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4. Bézout’s Theorem

Let F and G be two projective curves without common component. We have seen already in Remark
3.18 that the intersection F ∩G is finite in this case. Bézout’s Theorem, which is the main goal of
this chapter, will determine the number of these intersection points, where each such point P will be
counted with its intersection multiplicity µP(F,G).
In the same way as for the number of zeros of a univariate polynomial, the result will only be nice
(i. e. depend only on the degree of the polynomials) if we assume that the underlying ground field
is algebraically closed. To use this assumption we will need the following result from commutative
algebra that extends the defining property of an algebraically closed field to polynomials in several
variables.

Fact 4.1 (Hilbert’s Nullstellensatz). Recall that a field K is called algebraically closed if every
univariate polynomial f ∈ K[x] without a zero in K is constant.
An obvious generalization of this statement to the multivariate case (which can be proven easily
by induction of the number of variables) would be that every polynomial f ∈ K[x1, . . . ,xn] without
a zero in An is constant. However, there is a much stronger statement that also applies to several
polynomials at once, or more precisely to the ideal generated by them: Any ideal I in K[x1, . . . ,xn]
with V (I) = /0 over an algebraically closed field K is the unit ideal I = ⟨1⟩. This statement is
called by its German name Hilbert’s Nullstellensatz (“theorem of the zeros”) [G6, Remark 10.12].
Obviously, in the case n = 1 of polynomials in one variable, the ideal I must be generated by a single
polynomial f as K[x1] is a principal ideal domain, and thus Hilbert’s Nullstellensatz just reduces to
the original statement that f must be constant if it does not have a zero.

Although Bézout’s Theorem requires projective curves (as we have already motivated at the begin-
ning of Chapter 3), it is actually more convenient to perform almost all steps required in its proof for
the affine case. Our first step will be to compute the sum ∑P∈F∩G µP(F,G) of the local intersection
multiplicities of two affine curves F and G and express it in terms of one global object. In fact, in the
same way as µP(F,G) is by definition the dimension of the quotient of the local ring OP by the ideal
⟨F,G⟩, the sum of these multiplicities is just the dimension of the quotient of the global polynomial
ring K[x,y] by ⟨F,G⟩:
Lemma 4.2 (Summing up intersection multiplicities). Let F and G be two affine curves over K
with no common component (so tht F ∩G is finite by Remark 3.18). We consider the natural ring
homomorphism

ϕ : K[x,y]/⟨F,G⟩ → ∏
P∈F∩G

OP/⟨F,G⟩

that sends the class of a polynomial f ∈ K[x,y] to the class of f ∈ OP in each factor OP/⟨F,G⟩.

(a) The morphism ϕ is surjective.

(b) If K is algebraically closed then ϕ is an isomorphism.

In particular, we have ∑P µP(F,G)≤ dimK[x,y]/⟨F,G⟩, with equality if K is algebraically closed.

Proof.

(a) Let F ∩G = {P0, . . . ,Pm} with Pi = (xi,yi) for i = 0, . . . ,m. By Exercise 2.7 (a) there is a
number n ∈ N such that (x− xi)

n = (y− yi)
n = 0 ∈ OPi/⟨F,G⟩ for all i. For the polynomial

f := ∏
i:xi ̸=x0

(x− xi)
n · ∏

i:yi ̸=y0

(y− yi)
n ∈ K[x,y]

we then have g(P0) ̸= 0, so by Exercise 2.7 (b) there is a polynomial representative g∈K[x,y]
for 1

f ∈ OP0/⟨F,G⟩. The polynomial f g is then mapped by ϕ . . .
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• in the component OP0/⟨F,G⟩ to f g = f · 1
f = 1;

• in all other components OPi/⟨F,G⟩ for i > 0 to 0 since f = 0 ∈ OPi/⟨F,G⟩.
By symmetry, we can find in the same way for all i = 1, . . . ,m a polynomial that is mapped
by ϕ to 1 in the Pi-component and to 0 in all others. As the image of ϕ is a subring, it follows
that ϕ is surjective.

(b) In view of (a) it remains to be shown that ϕ is injective. So let f ∈ K[x,y] with ϕ( f ) = 0,
and consider the set I := {g ∈ K[x,y] : g f ∈ ⟨F,G⟩}. This is clearly an ideal containing
⟨F,G⟩ (usually called the ideal quotient ⟨F,G⟩ : ⟨ f ⟩). By the Nullstellensatz of Fact 4.1 it
suffices to prove that V (I) = /0, since then I = K[x,y], hence 1 ∈ I, i. e. f ∈ ⟨F,G⟩, and thus
f = 0 ∈ K[x,y]/⟨F,G⟩.
So assume that there is a point P∈V (I). As F,G∈ I we know that P∈ F∩G. Hence P is one
of the points in the product in the target space of ϕ , and so f = 0 ∈OP/⟨F,G⟩ as f ∈ kerϕ .
This means that f = a

g F + b
g G for some polynomials a,b,g ∈ K[x,y] with g(P) ̸= 0. But then

g f = aF +bG, hence g ∈ I, and as P ∈V (I) we arrive at the contradiction g(P) = 0. □

Remark 4.3. There are two ways to interpret the statement of Lemma 4.2:

(a) A case that often occurs in Lemma 4.2 is that F and G intersect transversely, i. e. that the
intersection multiplicities µP(F,G) at all P ∈ F ∩G are equal to 1. In this case every factor
OP/⟨F,G⟩ is isomorphic to K by Definition 2.3, and the morphism ϕ is just the combined
evaluation map at all points of F ∩G. The assertion of Lemma 4.2 (a) is then simply the in-
terpolation statement that we can always find a polynomial having prescribed values at these
points — which is probably not surprising, and is in fact already achieved by a suitable linear
combination of polynomials as in Step 1 in the proof. If the intersection is not transverse
and µP(F,G)> 1 at some point P, then the map ϕ remembers more information at P on the
polynomial than just its value, such as the values of some of its partial derivatives at P.

(b) If you have some commutative algebra background then you probably know the statement
of Lemma 4.2 already: As V (F,G) is 0-dimensional, the ring K[x,y]/⟨F,G⟩ is Artinian,
and thus by the Structure Theorem on Artinian rings it is isomorphic to the product of its
localizations at its various maximal ideals [G6, Proposition 7.20]. If K is algebraically closed
then these maximal ideals all correspond to points in A2 [G6, Corollary 10.10], and so the
map ϕ of the lemma is an isomorphism. If K is not necessarily algebraically closed then
there are maximal ideals of K[x,y]/⟨F,G⟩ that are not of this form and thus “missing” in the
target space of ϕ , so that ϕ is only surjective.

Of course, our goal must now be to compute the dimension of the quotient K[x,y]/⟨F,G⟩. In order
to do this, we need a lemma first that tells us how polynomials in the ideal ⟨F,G⟩ of K[x,y] can be
represented.

Lemma 4.4. Let F and G be two affine curves of degrees m := degF and n := degG, respectively,
such that their leading parts Fm and Gn (as in Notation 2.16) have no common component.

Then every f ∈ ⟨F,G⟩ ⊂ K[x,y] of degree d := deg f can be written as f = aF +bG for two polyno-
mials a and b with dega≤ d−m and degb≤ d−n.

Proof. As f ∈ ⟨F,G⟩we can write f = aF+bG for some a,b∈K[x,y]; choose such a representation
with dega minimal.

Assume for a contradiction that dega > d−m or degb > d−n. Then aF or bG contains a term of
degree bigger than d. As f = aF + bG has degree d this means that the leading terms of aF and
bG must cancel in f . Hence, if a∗ and b∗ denote the leading terms of a and b, respectively, we have
a∗Fm = −b∗Gn. But Fm and Gn have no common component by assumption, and so we must have
a∗ = cGn and b∗ =−cFm for some homogeneous polynomial c. This gives us a new representation

f = (a− cG)F +(b+ cF)G
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in which the leading term a∗ of a cancels the leading term cGn of cG in the first bracket. Hence
deg(a− cG)< dega, contradicting the minimality of dega. □

Lemma 4.5. Let F and G be affine curves with no common component, of degrees m := degF and
n := degG.

(a) dimK[x,y]/⟨F,G⟩ ≤ mn.

(b) If the leading parts Fm and Gn have no common component either then equality holds in (a).

Proof. For all d ≥ m+n consider the sequence of vector space homomorphisms

K[x,y]≤d−m×K[x,y]≤d−n
α−→ K[x,y]≤d

π−→ K[x,y]/⟨F,G⟩

(a,b) 7−→ aF +bG

where K[x,y]≤d denotes the vector subspace of K[x,y] of all polynomials of degree at most d, which
has dimension

(d+2
2

)
, and π is the quotient map.

The kernel of α consists of all pairs (a,b) of polynomials of degrees at most d −m and d − n,
respectively, with aF =−bG. As F and G have no common component, this is equivalent to a = cG
and b =−cF for some c ∈ K[x,y]≤d−m−n, so that

kerα = K[x,y]≤d−m−n · (G,−F). (1)

Moreover, it is obvious that
imα ⊂ kerπ. (2)

So we conclude with the homomorphism theorem

dimimπ =

(
d +2

2

)
−dimkerπ

(2)
≤

(
d +2

2

)
−dimimα

=

(
d +2

2

)
−
(

d−m+2
2

)
−
(

d−n+2
2

)
+dimkerα

(1)
=

(
d +2

2

)
−
(

d−m+2
2

)
−
(

d−n+2
2

)
+

(
d−m−n+2

2

)
= mn.

Note that this bound is independent of d (as long as d ≥m+n), and thus also holds for the projection
map π : K[x,y]→ K[x,y]/⟨F,G⟩ from the full polynomial ring, which is surjective. It follows that
dimK[x,y]/⟨F,G⟩ ≤ mn, which is (a).

For (b), it suffices to establish equality in (2) above, i. e. that kerπ ⊂ imα . But this is precisely the
statement of Lemma 4.4. □

We can now switch back to the projective case and prove the main result of this chapter.

Corollary 4.6 (Bézout’s Theorem). Let F and G be projective curves without common component
over an infinite field K. Then

∑
P∈F∩G

µP(F,G)≤ degF ·degG.

Moreover, equality holds if K is algebraically closed.

Proof. By Lemma 1.11 (b) there is a point Q in the affine part of P2 which does not lie on F i∪Gi,
i. e. neither on F nor on G. Moreover, as K is infinite but F ∩G finite by Proposition 1.12 (b), we
can pick a line L through Q which does not intersect F ∩G. Now we make a projective coordinate
transformation so that L becomes the line at infinity. Then neither F nor G contains the line at infinity
as a component (so that degF i = degF and degGi = degG), and all intersection points of F and G
lie in the affine part (i. e. they are also intersection points of the affine curves F i and Gi).



32 Andreas Gathmann

Applying Lemma 4.2 (a) and 4.5 (a) to F i and Gi then yields

∑
P∈F∩G

µP(F,G) = ∑
P∈F i∩Gi

µP(F i,Gi)
4.2
≤ dimK[x,y]/⟨F i,Gi ⟩

4.5
≤ degF i ·degGi = degF ·degG. (∗)

Now let K be algebraically closed. Then the first inequality is actually an equality by Lemma 4.2
(b). Moreover, the leading parts of F i and Gi are homogeneous polynomials in two variables, and
hence a product of linear factors by Exercise 3.11 (b). But these factors correspond exactly to the
points at infinity of the two curves by Construction 3.15 (b). As there are no such common points by
our choice of L, we conclude that the leading parts of F i and Gi have no common component, and
thus by Lemma 4.5 (b) that the second inequality in (∗) is actually an equality as well. □

Remark 4.7 (Bézout’s Theorem over arbitrary ground fields). It can be shown that (the inequality
part of) Bézout’s Theorem holds in fact over arbitrary fields. The assumption of an infinite ground
field was only necessary for the strategy of our proof to choose coordinates so that all intersection
points of the curves lie in the affine part — which would not be possible over finite fields, since the
two curves might then intersect in every point of P2 (without having a common component).

06

Remark 4.8. Let F and G be two projective curves without common component (over an infinite
ground field K).

(a) As the intersection multiplicity at each point of F ∩G is at least 1, it follows from Bézout’s
Theorem that F and G intersect in at most degF ·degG points (disregarding the multiplici-
ties).

(b) If K is algebraically closed, Bézout’s Theorem implies in particular that F and G intersect
in at least one point. Note that already this statement is non-trivial — and clearly false for
general ground fields, as then already V (F) might be empty.

(c) Moreover, Bézout’s Theorem shows that µP(F,G)≤ degF ·degG for all P ∈ P2. Of course,
this then holds for affine curves as well and can be used to improve Algorithm 2.12 to com-
pute µP(F,G) without having checked before whether F and G have a common component
through P (see also Remark 2.14): If the contributions to µP(F,G) collected by the algorithm
exceed degF · degG we can stop, knowing that F and G must have a common component
through P. This additional rule will make the algorithm terminate for all F and G, and means
that we can also use it to determine whether F and G have a common component through P.

Exercise 4.9. For the following complex affine curves F and G, determine the points at infinity of
their projective closures, and use Bézout’s Theorem to read off the intersection multiplicities at all
points of F ∩G.

(a) F = x+ y2 and G = x+ y2− x3;

(b) F = y2− x2 +1 and G = (y+ x+1)(y− x+1).

Exercise 4.10. Deduce the following real version of Bézout’s Theorem from the complex case: If F
and G are two real projective curves without common components then

∑
P∈F∩G

µP(F,G) = degF ·degG mod 2.

In particular, two real projective curves of odd degree always intersect in at least one point.

Exercise 4.11. Let F be a complex irreducible projective curve of degree d, and let P ∈ P2 be a
point. We set m := mP(F) ∈ N.

Show that for all but finitely many lines L in P2 through P, the intersection F ∩L consists of exactly
d−m points not equal to P.

We will discuss many examples and applications of Bézout’s Theorem in the next chapter. Instead,
at the end of this chapter let us prove another theorem that can be obtained by very similar methods
and that will be useful later on. It considers a smooth projective curve F over an algebraically closed
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field and states roughly that, for any two other curves G and H such that F intersects H everywhere
with at least the same multiplicity as G, the “remaining multiplicities” µP(F,H)− µP(F,G) can be
obtained by intersecting F with another curve.

Corollary 4.12 (Max Noether’s Theorem). Let F be a smooth projective curve over an alge-
braically closed field. Moreover, let G and H be two projective curves that do not have a common
component with F.

If µP(F,G) ≤ µP(F,H) for all points P ∈ F ∩G then there are homogeneous polynomials A and B
(of degrees degH−degF resp. degH−degG if non-zero), such that

(a) H = AF +BG;

(b) µP(F,H) = µP(F,G)+µP(F,B) for all P ∈ P2.

Proof. As in the proof of Corollary 4.6 we may assume by a projective coordinate transformation
that none of the curves contain the line at infinity as a component, and that all points of F ∩G lie in
the affine part of P2. We then have again degF i = degF , degGi = degG, degH i = degH, and the
leading parts of F i and Gi have no common component.

Now F is assumed to be smooth, and hence — working with the affine curves for a moment —
the assumption µP(F i,Gi) ≤ µP(F i,H i) implies ⟨F i,H i ⟩ ⊂ ⟨F i,Gi ⟩ in OP for all P ∈ F ∩G by
Proposition 2.26, and thus in particular H i ∈ ⟨F i,Gi ⟩ in OP. By Lemma 4.2 (b) we then have
H i ∈ ⟨F i,Gi ⟩ in K[x,y] as well. But as the leading parts of F i and Gi have no common component,
Lemma 4.4 gives us an equation

H i = aF i +bGi

for some polynomials a and b of degrees at most degH − degF and degH − degG, respectively.
Homogenizing this yields H, so a homogeneous polynomial of degree degH, and thus

H = zdegH−degF−degaah︸ ︷︷ ︸
=:A

F + zdegH−degG−degbbh︸ ︷︷ ︸
=:B

G,

which proves (a). But this also implies part (b), since by (the projective version of) the properties of
intersection multiplicities we have

µP(F,H) = µP(F,AF +BG)
2.4 (c)
= µP(F,BG)

2.10 (b)
= µP(F,B)+µP(F,G). □

Exercise 4.13 (Cayley-Bacharach ). Let F and G be smooth projective cubics over an algebraically
closed field that intersect in exactly 9 points P1, . . . ,P9. Moreover, let E be another cubic that also
contains the first eight points P1, . . . ,P8. Prove that E then also contains P9.

(Hint: Apply Max Noether’s Theorem to a suitable curve H.)

Exercise 4.14. Show by example that Max Noether’s Theorem is in general false . . .

(a) if the ground field is not algebraically closed; or

(b) if the curve F is not assumed to be smooth.


