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3. Projective Curves

In the last chapter we have studied the local intersection behavior of curves. Our next major goal
will be to consider the global situation and ask how many intersection points two curves can have in
total, i. e. how many common zeros we find for two polynomials F,G ∈ K[x,y] (where we will count
each such zero with its intersection multiplicity).

For polynomials in one variable, the corresponding question would simply be how many zeros a
single polynomial f ∈ K[x] has. At least if K is algebraically closed, so that f is a product of linear
factors, the answer is then of course that we always get deg f zeros (counted with multiplicities).
Hence, in our current case of two polynomials F,G ∈ K[x,y] we would also hope for a result that
depends only on degF and degG, and not on the chosen polynomials.

However, even in the simplest case when F and G are two distinct lines this will not work, since F
and G might intersect in one point or be parallel (and hence have no intersection point). To fix this
situation, the geometric idea is to add points at infinity to the affine plane A2, so that two lines that
are parallel in A2 will meet there. On the other hand, two non-parallel lines (that intersect already in
A2) should not meet at infinity any more as this would then lead to two intersection points. Hence,
we have to add one point at infinity for each direction in the affine plane, so that parallel lines with
the same direction meet there, whereas others do not.

This new space with the added points at infinity will be called the projective plane. In the case K =R
we can also think of it as a compactification of the affine plane A2. It is the goal of this chapter to
study this process in detail, leading to plane curves that are “compactified” by points at infinity. For
two such compactified curves we will then compute the number of intersection points in the next
chapter, and the answer will then indeed depend only on the degrees of the curves.

Remark 3.1 (Geometric idea of projective spaces). Algebraically, the idea for adding points at
infinity is to embed the affine space An in the vector space Kn+1 by prepending a new coordinate
(typically called x0) equal to 1, i. e. by the map

An→ Kn+1, (x1, . . . ,xn) 7→ (1,x1, . . . ,xn),

and considering the 1-dimensional linear subspace in Kn+1 spanned by this vector. For example, in
this way a point (c1,c2) ∈A2 corresponds to the line through the origin and (1,c1,c2) ∈ K3, denoted
by P in the picture below on the left.
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We will define the projective plane as the set of all such 1-dimensional linear subspaces of K3. It
then consists of all lines through the origin coming from points of A2 as above — together with lines
contained in the plane where x0 = 0 that do not arise in this way, such as Q in the picture above.
As shown on the right, these lines can be thought of as limits of lines coming from an unbounded
sequence of points in A2. They can therefore be interpreted as the “points at infinity” that we were
looking for.

Let us now turn this idea into a precise definition.



22 Andreas Gathmann

Definition 3.2 (Projective spaces). For n ∈ N, we define the projective n-space over K as the set of
all 1-dimensional linear subspaces of Kn+1. It is denoted by Pn

K or simply Pn.

Notation 3.3 (Homogeneous coordinates). Obviously, a 1-dimensional linear subspace of Kn+1 is
uniquely determined by a spanning non-zero vector in V , with two such vectors giving the same
linear subspace if and only if they are scalar multiples of each other. In other words, we have

Pn = (Kn+1\{0})/∼

with the equivalence relation

(x0, . . . ,xn)∼ (y0, . . . ,yn) :⇔ xi = λyi for some λ ∈ K∗ and all i.

The equivalence class of (x0, . . . ,xn) is usually denoted by (x0 : · · · :xn) ∈ Pn. We call x0, . . . ,xn the
homogeneous or projective coordinates of the point (x0 : · · · :xn). Hence, in this notation for a
point in Pn the numbers x0, . . . ,xn are not all zero, and they are defined only up to a common scalar
multiple.

Remark 3.4 (Geometric interpretation of Pn). There are two ways to interpret the projective space
Pn geometrically:

(a) As in Remark 3.1, we can embed the affine space An in Pn by the map

An→ Pn, (x1, . . . ,xn) 7→ (1:x1 : · · · :xn)

whose image is the subset U0 := {(x0 : · · · :xn) : x0 ̸= 0} of Pn. We will often consider An as
a subset of Pn in this way, i. e. by setting x0 = 1. The other coordinates x1, . . . ,xn are then
called the inhomogeneous or affine coordinates on U0.

The remaining points of Pn are of the form (0:x1 : · · · :xn). By forgetting their coordinate x0
(which is zero anyway) they form a set that is naturally bijective to Pn−1, corresponding to
the 1-dimensional linear subspaces of Kn. As in Remark 3.1 we can regard them as points
at infinity; there is hence one such point for each direction in Kn. In short-hand notation,
one often writes this decomposition as Pn = An∪Pn−1 and calls An and Pn−1 the affine and
infinite part of Pn, respectively.

(b) By the symmetry of the homogeneous coordinates, the subsets Ui := {(x0 : · · · :xn) : xi ̸= 0}
of Pn are naturally bijective to An for all i = 0, . . . ,n, in the same way as for i = 0 in (a). As
every point of Pn has at least one non-zero coordinate, it lies in one of the Ui, and hence in
a subset of Pn that just looks like the ordinary affine space An. In this sense we can say that
projective space “looks everywhere the same”; the fact that we interpreted the points with
x0 = 0 as points as infinity above was just due to our special choice of i = 0 in (a).

Example 3.5. By Remark 3.4 (a), we have P1 = A1 ∪P0. The affine part consists of the points
(1:x1) for x1 ∈K, and the infinite part contains the single point (0:1). Denoting this point at infinity
by ∞, we can therefore write P1 = A1∪{∞}.

Remark 3.6 (Topology of projective spaces over R and C). Over the real or complex numbers,
every point in Pn has a representative on the unit sphere {(x0, . . . ,xn) : |x0|2 + · · ·+ |xn|2 = 1} by
normalizing. In other words, Pn can be written as the image of this compact unit sphere under the
quotient map (x0, . . . ,xn) 7→ (x0 : · · · :xn). In accordance with our motivation at the beginning of this
chapter, this means that Pn is itself compact (with the quotient topology [G5, Definition 5.3 and
Corollary 5.8 (c)]).

(a) For K = R, every 1-dimensional linear subspace of Kn+1 meets the unit sphere in exactly
two points, which are negatives of each other. Hence, all points (x0 : · · · :xn) ∈ Pn have a
representative on the upper half of the unit sphere, i. e. where x0 ≥ 0, and this representative
is unique except for points on its boundary where x0 = 0 (i. e. for points at infinity). As in
the following picture, we can therefore visualize Pn

R as the space obtained from the upper
half unit sphere by identifying opposite points on the boundary. For n = 1 we have only one
pair of gluing points, corresponding to one point at infinity as in Example 3.5, and obtain
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topologically a circle. For n = 2, each point on the boundary of the upper half unit sphere
has to be identified with its negative, which leads to a space that cannot be embedded in R3.
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(b) For K = C, only P1
C can be visualized in R3. By Example 3.5 it

is just the complex plane together with a point ∞. It is therefore
topologically a sphere as in the picture on the right.

Having studied projective spaces, we now want to consider subsets of Pn

given by polynomial equations. However, polynomials in homogeneous
coordinates are not well-defined functions on Pn: For example, for the
polynomial f = x2

0 + x1 we have f (1,−1) = 0 and f (−1,1) = 2 although
(1:−1)= (−1:1)∈P1. We can solve this problem by using homogeneous
polynomials as follows.

∞

P1
C

Remark 3.7. Let
f = ∑

i0+···+in=d
ai0,...,in xi0

0 · · · · · x
in
n ∈ K[x0, . . . ,xn]

be a homogeneous polynomial of degree d. Then

f (λx0, . . . ,λxn) = ∑
i0+···+in=d

ai0,...,in λ
i0+···+inxi0

0 · · · · · x
in
n = λ

d f (x0, . . . ,xn)

for all λ ∈ K. In particular, we see:

(a) Although f is not a well-defined function on Pn, its zero locus is well-defined on Pn, i. e. we
have

f (λx0, . . . ,λxn) = 0 ⇔ f (x0, . . . ,xn) = 0

for all λ ∈ K∗. In the following, we will therefore write this condition simply as f (P) = 0
for P = (x0 : · · · :xn).

(b) If g is another homogeneous polynomial of degree d then

f (λx0, . . . ,λxn)

g(λx0, . . . ,λxn)
=

λ d f (x0, . . . ,xn)

λ dg(x0, . . . ,xn)
=

f (x0, . . . ,xn)

g(x0, . . . ,xn)
,

and so the quotient f
g is a well-defined function on the subset of Pn where g does not vanish.

Definition 3.8 (Projective varieties). For a subset S⊂K[x0, . . . ,xn] of homogeneous polynomials we
call

V (S) := {P ∈ Pn : f (P) = 0 for all f ∈ S} ⊂ Pn

the (projective) zero locus of S. Subsets of Pn that are of this form are called (projective) varieties.
If S = { f1, . . . , fk} is a finite set, we will write V (S) = V ({ f1, . . . , fk}) also as V ( f1, . . . , fk). To
distinguish the projective from the affine zero locus of Definition 1.3 (b), we will sometimes denote
it by Vp(S)⊂ Pn as opposed to Va(S)⊂ An+1.

In this class we will mostly restrict ourselves to the case of the projective plane P2. We will then
usually denote the homogeneous coordinates by x, y, and z, with z corresponding to the variable x0
defining the points at infinity as in Remark 3.4 (a).
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Remark 3.9. The properties of Remark 1.4 hold analogously for the projective zero locus: For any
two homogeneous polynomials f ,g ∈ K[x,y,z] we have

(a) V ( f )∪V (g) =V ( f g);

(b) V ( f )∩V (g) =V ( f ,g).

Exercise 3.10. By a projective coordinate transformation we mean a map f : Pn→ Pn of the form

(x0 : · · · :xn) 7→ ( f0(x0, . . . ,xn) : · · · : fn(x0, . . . ,xn))

for linearly independent homogeneous linear polynomials f0, . . . , fn ∈ K[x0, . . . ,xn].

(a) Let P1, . . . ,Pn+2 ∈ Pn be points such that any n+1 of them are linearly independent in Kn+1,
and in the same way let Q1, . . . ,Qn+2 ∈ Pn be points such that any n+1 of them are linearly
independent. Show that there is a projective coordinate transformation f with f (Pi) = Qi for
all i = 1, . . . ,n+2.

(b) Let F and G be two real smooth projective conics with non-empty set of points. Show that
there is a projective coordinate transformation of P2 that takes F to G.

Exercise 3.11. Show:

(a) If F,G ∈ K[x0, . . . ,xn] are polynomials such that F |G and G is homogeneous, then F is
homogeneous.

(b) Every homogeneous polynomial in two variables over an algebraically closed field is a prod-
uct of linear polynomials.
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The definition of projective plane curves is now completely analogous to the affine case in Definition
1.5.

Definition 3.12 (Projective curves).

(a) A (projective plane algebraic) curve (over K) is a non-constant homogeneous polynomial
F ∈ K[x,y,z] modulo units. We call V (F) = {P ∈ P2 : F(P) = 0} its set of points.

(b) The degree of a projective curve is its degree as a polynomial. As in the affine case, curves of
degree 1,2,3, . . . are called lines, quadrics/conics, cubics, and so on. The line z is referred
to as the line at infinity.

(c) The notions of irreducible/reducible/reduced curves, as well as of irreducible components
and their multiplicities, are defined in the same way as for affine curves in Definition 1.5
(c) (note that irreducible factors of homogeneous polynomials are always homogeneous by
Exercise 3.11 (a)).

To study projective curves, we will often want to relate them to affine curves. For this we need the
following construction.

Construction 3.13 (Homogenization and dehomogenization).

(a) For a non-zero polynomial

f = ∑
i+ j≤d

ai, j xiy j ∈ K[x,y]

of degree d we define the homogenization of f as

f h := ∑
i+ j≤d

ai, j xiy jzd−i− j ∈ K[x,y,z].

Note that f h is homogeneous of degree deg f h = deg f = d, and that z ̸ | f h since f contains
a term with i+ j = d.
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(b) For a non-zero homogeneous polynomial

f = ∑
i+ j+k=d

ai, j,k xiy jzk ∈ K[x,y,z]

of degree d we define the dehomogenization of f to be

f i := f (z = 1) = ∑
i+ j+k=d

ai, j,k xiy j ∈ K[x,y].

In general, f i will be an inhomogeneous polynomial. If z ̸ | f , i. e. if f contains a monomial
without z, then this monomial will also be present in f i, and thus deg f i = deg f = d.

In particular, there is a bijective correspondence{
polynomials of degree d

in K[x,y]

}
←→

{
homogeneous polynomials of degree d

in K[x,y,z] not divisible by z

}
f 7−→ f h

f i ←−7 f .

Example 3.14. For f = y− x2 ∈ K[x,y] we have f h = yz− x2 ∈ K[x,y,z], and then back again
( f h)i = y− x2 = f .

Construction 3.15 (Affine parts and projective closures).
(a) For a projective curve F its affine set of points is Vp(F)∩A2 = Va(F(z = 1)) = Va(F i).

We will therefore call F i the affine part of F . The points at infinity of F are given by
Vp(F(z = 0))⊂ P1.

(b) For an affine curve F we call Fh its projective closure. By Construction 3.13 it is a pro-
jective curve whose affine part is again F , and that does not contain the line at infinity as a
component.
However, Fh may contain points at infinity: If F = F0 + · · ·+Fd is the decomposition into
homogeneous parts as in Notation 2.16, we have Fh = zd F0 + zd−1 F1 + · · ·+Fd and hence
Fh(z = 0) = Fd . So the points at infinity of F are given by the projective zero locus of the
leading part of F .

Example 3.16 (Visualization of projective curves). To visualize a (real) projective curve F (that does
not have the line at infinity as a component), we will often just draw its affine set of points Va(F i),
and if desired in addition its points at infinity as directions in A2. The following picture shows in
this way the projective closures of the three types of real conics — a hyperbola, a parabola, and an
ellipse (resp. a circle) — where the dashed lines correspond to the points at infinity. We see that the
hyperbola has two points at infinity (namely (0:1 :0) and (1:0 :0) in the case below), the parabola
has one ((0:1 :0) below), and the circle no such point. Note that, including these additional points,
all three cases become topologically a loop, as the unbounded ends of the affine curves meet up at
the corresponding points at infinity. In fact, up to a change of coordinates, we will see in Exercise
3.28 that there is essentially only one type of real projective conic.

F = xy−1
Fh = xy− z2

points at infinity: xy = 0

F = x2 + y2−1
Fh = x2 + y2− z2

points at infinity: x2 + y2 = 0

F = y− x2

Fh = yz− x2

points at infinity: x2 = 0

(a) hyperbola (c) ellipse(b) parabola
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Remark 3.17 (Spaces of curves as projective spaces). For d ∈ N>0, the vector space of homoge-
neous polynomials of degree d in K[x,y,z] has dimension

(d+2
2

)
, hence it is isomorphic to Kn+1 with

n =
(d+2

2

)
− 1. By definition, a projective curve of degree d is then a non-zero point of this vector

space modulo scalars. Hence, the space of all such curves is just the projective space Pn, and thus
itself a projective variety.

It is in fact very special to algebraic geometry — and very powerful — that the spaces of (certain)
varieties are again varieties, and thus can be studied with exactly the same methods as the initial
objects themselves. In other categories this is usually far from being true: The space of all groups is
not a group, the space of all vector spaces is not a vector space, the space of all topological spaces is
not a topological space, and so on.

For the rest of this chapter, let us transfer our results on affine curves from Chapters 1 and 2 to the
projective case.

Remark 3.18 (Finiteness of zero loci). Let F and G be two projective curves. The finiteness results
of Lemma 1.11 and Proposition 1.12 (b) hold for the affine parts of F and G (for any choice of
coordinate determining the line at infinity), and thus for F and G themselves: V (F) is infinite if K
is algebraically closed, P2\V (F) is infinite if K is infinite, and V (F,G) is finite if F and G have no
common component.

Remark 3.19 (Recovering F from V (F)). Let F be a projective curve over an algebraically closed
field. We can write it as F = zm G for some m∈N and a curve G with z ̸ | G. Then G can be recovered
from Gi since G = (Gi)h by Construction 3.13, and Gi can be recovered from Va(Gi) =Vp(G)∩A2

and a multiplicity on each component by Remark 1.14.

As the components of F are just the components of G plus possibly the line at infinity z (with multi-
plicity m), this means that F can be reconstructed from V (F) and a multiplicity on each component,
just as in the affine case.

Construction 3.20 (Local rings of P2). For P ∈ P2 we define the local ring of P2 at P according to
Remark 3.7 (b) as

OP := OP2,P :=
{

f
g

: f ,g ∈ K[x,y,z] homogeneous of the same degree with g(P) ̸= 0
}
∪{0}

⊂ K(x,y,z).

As in Definition 2.1, these rings admit a well-defined evaluation map

OP→ K,
f
g
7→ f (P)

g(P)
with kernel

IP := IP2,P :=
{

f
g
∈ OP : f (P) = 0

}
⊂OP.

For a point P = (x0 :y0 :1) in the affine part of P2 it is easily checked that there is an isomorphism

OP2,(x0 :y0 :1)→ OA2,(x0,y0)
,

f
g
7→ f i

gi

compatible with the evaluation maps, and thus taking IP2,(x0 :y0 :1) to IA2,(x0,y0)
. Hence the local rings

are still the same as in the affine case — which is of course expected, as objects that are local around
a point in A2 should not be affected by adding points at infinity.

Construction 3.21 (Intersection multiplicities). Note that homogeneous polynomials are not ele-
ments of the local ring OP2,P. But for F1, . . . ,Fk homogeneous we can still define a generated ideal

⟨F1, . . . ,Fk ⟩=
{

f1

g1
F1 + · · ·+

fk

gk
Fk : fi = 0 or fi,gi ∈ K[x,y,z] homogeneous

with gi(P) ̸= 0 and deg( fiFi) = deggi for all i
}
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in OP. As in the affine case we can therefore define the intersection multiplicity of two curves F,G
at a point P ∈ P2 as

µP(F,G) := dim OP/⟨F,G⟩ ∈ N∪{∞}. (∗)
For a point P = (x0 :y0 :1) in the affine part of P2 one can verify directly that the isomor-
phism OP2,(x0 :y0 :1)

∼= OA2,(x0,y0)
of Construction 3.20 takes ⟨F,G⟩ to ⟨F i,Gi ⟩. Hence we have

µ(x0 :y0 :1)(F,G) = µ(x0,y0)(F
i,Gi), i. e. intersection multiplicities in the affine part can be computed

exactly as in Chapter 2. At other points, the multiplicity can be computed similarly by choosing
another (non-zero) coordinate to define the line at infinity as in Remark 3.4 (b). We will therefore
probably never use the global definition (∗) of the multiplicity above for actual computations; its
only purpose is to ensure that the result does not depend on the choice of coordinate defining the line
at infinity.

Moreover, in the same way as in Remark 2.4 (a) intersection multiplicities are invariant under pro-
jective coordinate transformations as in Exercise 3.10, and they satisfy all the other properties of the
multiplicities in Remark 2.4, Lemma 2.5, and Proposition 2.10.

Example 3.22. Let us compute the intersection multiplicity of the curve
F = yz− x2 (whose affine part is shown on the right) with the line G = z
at infinity at the common point P = (0:1 :0). For this we choose the
affine part given by y = 1 and affine coordinates x and z. We then obtain

µP(F,G) = µ(0,0)(z− x2,z) = 2

by Example 2.11.

F

Construction 3.23 (Tangents and multiplicities of points, smooth and singular points). The remain-
ing concepts of Chapter 2 are also transferred easiest to a projective curve F using affine parts. So
for a point P = (x0 :y0 :1) ∈ P2 in the affine part A2, we define the multiplicity mP(F) of F at P
to be m(x0,y0)(F

i) in the sense of Definition 2.18. A tangent to F at P is the projective closure of a
tangent to F i at (x0,y0). If P is not in the affine part, we choose a different coordinate for the line at
infinity as in Example 3.22 (it can be checked that this does not depend on the choice of coordinate).

We say that P ∈ F is a smooth or regular point if mP(F) = 1; its unique tangent is denoted TPF .
Otherwise, P is called a singular point of F . The curve F is said to be smooth or regular if all its
points are smooth; otherwise F is called singular.

As in the affine case, there is a simple criterion to determine all singular points of a given projective
curve. To prove it, we need a simple lemma first.

Lemma 3.24. For any homogeneous polynomial F ∈ K[x,y,z] of degree d we have

x
∂F
∂x

+ y
∂F
∂y

+ z
∂F
∂ z

= d F.

Proof. For F = ∑i+ j+k=d ai, j,k xiy jzk we have x ∂F
∂x = ∑i+ j+k=d iai, j,k xiy jzk. An analogous formula

holds for the other partial derivatives, and hence we conclude

x
∂F
∂x

+ y
∂F
∂y

+ z
∂F
∂ z

= ∑
i+ j+k=d

(i+ j+ k)ai, j,k xiy jzk = d F. □

Proposition 3.25 (Projective Jacobi Criterion). Let P be a point on a projective curve F.

(a) P is a singular point of F if and only if ∂F
∂x (P) =

∂F
∂y (P) =

∂F
∂ z (P) = 0.

(b) If P is a smooth point of F the tangent to F at P is given by

TPF =
∂F
∂x

(P) · x+ ∂F
∂y

(P) · y+ ∂F
∂ z

(P) · z.

Proof. Without loss of generality we may assume that P = (x0 :y0 :1) is in the affine part of F .
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(a) By the affine Jacobi criterion of Proposition 2.24 (a) we know that P is a singular point of
F if and only if ∂F i

∂x (x0,y0) =
∂F i

∂y (x0,y0) = 0. As dehomogenizing F (which is just setting
z = 1) commutes with taking partial derivatives with respect to x and y, this is equivalent to
∂F
∂x (P) =

∂F
∂y (P) = 0. This is in turn equivalent to ∂F

∂x (P) =
∂F
∂y (P) =

∂F
∂ z (P) = 0 by Lemma

3.24 since F(P) = 0 by assumption.

(b) By Proposition 2.24 (b) the affine tangent to F at P is given by

∂F i

∂x
(x0,y0) · (x− x0)+

∂F i

∂y
(x0,y0) · (y− y0)

=
∂F
∂x

(P) · x+ ∂F
∂y

(P) · y−
(

∂F
∂x

(P) · x0 +
∂F
∂y

(P) · y0

)
3.24
=

∂F
∂x

(P) · x+ ∂F
∂y

(P) · y+ ∂F
∂ z

(P).

By definition, TPF is now obtained by taking the projective closure, i. e. the homogenization
of this polynomial. □

Remark 3.26. If the ground field K has characteristic 0, Lemma 3.24 tells us for any point P ∈ P2

that the conditions ∂F
∂x (P) =

∂F
∂y (P) =

∂F
∂ z (P) = 0 already imply F(P) = 0. In contrast to the affine

case in Example 2.25, we therefore do not have to check explicitly that the point lies on the curve
when computing singular points with the Jacobi criterion.
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Example 3.27. Let F = y2z− x2z− x3 be the projective closure of the
real affine curve y2− x2− x3 of Example 2.21 (b). We have

∂F
∂x

=−2xz−3x2,
∂F
∂y

= 2yz,
∂F
∂ z

= y2− x2.

It is checked immediately that the only common zero of these three poly-
nomials is the point (0:0 :1), i. e. the origin of the affine part of F . So by
Proposition 3.25 this is the only singular point of F (note that we have
already seen in Example 2.25 using the affine Jacobi criterion that the
origin is the only singular point of the affine part of F).

F

In particular, the point (0:1 :0) ∈ F at infinity is a smooth point of F , and the tangent to F there is
by Proposition 3.25

∂F
∂x

(0:1 :0) · x+ ∂F
∂y

(0:1 :0) · y+ ∂F
∂ z

(0:1 :0) · z = z,

i. e. the line at infinity.

Exercise 3.28. Let F and G be two real smooth projective conics with non-empty set of points.
Show that there is a projective coordinate transformation of P2 as in Exercise 3.10 that takes F to G.

Exercise 3.29. For a projective curve F in the homogeneous coordinates x0,x1,x2 we define the
associated Hessian to be HF := det

(
∂ 2F

∂xi∂x j

)
i, j=0,1,2.

(a) Show that the Hessian is compatible with coordinate transformations, i. e. if a projective
coordinate transformation as in Exercise 3.10 takes F to F ′ then up to multiplication with a
unit it takes HF to HF ′ .

(b) Let P ∈ F be a smooth point, and assume that the characteristic of the ground field K is 0.
Show that HF(P) = 0 if and only if µP(F,TPF)≥ 3. Such a point is called an inflection point
of F .

Hint: By part (a) and Exercise 3.10 you may assume after a coordinate transformation that
P = (0:0 :1) and TPF = x1.


