
34 Andreas Gathmann

5. Applications of Bézout’s Theorem

Bézout’s Theorem as in Corollary 4.6 is our first powerful result of algebraic geometry in these notes.
Let us now take some time to study several of its applications, which are in fact of very different
flavors.

The first application is not much more than an immediate remark; it states that every smooth projec-
tive curve over an algebraically closed field is irreducible. As smoothness is easy to check using the
Jacobi Criterion of Proposition 3.25 (a), this gives us a very useful sufficient criterion to determine
whether a given curve is irreducible (which is usually hard to figure out).

Proposition 5.1 (Irreducibility criterion). Every smooth projective curve over an algebraically
closed field is irreducible.

Proof. Let F = G ·H be a reducible projective curve. By Remark 4.8 (b) there is a point P ∈G∩H.
Then mP(F) = mP(G)+mP(H)≥ 1+1 = 2 by Remark 2.23, and so P is a singular point of F . □

Our next statement lies in the field of classical geometry. Over the real numbers it could in principle
be proven using elementary methods (and was in fact shown in this way in the first place), but
Bézout’s Theorem makes the proof much simpler.

Proposition 5.2 (Pascal’s Theorem). Let F be an irreducible projective conic with infinitely many
points (e. g. over an algebraically closed field, or an ellipse over R). Pick six distinct points P1, . . . ,P6
on F (that can be thought of as the vertices of a hexagon inscribed in F). Then the intersection points
of the opposite edges of the hexagon (i. e. P = P1P2 ∩P4P5, Q = P2P3 ∩P5P6, and R = P3P4 ∩P6P1,
where PiPj denotes the line through Pi and Pj) lie on a line.
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Proof. Consider the two (reducible) cubics G1 = P1P2∪P3P4∪P5P6 and G2 = P2P3∪P4P5∪P6P1. In
accordance with Bézout’s Theorem, they intersect in the 9 points P1, . . . ,P6,P,Q,R.

Now pick any point S∈F not equal to the previously chosen ones. Of course there are λ1,λ2 ∈K, not
both zero, such that the cubic G := λ1G1 +λ2G2 vanishes at S (since G(S) = 0 is one homogeneous
linear equation in two variables λ1,λ2). Then F meets G in the 7 points P1, . . . ,P6,S, and so by
Bézout’s Theorem these two curves must have a common component. As degF = 2, degG = 3, and
F is irreducible, the only possibility for this is that G contains the factor F , so that G = F ·L for a
line L.

But P,Q,R lie on G (as they lie on G1 and G2) and not on F , so they must be on the line L. □

Exercise 5.3. Prove the following converse of Pascal’s Theorem:

Let P1, . . . ,P6 ∈ P2 be distinct points so that the six lines P1P2,P2P3, . . . ,P5P6,P6P1 (which can be
thought of as the sides of the hexagon with vertices P1, . . . ,P6) are also distinct. Let P = P1P2∩P4P5,
Q = P2P3 ∩P5P6, R = P3P4 ∩P6P1 be the intersection points of opposite sides of the hexagon. If
P,Q,R lie on a line, then P1, . . . ,P6 lie on a conic.
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Let us next address the question how many singular points we can have on a given projective curve.
Exercise 2.30 (b) implies that, for an irreducible curve (over a field of characteristic 0), the number
of singular points is always finite. Using Bézout’s Theorem, we can now also give an upper bound
for this number.

Example 5.4 (Singular points in low degrees). Let F be an irreducible projective curve with infin-
itely many points (e. g. over an algebraically closed field).

(a) If degF = 1 then F is a line, which never has any singular points.

(b) If degF = 2 we claim that F has again no singular points. To show this, assume to the
contrary that P ∈ F is a singular point, and choose any other point Q ∈ F . Let G be the line
through P and Q.

As P is a singular point of F , we know by Corollary 2.22 that µP(F,G)≥ 2. Hence the total
intersection multiplicity of F and G is at least

µP(F,G)+µQ(F,G)≥ 2+1 = 3,

which is bigger than degF · degG = 2. So by Bézout’s Theorem F and G must have a
common component — which is impossible since F and G are irreducible.

(c) As for degree 3 we have already seen in Example 3.27 that the cubic F = y2z− x2z− x3 has
exactly one singular point; since F does not contain a line it is also irreducible. In fact, we
will see below that a smooth irreducible cubic can have at most one singular point.

The idea to prove such bounds on the number of singular points is very similar to (b) above: Find
a suitable curve G through the assumed singular points and some other points of F , and compute
the total intersection multiplicity of F and G, where each singular point of F can be counted with
multiplicity at least 2. If this total number exceeds degF ·degG we arrive at a contradiction, i. e. the
assumed number of singular points was too high.

In order to make this idea into an exact proof, we need an auxiliary lemma first that tells us how we
can find curves (such as G above) through a given number of points.

Lemma 5.5 (Curves through given points). Let d ∈ N>0. For any n :=
(d+2

2

)
−1 given points in P2

there is a projective curve of degree d passing through them.

Proof. As in Remark 3.17, the vector space of all homogeneous polynomials of degree d in K[x,y,z]
has dimension n+1. Its elements are polynomials of the form F = ∑i+ j+k=d ai, j,kxiy jzk, where ai, j,k
are the n+1 coordinates of F .

Now note that, for a given point P = (x0 :y0 :z0), the condition F(P) = ∑i+ j+k=d ai, j,kxi
0y j

0zk
0

!
= 0 is

just a linear equation in these coordinates. Hence, the condition that F vanishes at n given points
is a system of n linear equations in n+ 1 variables. By linear algebra, such a system always has a
non-trivial solution, which then is a curve of degree d passing through all the given points. □

Proposition 5.6. Let F be an irreducible projective curve of degree d with infinitely many points
(e. g. over an algebraically closed field). Then F has at most

(d−1
2

)
singular points.

Proof. By Example 5.4 it suffices to prove the proposition for curves of
degree d ≥ 3. Assume for a contradiction that there are distinct singu-
lar points P1, . . . ,P(d−1

2 )+1 of F . Moreover, pick d− 3 arbitrary further
distinct points Q1, . . . ,Qd−3 on F , so that the total number of points is(

d−1
2

)
+1+d−3 =

(
d
2

)
−1.
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By Lemma 5.5, there is therefore a curve G of degree d − 2 through all these points. As F is
irreducible and of bigger degree than G, the curves F and G cannot have a common component.
Hence Corollary 4.6 shows that F and G can intersect in at most degF · degG = d(d− 2) points,
counted with multiplicities. But the intersection multiplicity at all Pi is at least 2 by Corollary 2.22
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since F is singular there. Hence the number of intersection points that we know already, counted
with their respective multiplicities, is at least

2 ·
((

d−1
2

)
+1

)
+(d−3) = d(d−2)+1 > d(d−2),

which is a contradiction. □

Exercise 5.7.
(a) Show that a (not necessarily irreducible) reduced curve of degree d in P2 has at most

(d
2

)
singular points.

(b) Find an example for each d in which this maximal number of singular points is actually
reached.

Let us now study smooth curves in more detail. An interesting topic that we have neglected entirely
so far is the topology of such curves when we consider them over the real or complex numbers,
e. g. their number of connected components in the usual topology. We will now see that Bézout’s
Theorem is able to answer such questions.

Of course, for these results we will need some techniques and statements from topology that have
not been discussed in these notes. The following proofs in this chapter should therefore rather be
considered as sketch proofs, which can be made into exact arguments with the necessary topolog-
ical background. However, all topological results that we will need should be intuitively clear —
although their exact proofs are often quite technical. Let us start with the real case, as real curves
are topologically simpler than complex ones.

Remark 5.8 (Loops of real projective curves). Let F be a smooth projective curve over R. In the
usual topology, its set of points V (F) is then a compact 1-dimensional manifold (see Remark 2.28
(a)). This just means that V (F) is a disjoint union of finitely many connected components, each
of which is homeomorphic to a circle. We will refer to these components as loops of F . In the
following pictures, we will often just draw the affine part of F ; a point at infinity in such a loop will
then show up as two unbounded ends of the curve. Note that the curve can consist of several loops
even if it is irreducible (see Example 1.7 (c)).07

A convenient way to construct such curves is by deformations of singular curves. For example,
consider (the projective closure of) the affine cubic F = y2− x2− x3 with a node at the origin as in
Example 2.21 (b) and the picture below on the left. In this picture, we have indicated in addition in
which regions of A2\V (F) the polynomial F is negative resp. positive. Together with its one point
at infinity, the projective closure of F is homeomorphic to two circles glued together at a point.

F F− ε F + ε
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+
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+

+

− −

+

+
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Let us now perturb F and consider (the projective closures of) the curves F± ε for a small number
ε ∈ R>0 instead. Of course, this will only change the regions in which this polynomial is negative
resp. positive by a little bit — but the origin, which was on the curve before, now lies in the negative
(for F−ε) resp. positive (for F +ε) region. This leads to smooth cubics with one or two loops as in
the picture above, depending on the sign of the perturbation.

The same technique applied to a singular quartic curve, e. g. the union of two ellipses given by
F = (x2 +2y2−1)(y2 +2x2−1), yields two or four loops as in the following picture.
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Remark 5.9 (Even and odd loops). Although all loops of real smooth curves are homeomorphic to a
circle, there are two different kinds of them when we consider their embeddings in projective space.
To understand this, recall from Remark 3.6 (a) that P2

R is obtained from the upper half sphere (which
we will draw topologically as an disc below) by identifying opposite points on the boundary, as in
the following picture on the left.
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The consequence of this is that we have two different types of loops. An even loop is a loop such that
its complement has two connected components, which we might call its “interior” (shown in dark
in the picture above, homeomorphic to a disc) and “exterior” (homeomorphic to a Möbius strip),
respectively. In contrast, an odd loop does not divide P2

R into two regions; its complement is a single
component homeomorphic to a disc. Note that the distinction between even and odd is not whether
the affine part of the curve is bounded: Whereas an odd loop always has to be unbounded, an even
loop may well be unbounded, too. Instead, if you know some topology you will probably recognize
that the statement being made here is just that the fundamental group π1(P2

R) is isomorphic to Z/2Z;
the two types of loops simply correspond to the two elements of this group.

In principle, a real curve can have even as well as odd loops. There is one restriction however: As
the complement of an odd loop is simply a disc, all other loops in this complement will have an
interior and exterior, so that they are even. In other words, a real smooth curve can have at most one
odd loop.

We are now ready to find a bound on the number of loops in an irreducible smooth curve in P2
R

of a given degree. Interestingly, the idea in its proof is almost identical to that of Proposition 5.6,
although the resulting statement is quite different.

Proposition 5.10 (Harnack’s Theorem). An irreducible smooth curve of degree d in P2
R has at

most
(d−1

2

)
+1 loops.

Example 5.11. A line (d = 1) has always exactly one loop. An irreducible smooth conic (d = 2) is
a hyperbola, parabola, or ellipse as in Example 3.16, so in every case the number of loops is again
1 (after adding the points at infinity). For d = 3 Harnack’s Theorem gives a maximum number of 2
loops, and for d = 4 we get at most 4 loops. We have just seen examples of these numbers of loops
in Remark 5.8. In fact, one can show that the bound given in Harnack’s theorem is sharp, i. e. that
for every d one can find real smooth curves of degree d with exactly

(d−1
2

)
+1 loops.
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Proof sketch of Proposition 5.10. Let F be a real irreducible smooth
projective curve of degree d; by Example 5.11 it suffices to consider
the case d ≥ 3. Assume that the statement of the proposition is false,
i. e. that there are at least

(d−1
2

)
+ 2 loops. We have seen in Remark 5.9

that at least
(d−1

2

)
+ 1 of these loops must be even. Hence we can pick

points P1, . . . ,P(d−1
2 )+1 on distinct even loops of F , and d−3 more points

Q1, . . . ,Qd−3 on another loop (which might be even or odd). So, as in the
proof of Proposition 5.6, we have a total of

(d
2

)
−1 points.
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Again as in the proof of Proposition 5.6, it now follows that there is a real curve G of degree at
most d−2 passing through all these points. As F is irreducible and has bigger degree than G, these
two curves cannot have a common component, so Bézout’s Theorem as in Corollary 4.6 implies that
they intersect in at most d(d− 2) points, counted with multiplicities. But recall from Remark 5.9
that the even loops of F containing the points Pi divide the real projective plane into two regions,
hence if G enters the interior of such a loop it has to exit it again at another point P̃i of the same loop
as in the picture above (it may also happen that G is singular or tangent to F at Pi, in which case
µPi(F,G) ≥ 2 by Corollary 2.22). So in any case the total number of intersection points, counted
with their respective multiplicities, is at least

2 ·
((

d−1
2

)
+1

)
+(d−3) = d(d−2)+1 > d(d−2),

which is a contradiction. □

Let us now turn to the case of complex curves. Of course, their topology is entirely different, as they
are 2-dimensional spaces and thus surfaces in the usual topology. In fact, we have seen such a case
already in Example 0.2 of the introduction.

Remark 5.12 (Topology of complex curves). Let F be a smooth projective curve over C. Similarly
to the real case, its set of points V (F) is then a compact 1-dimensional complex manifold, and hence
a compact 2-dimensional real manifold. Moreover, one can show:

(a) V (F) is always an oriented manifold, i. e. a “two-sided surface”, as opposed to e. g. a Möbius
strip. To see this, note that all tangents TPF for P ∈ F are 1-dimensional complex vector
spaces after shifting P to the origin, and hence admit a well-defined multiplication with the
imaginary unit i. Geometrically, this means that all tangent planes to the surface have a well-
defined notion of a positive rotation by 90 degrees, varying continuously with P — which
defines an orientation of the surface.

(b) In contrast to the real case that we have just studied, V (F) is always connected. In short,
the reason for this is that the notion of degree as well as Bézout’s Theorem can be extended
to compact oriented 2-dimensional submanifolds of P2

C. Hence, if V (F) had (at least) two
connected components X1 and X2, each of them would be a compact oriented 2-dimensional
manifold itself, and there would thus be well-defined degrees degX1,degX2 ∈ N>0. But
then X1 and X2 would have to intersect in degX1 ·degX2 points (counted with multiplicities),
which is obviously a contradiction.

Of course, the methods needed to prove Bézout’s Theorem in the topological setting are
entirely different from ours in Chapter 4. If you know some algebraic topology, the statement
here is that the 2-dimensional homology group H2(P2

C,Z) is isomorphic to Z. With this
isomorphism, the class of a compact oriented 2-dimensional submanifold in H2(P2

C,Z) is
a positive number, and the intersection product H2(P2

C,Z)×H2(P2
C,Z)→ H0(P2

C,Z) ∼= Z
(using Poincaré duality) is just the product of these numbers.
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It is now a (non-trivial but intuitive) topological result that a con-
nected compact orientable 2-dimensional manifold X is always
homeomorphic to a sphere with some finite number of “handles”.
This number of handles is called the (topological) genus of X .
Hence every curve in P2

C can be assigned a genus that describes its
topological type. The picture on the right shows a complex curve
of genus 2.

We will see in Definition 8.10 that there is also an algebraic way to assign a genus to a smooth
projective curve. It is then applicable to any (algebraically closed) ground field, coincides with the
topological genus over C and plays an important role in the study of functions on the curve. Our
goal for the rest of this chapter however will just be to compute the topological genus of a smooth
complex projective curve in terms of its degree. To do this, we will need the following technique
from topology.

Construction 5.13 (Cell decompositions). Let X be a compact 2-dimensional manifold. A cell
decomposition of X is given by writing X topologically as a finite disjoint union of points, (open)
lines, and (open) discs. This decomposition should be “nice” in a certain sense, e. g. the boundary
points of every line in the decomposition must be points of the decomposition. We do not want to
give a precise definition here (which would necessarily be technical), but only remark that every
“reasonable” decomposition that one could think of will be allowed. For example, the following
picture shows three valid decompositions of the complex curve P1

C, which is topologically a sphere
by Remark 3.6 (b).

In the left two pictures, we have 1 point, 1 line, and 2 discs (the two halves of the sphere), whereas
in the picture on the right we have 2 points, 4 lines, and 4 discs.

Of course, there are many possibilities for cell decompositions of X . But there is an important
number that does not depend on the chosen decomposition:

Lemma and Definition 5.14 (Euler characteristic). Let X be a compact 2-dimensional manifold.
Consider a cell decomposition of X, consisting of σ0 points, σ1 lines, and σ2 discs. Then the number

χ := σ0−σ1 +σ2

depends only on X, and not on the chosen decomposition. We call it the (topological) Euler charac-
teristic of X.

Proof sketch. Let us first consider the case when we move from one decomposition to a finer one,
i. e. if we add points or lines to the decomposition. Such a process is always obtained by performing
the following steps a finite number of times:

• Adding another point on a line: In this case we raise σ0 and σ1 by 1 as in the picture below,
hence the alternating sum χ = σ0−σ1 +σ2 does not change.

• Adding another line in a disc: In this case we raise σ1 and σ2 by 1, so again χ remains
invariant.
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We conclude that the alternating sum σ0−σ1 +σ2 does not change under refinements. But any two
decompositions have a common refinement — which is essentially given by taking all the points and
lines in both decompositions, and maybe adding more points where two such lines intersect. For
example, in Construction 5.13 the decomposition in the picture on the right is a common refinement
of the other two. Hence the Euler characteristic is independent of the chosen decomposition. □

Example 5.15 (Euler characteristic ↔ genus). Let X be
a connected compact orientable 2-dimensional manifold of
genus g, and consider the cell decomposition of X as shown
on the right. It has σ0 = 2g+2 points, σ1 = 4g+4 lines, and
4 discs, and hence we conclude that the Euler characteristic
of X is

χ = σ0−σ1 +σ2 = 2−2g.

In other words, the genus is given in terms of the Euler characteristic as g = 1− χ

2 .

We are now ready to compute the genus of a smooth curve in P2
C.

Proposition 5.16 (Topological degree-genus formula). A smooth curve of degree d in P2
C has

topological genus
(d−1

2

)
.

Proof sketch. Let F be a smooth curve of degree d in P2
C. By a projective coordinate transformation

we can assume that (0:1 :0) /∈ F . Then

π : V (F)→ P1
C, (x :y :z) 7→ (x :z)

is a well-defined map that can be interpreted as a projection,
since in the affine part where z = 1 it is given by (x,y) 7→ x as in
the picture on the right. Let us study its inverse images of a fixed
point (x :z) ∈ P1

C. Of course, they are given by the values of y
such that F(x,y,z) = 0, so that there are exactly d such points
— unless the polynomial F(x, · ,z) has a multiple zero in y at a
point in the inverse image, which happens if and only if F and
∂F
∂y are simultaneously zero there.

π

P1
C

V (F)

π(Q)

Q P

π(P)

If we choose our original coordinate transformation general enough, exactly two of the zeros of
F(x, · ,z) will coincide at these points in the common zero locus of F and ∂F

∂y , so that ∂ 2F
∂y2 ̸= 0 there

and π−1(x :z) consists of d−1 instead of d points. These points, as e. g. P in the picture above, are
usually called the ramification points of π . Note that the picture might be a bit misleading since it
suggests that V (F) is singular at P, which is not the case. The correct topological picture of the map
is impossible to draw however since it would require the real 4-dimensional space A2

C.08

At such a ramification point P we have µP(F, ∂F
∂y ) = 1 by Corollary 2.22, since in affine coordinates

with P = (x0,y0) the tangents to the two curves are by Proposition 2.24 (b)

TPF =
∂F
∂x

(P) · (x− x0)+
∂F
∂y

(P)︸ ︷︷ ︸
=0

·(y− y0) and TP
∂F
∂y

=
∂ 2F
∂x∂y

(P) · (x− x0)+
∂ 2F
∂y2 (P)︸ ︷︷ ︸
̸=0

·(y− y0),

which are clearly distinct. Hence by Bézout’s Theorem there are exactly degF ·deg ∂F
∂y = d(d−1)

ramification points.
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Let us now pick a sufficiently fine cell decomposition of P1
C, containing all images of the ramifi-

cation points as points of the decomposition. If σ0,σ1,σ2 denote the number of points, lines, and
discs in this decomposition, respectively, we have σ0−σ1 +σ2 = 2 by Example 5.15 since P1

C is
topologically a sphere, i. e. of genus 0. Now lift this cell decomposition to a decomposition of V (F)
by taking all inverse images of the cells of P1

C. By our above argument, all cells will have exactly d
inverse images — except for the images of the d(d−1) ramification points, which have one inverse
image less. So the resulting decomposition of V (F) has dσ0− d(d− 1) points, dσ1 lines, and dσ2
discs. Hence by Lemma 5.14 the Euler characteristic of V (F) is

χ = dσ0−d(d−1)−dσ1 +dσ2 = 2d−d(d−1) = 3d−d2,

which means by Example 5.15 that its genus is

g = 1− χ

2
=

1
2
(d2−3d +2) =

(
d−1

2

)
. □

Example 5.17.
(a) A smooth curve of degree 1 or 2 in P2

C has topological genus 0, i. e. it is homeomorphic to a
sphere. A smooth cubic has genus 1, so it is topologically a torus. We will study such cubic
curves in detail in Chapter 7.

(b) Not every natural number can occur as the topological genus of a smooth complex plane
curve: For example, there is no smooth complex plane curve of genus 2 since there is no
d ∈ N with

(d−1
2

)
= 2.


