sd(F).

Remark 6.15 (Direct sum decomposition of S(F)). Even if the representative modulo F of an ele-
ment in S(F) is not unique, we claim that we still have a direct sum decomposition

S(F) =
⊕
d∈N

Sd(F).

In fact, it is obvious that S(F) is the sum of all Sd(F), so let us show that this sum is direct. To do
this, assume that f0 + · · ·+ fn = 0 ∈ S(F) for some polynomials f0, . . . , fn such that fd is zero or
homogeneous of degree d for all d = 0, . . . ,n. This means that f0 + · · ·+ fn = gF for a polynomial
g. Taking the degree-d part of this equation then tells us that fd = gd−degF F (where gk denotes the
degree-k part of g as in Notation 2.16), and thus fd = 0 ∈ S(F) for all d.

Construction 6.16 (Rational functions and local rings). Let F be a projective curve.

(a) The field of rational functions on F is defined as

K(F) :=
{

f
g

: f ,g ∈ Sd(F) for some d ∈ N,g ̸= 0
}
⊂ QuotS(F).

(b) Analogously to Definition 6.4, we call a rational function ϕ ∈K(F) regular at a point P∈ F
if it can be written as ϕ = f

g with f ,g∈ S(F) homogeneous of the same degree and g(P) ̸= 0.
The regular functions at P form a subring

OF,P :=
{

f
g
∈ K(F) : g(P) ̸= 0

}
of K(F) called the local ring of F at P.

(c) The ring of regular functions admits an evaluation map OF,P→ K, ϕ 7→ ϕ(P) with kernel
IF,P := {ϕ ∈ OF,P : ϕ(P) = 0}.

Construction 6.17 (Multiplicities of rational functions). Let P be a point on a projective curve F .

(a) For a homogeneous element f ∈ S(F) we define the multiplicity at P as

µP( f ) := µP(F, f ) 3.21
= dimOP2,P/⟨F, f ⟩ ∈ N∪{∞}.
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(b) The multiplicity of a rational function ϕ = f
g ∈ K(F) at P is defined as

µP(ϕ) := µP( f )−µP(g).

It follows in the same way as in the affine case in Construction 6.6 that these multiplicities are well-
defined, zero exactly for the zero element of S(F) resp. K(F), and additive. The notions of (orders
of) zeros and poles are also carried over directly.

Remark 6.18 (Affine and projective local rings). As in Construction 3.20, for a point P = (x0 :y0 :1)
on a projective curve F one can check that there is an isomorphism

OF,(x0 :y0 :1)→ OF i,(x0,y0)
,

f
g
7→ f i

gi

sending IF,(x0 :y0 :1) to IF i,(x0,y0)
. Hence the algebraic properties of the local ring as e. g. in Proposition

6.10, Remark 6.11, and Corollary 6.12 carry over directly from the affine to the projective case.

Exercise 6.19. Consider the rational function ϕ = x2

y2+yz on the projective curve F = y2z+ x3− xz2.
Moreover, let P = (0:0 :1) ∈ F .

(a) Compute the order n = µP(ϕ).

(b) Determine a local coordinate t ∈ OF,P.

(c) Give an explicit description of ϕ in the form ϕ = ctn for a unit c ∈ OF,P, where c should
be written as f

g for some homogeneous f ,g ∈ S(F) of the same degree with f (P) ̸= 0 and
g(P) ̸= 0.

Exercise 6.20.

(a) Let P be a point on an affine curve F . Show that there is a rational function ϕ ∈ K(F) which
has exactly one pole which is of order 1 and at P, i. e. such that µP(ϕ) =−1 and µQ(ϕ)≥ 0
for all Q ̸= P.

(b) Let P1 and P2 be distinct points on a projective conic F . Show that there is a rational function
ϕ ∈ K(F) with µP1(ϕ) = 1, µP2(ϕ) =−1, and µP(ϕ) = 0 at all other points P of F .

Exercise 6.21. Let F be an affine curve. Prove that the affine field of rational functions K(F) is
isomorphic to the projective one K(Fh).

Before we continue our study of multiplicities of rational functions on projective curves let us in-
troduce the so-called divisors, a very convenient piece of notation that allows us to consider the
multiplicities at all points of curve at once. We could have done this already in the affine case, but
have chosen not to do so as we will only consider projective curves from now on.

Definition 6.22 (Divisors). Let F be a projective curve.

(a) A divisor on F is a formal finite linear combination a1P1 + · · ·+ anPn of distinct points
P1, . . . ,Pn ∈F with integer coefficients a1, . . . ,an ∈Z for some n∈N. Obviously, the divisors
on F form an Abelian group under pointwise addition of the coefficients. We will denote it
by DivF .

Equivalently, in algebraic terms DivF is just the free Abelian group generated by the points
of F (i. e. the group of maps V (F)→ Z being non-zero at only finitely many points; with a
point mapping to its coefficient in the sense above).

(b) A divisor D = a1P1 + · · ·+anPn as above is called effective, written D ≥ 0, if ai ≥ 0 for all
i = 1, . . . ,n. If D1,D2 are two divisors with D2−D1 effective, we also write this as D2 ≥D1
or D1 ≤D2. In other words, we have D2 ≥D1 if and only if the coefficient of any point in D2
is greater than or equal to the coefficient of this point in D1. Note that this defines a partial
order on DivF .
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(c) The degree of a divisor D = a1P1 + · · ·+ anPn is the number degD := a1 + · · ·+ an ∈ Z.
Obviously, the degree is a group homomorphism deg: DivF → Z. Its kernel is denoted by

Div0 F = {D ∈ DivF : degD = 0}.

Note that the name “divisor” in this context is entirely unrelated to the idea of elements of rings
dividing one another. Instead, divisors are just given by multiplicities attached to all points on a
curve, as appearing naturally in the following situations.

Construction 6.23 (Divisors from polynomials and rational functions). Again, let F be a projective
curve. The multiplicities of polynomials and rational functions of Construction 6.17 allow us to
define divisors on F as follows.

(a) For a non-zero homogeneous polynomial f ∈ S(F)\{0} the divisor of f is defined to be

div f := ∑
P∈F

µP( f ) ·P ∈ DivF.

Hence, the effective divisor div f contains the data of the zeros of f together with their
multiplicities. Note that the sum runs formally over all points of F — but as the number of
zeros of f is finite by Remark 3.18, there are only finitely many points in this sum with a
non-zero multiplicity, so that we obtain a well-defined divisor.

(b) Similarly, for a non-zero rational function ϕ ∈ K(F)∗ we set

divϕ := ∑
P∈F

µP(ϕ) ·P ∈ DivF.

This divisor is not effective; it encodes the zeros and poles of ϕ together with their mul-
tiplicities. By definition, if we write ϕ = f

g as a quotient of two non-zero homogeneous
polynomials f ,g ∈ S(F)\{0} of the same degree then divϕ = div f −divg.

Example 6.24. Consider the rational function ϕ = y
x on the projective curve F = y2 + yz+ x2 over

C, i. e. on the projective closure of the affine curve in Example 6.7. We have seen in this example
that ϕ has a zero of order 1 at (0:0 :1). Apart from this point, it is easy to check that the only other
point at which y or x vanishes is (0: −1:1), where

µ(0:−1:1)(ϕ) = µ(0:−1:1)(y)−µ(0:−1:1)(x) = 0−1 =−1.

Hence the divisor of ϕ is
divϕ = 1 · (0:0 :1)−1 · (0: −1:1).

Exercise 6.25. Let F = y2z− x3 + xz2. Compute the divisor div y
z on F .

Remark 6.26 (Additivity of multiplicities for divisors). Let F be a projective curve. The additivity
of multiplicities as in Constructions 6.6 and 6.17 translates immediately into the following statements
for divisors:

(a) For two homogeneous polynomials f ,g ∈ S(F)\{0} we get

div( f g) = ∑
P∈F

µP( f g) ·P = ∑
P∈F

µP( f ) ·P+ ∑
P∈F

µP(g) ·P

= div f +divg.

(b) In the same way we obtain

div(ϕψ) = divϕ +divψ

for any two non-zero rational functions ϕ,ψ ∈ K(F)∗. In particular, this means that the map
div : K(F)∗→ DivF is a group homomorphism.

It is also very useful to translate the important theorems of Bézout and Max Noether of Chapter 4
into the language of divisors.

Remark 6.27 (Bézout’s Theorem for divisors). For a projective curve F , Bézout’s Theorem of
Corollary 4.6 implies for the degrees of the divisors of Construction 6.23:
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(a) for a non-zero homogeneous polynomial f ∈ S(F)\{0}
degdiv f = ∑

P∈F
µP( f ) = ∑

P∈F
µP(F, f ) = degF ·deg f ;

(b) for a non-zero rational function ϕ ∈ K(F)∗ (which we can write as ϕ = f
g with f and g

non-zero and homogeneous of the same degree)

degdivϕ = degdiv f −degdivg
(a)
= degF ·deg f −degF ·degg = 0,

i. e. that “a rational function on a projective curve has equally many zeros as poles”. In
particular, the image of the group homomorphism div : K(F)∗→ DivF of Remark 6.26 (b)
lies in Div0 F .

Proposition 6.28 (Max Noether’s Theorem for divisors). Let F be a projective curve. Moreover, let
g,h ∈ S(F) be non-zero homogeneous polynomials with divg≤ divh.

Then there is a homogeneous polynomial b ∈ S(F) (of degree degh− degg) with h = bg in S(F),
and thus with divh = divb+divg.

Proof. As divg≤ divh means µP(g)≤ µP(h) for all P ∈ F , Max Noether’s Theorem as in Corollary
4.12 (a) implies that there are homogeneous polynomials a and b (of degrees degh− degF and
degh− degg, respectively) such that h = aF + bg in K[x,y,z], and hence h = bg in S(F). The
equation divh = divb+divg now follows directly from Remark 6.26 (a) (or Corollary 4.12 (b)). □

As a first consequence of these statements we can identify the rational functions that are regular at
every point of the curve. Analogously to Proposition 6.13 we expect such functions to be polynomi-
als — but in the projective case polynomials are only well-defined functions if they are constants:

Corollary 6.29 (Global regular functions on projective curves). Let F be a projective curve. Then⋂
P∈F

OF,P = K ⊂ K(F),

i. e. the only rational functions that are everywhere regular on F are constants.

Proof. Let ϕ = f
g ∈K(F) be regular at all points P∈F . This means that 0≤ µP(ϕ) = µP( f )−µP(g)

for all P, and hence that divg≤ div f . As f and g have the same degree, Proposition 6.28 then implies
that f = cg for a constant c, and hence that ϕ = f

g = c is a constant. □

Remark 6.30 (Recovering rational functions from their divisors). Corollary 6.29 implies that a
rational function ϕ ∈ K(F)∗ on a projective curve F is determined up to scalars by its divisor divϕ:
If ψ is another rational function with divψ = divϕ then div ψ

ϕ
= 0 by Remark 6.26 (b), hence ψ

ϕ
is

some constant c ∈ K∗ by Corollary 6.29, and thus ψ = cϕ .

By definition, the group DivF of divisors on a projective curve F is a very large free Abelian group.
As such, it is not very interesting from a group-theoretic point of view. It turns out that we can get a
much smaller and more interesting group by considering a certain quotient of DivF as follows.

Definition 6.31 (Divisor classes and Picard groups). Let F be a projective curve.

(a) A divisor on F is called principal if it is the divisor of a non-zero rational function as in
Construction 6.23 (b). The set of all principal divisors will be denoted by

PrinF := {divϕ : ϕ ∈ K(F)∗}.
As the image of the group homomorphism div : K(F)∗ → DivF of Remark 6.26 (b) it is
clearly a subgroup of DivF , and by Remark 6.27 (b) also of Div0 F .

(b) The quotient group
PicF := DivF/PrinF

is called the Picard group or group of divisor classes on F . Two divisors D1 and D2 defining
the same element in PicF , i. e. with D1−D2 = divϕ for a rational function ϕ ∈ K(F)∗, are
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said to be linearly equivalent, written D1 ∼ D2. Restricting to divisors of degree 0, we also
set

Pic0 F := Div0 F/PrinF,
which is a subgroup of PicF .
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Remark 6.32. By the homomorphism theorem, the degree of divisors induces isomorphisms
DivF/Div0 F ∼= Z and PicF/Pic0 F ∼= Z. This means that the Picard group PicF and its degree-0
part Pic0 F carry essentially the same information. It just depends on the specific application in mind
whether it is more convenient to work with PicF or Pic0 F .

Example 6.33 (Picard groups for curves of degree at most 2).
(a) Let F be a projective line. For any point P ∈ F let lP be a line through P different from F ,

so that P is the only intersection point of F and lP (with multiplicity 1), and hence div lP = P
on F . For another point Q ∈ F we then obtain a rational function lP

lQ
whose divisor is P−Q,

so that P−Q∼ 0 by definition of linear equivalence.

Now any divisor D of degree 0 can be written as D = P1 + · · ·+Pn−Q1−·· ·−Qn for some
points P1, . . . ,Pn,Q1, . . . ,Qn on F , and hence we conclude that

D = (P1−Q1)+ · · ·+(Pn−Qn)∼ 0,

so that Pic0 F = {0} is the trivial group.

(b) If F is a projective conic we have seen in Exercise 6.20 (b) that for any two points P and Q
on F there is again a rational function with divisor P−Q, so that P ∼ Q. So we conclude
again that Pic0 F = {0} in the same way as in (a).

For curves of bigger degree however, the Picard group is never trivial:

Proposition 6.34. Let F be a curve of degree d ≥ 3. Then P ̸∼ Q for any two distinct points P and
Q on F. In particular, Pic0 F is non-trivial.

Proof. Assume that P ∼ Q, i. e. that P−Q = div f
g for some homogeneous polynomials f and g of

the same degree. Pick any line l through Q, so that div l = E +Q for an effective divisor E of degree
degE = d−1≥ 2. As

div( f l) = divg+div
f
g
+div l = divg+P−Q+E +Q = divg+E +P≥ divg

it follows from Max Noether’s Theorem in Proposition 6.28 that there is a line l′ with div l′ = E +P.

But degE ≥ 2 means that E contains at least two points (or one point with multiplicity at least 2).
Hence l and l′ have to pass through them (resp. be tangent to F at the one point with multiplicity at
least 2). As this fixes the line uniquely, it follows that l = l′, and thus that P = Q.

We conclude that P ̸∼ Q for P ̸= Q, and thus that P−Q ̸= 0 ∈ Pic0 F . □

Corollary 6.35 (Embedding of a curve in its Picard group). Let P0 be a fixed base point on a pro-
jective curve F of degree at least 3. Then the map

Φ : V (F)→ Pic0 F, P 7→ P−P0

is injective.

Proof. If Φ(P) = Φ(Q) then P−P0 ∼ Q−P0, hence P ∼ Q, and thus P = Q as points in V (F) by
Proposition 6.34. □

Remark 6.36. For a projective curve F of degree degF ≥ 3, Corollary 6.35 gives us a natural
embedding (after choosing a base point) of the curve F into its degree-0 Picard group Pic0 F . This
is a very interesting statement, as it gives us a natural map between mathematical objects of totally
different types (namely a variety and a group).

In the next chapter we will see that this map is even a bijection if degF = 3, making this correspon-
dence between varieties and groups even more surprising and useful.
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Exercise 6.37.
(a) Let F be a projective curve, and let f be a homogeneous polynomial with div f = D+E for

two divisors D and E on F . Show: If D′ is linearly equivalent to D and D′+E is effective
then there is a homogeneous polynomial g with divg = D′+E.

(b) Let P,Q,R,S be four distinct points on a cubic curve F . Show that P+Q∼ R+S if and only
if the intersection point of the lines PQ and RS lies on F .


