
12 Andreas Gathmann

2. Intersection Multiplicities

Let us start our study of curves by introducing the concept of intersection multiplicity, which will
be central throughout these notes. It generalizes the well-known notion of multiplicity of a zero
of a univariate polynomial: If f ∈ K[x] is a polynomial and x0 ∈ K such that f = (x− x0)

m g for a
polynomial g ∈ K[x] with g(x0) ̸= 0, then f is said to have multiplicity m at x0. As in the following
two pictures on the left, a zero of multiplicity 1 means that the graph of f intersects the x-axis
transversely, whereas in the case of multiplicity (at least) 2 it is tangent to it. Roughly speaking,
higher multiplicities would correspond to graphs for which the x-axis is an even better approximation
around x0.
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In this geometric interpretation, we have considered how the graph of f intersects the horizontal axis
locally at the given point, i. e. how the two curves F = y− f and G = y intersect. As in the picture
above on the right, this concept should thus also make sense for arbitrary curves F and G at an
intersection point P: If they intersect transversely, i. e. with different tangent directions, we want to
say that they have an intersection multiplicity of 1 at P, whereas equal tangents correspond to higher
multiplicities. But of course, the curves F and G might also have “singularities” as e. g. the origin in
Example 0.1 (b) and (c), in which case it is not clear a priori how their intersection multiplicity can
be interpreted or even defined.

So our first task must be to actually construct the intersection multiplicity for arbitrary curves. For
this we need the following algebraic object that allows us to capture the local geometry of the plane
around a point.

Definition 2.1 (Local rings of A2). Let P ∈ A2 be a point.

(a) The local ring of A2 at P is defined as

OP := OA2,P :=
{

f
g

: f ,g ∈ K[x,y] with g(P) ̸= 0
}
⊂ K(x,y).

(b) It admits a well-defined ring homomorphism

OP→ K,
f
g
7→ f (P)

g(P)

which we will call the evaluation map. Its kernel will be denoted by

IP := IA2,P :=
{

f
g

: f ,g ∈ K[x,y] with f (P) = 0 and g(P) ̸= 0
}
⊂OP.

Remark 2.2 (Geometric and algebraic interpretation of local rings). Intuitively, OP describes “nice”
(i. e. rational) functions that have a well-defined value at P (determined by the evaluation map), and
thus also in a neighborhood of P. Note however that OP does not admit similar evaluation maps
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at other points Q ̸= P since the denominator of the fractions might vanish there. This explains the
name “local ring” from a geometric point of view. The ideal IP in OP describes exactly those local
functions that have the value 0 at P.

Algebraically, OP is a subring of K(x,y) that contains K[x,y]. As a subring of a field it is an inte-
gral domain, and its units are precisely the fractions f

g for which both f and g are non-zero at P.
Moreover, just like K[x,y] it is a factorial ring, with the irreducible elements being the irreducible
polynomials that vanish at P (since the others have become units).

For those who know some commutative algebra we should mention that OP is also a local ring in
the algebraic sense, i. e. that it contains exactly one maximal ideal, namely IP [G6, Definition 6.9]:
If I is any ideal in OP that is not a subset of IP then it must contain an element f

g with f (P) ̸= 0 and
g(P) ̸= 0. But this is then a unit since g

f ∈ OP as well, and hence we have I = OP.

In fact, in the algebraic sense OP is just the localization of the polynomial ring K[x,y] at the maximal
ideal ⟨x− x0,y− y0 ⟩ associated to the point P = (x0,y0) — which also shows that it is a local ring
[G6, Corollary 6.10].

Definition 2.3 (Intersection multiplicities). For a point P ∈ A2 and two curves (or polynomials) F
and G we define the intersection multiplicity of F and G at P to be

µP(F,G) := dim OP/⟨F,G⟩ ∈ N∪{∞},

where dim denotes the dimension as a vector space over K.

As this definition is rather abstract, we should of course figure out how to compute this number, what
its properties are, and why it captures the geometric idea given above. In fact, it is not even clear
whether µP(F,G) is finite. But let us start with a few simple statements and examples.

Remark 2.4.

(a) It is clear from the definitions that an invertible affine coordinate transformation from (x,y)
to

(x′,y′) = (ax+by+ c,dx+ ey+ f ) for a,b,c,d,e, f ∈ K with ae−bd ̸= 0

gives us an isomorphism between the local rings OP and OP′ , where P′ is the image point of
P; and between OP/⟨F,G⟩ and OP′/⟨F ′,G′ ⟩, where F ′ and G′ are F and G expressed in the
new coordinates x′ and y′. We will often use this invariance to simplify our calculations by
picking suitable coordinates, e. g. such that P = 0 is the origin.

(b) The intersection multiplicity is symmetric: We have µP(F,G) = µP(G,F) for all F and G.

(c) For all F,G,H we have ⟨F,G+FH ⟩= ⟨F,G⟩, and thus µP(F,G+FH) = µP(F,G).

In Definition 2.3, we have not required a priori that P actually lies on both curves F and G. However,
the intersection multiplicity is at least 1 if and only if it does:

Lemma 2.5. Let P ∈ A2, and let F and G be two curves (or polynomials). We have:

(a) µP(F,G)≥ 1 if and only if P ∈ F ∩G;

(b) µP(F,G) = 1 if and only if ⟨F,G⟩= IP in OP.

Proof. Assume first that F(P) ̸= 0. Then F is a unit in OP, and thus ⟨F,G⟩=OP, i. e. µP(F,G) = 0.
Moreover, we then have P /∈ F and F /∈ IP, proving both (a) and (b) in this case. Of course, the case
G(P) ̸= 0 is analogous.

So we may now assume that F(P) = G(P) = 0, i. e. P∈ F∩G. Then the evaluation map at P induces
a well-defined and surjective map OP/⟨F,G⟩ → K. It follows that µP(F,G)≥ 1, proving (a) in this
case. Moreover, we have µP(F,G) = 1 if and only if this map is an isomorphism, i. e. if and only if
⟨F,G⟩ is exactly the kernel IP of the evaluation map. □
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Example 2.6 (Intersection multiplicity of coordinate axes). The kernel I0 of the evaluation map at
0 consists exactly of the fractions f

g such that f does not have a constant term, which is just the
ideal ⟨x,y⟩ in O0. By Lemma 2.5 (b) this means that µ0(x,y) = 1, i. e. (as expected) that the two
coordinate lines have intersection multiplicity 1 at the origin.

Regarding the finiteness of the intersection multiplicity, the following two exercises show that
µP(F,G) is finite if and only if F and G do not have a common component through P. This should
not come as a surprise since an infinite intersection multiplicity should mean that the two curves
“touch at P to infinite order”, i. e. that they agree locally around P in the irreducible case, resp. share
a common component in the general case. By Remark 2.4 (a) it suffices to consider the case when
P = 0 is the origin.

Exercise 2.7 (Finiteness of the intersection multiplicity). Let F and G be two curves without a
common component that passes through the origin. Show:

(a) There is a number n ∈ N such that xn = yn = 0 in O0/⟨F,G⟩.
(b) Every element of O0/⟨F,G⟩ has a polynomial representative.

(c) µ0(F,G)< ∞.

Exercise 2.8 (Infinite intersection multiplicities). Let F and G be two curves that pass through the
origin. Show:

(a) If F and G have no common component then the family (Fn)n∈N is linearly independent in
O0/⟨G⟩.

(b) If F and G have a common component that passes through the origin then µ0(F,G) = ∞.

For the last important basic property of intersection multiplicities we first need another easy algebraic
tool.

Construction 2.9 (Short exact sequences). We say that a sequence

0−→U
ϕ−→V

ψ−→W −→ 0

of linear maps between vector spaces (where 0 denotes the zero vector space) is exact if the image
of each map equals the kernel of the next, i. e. if

(a) kerϕ = 0 (i. e. ϕ is injective);

(b) imϕ = kerψ; and

(c) imψ =W (i. e. ψ is surjective).

In this case, we get a dimension formula

dimU +dimW
(a),(c)
= dimimϕ +dimimψ = dimimϕ +dimV/kerψ

(b)
= dimimϕ +dimV/ imϕ

= dimV.

Proposition 2.10 (Additivity of intersection multiplicities). Let P ∈A2, and let F,G,H be any three
curves (or polynomials).

(a) If F and G have no common component through P there is an exact sequence

0−→ OP/⟨F,H ⟩
·G−→ OP/⟨F,GH ⟩ π−→ OP/⟨F,G⟩ −→ 0,

where π is the natural quotient map.

(b) We have µP(F,GH) = µP(F,G)+µP(F,H).

Proof.

(a) We may assume that F and G have no common component at all, since components that do
not pass through P are units in OP and can therefore be dropped in the ideals.
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It is checked immediately that both non-trivial maps in this sequence are well-defined, and
that conditions (b) and (c) of Construction 2.9 hold. Hence we just have to show that the first
multiplication map is injective: Assume that f

g is in the kernel of this map, i. e. that

f
g
·G =

f ′

g′
·F +

f ′′

g′′
·GH

for certain f ′, f ′′,g′,g′′ ∈ K[x,y] with g′(P) and g′′(P) non-zero. We may assume without
loss of generality that all three fractions have the same denominator, and multiply by it to
obtain the equation f G = f ′F + f ′′GH in K[x,y]. Now G clearly divides f G and f ′′GH,
hence also f ′F , and consequently f ′ as F and G have no common component. So we have
f ′ = aG for some a ∈ K[x,y], and we see that f G = aFG+ f ′′GH. Dividing by G, it follows
that f = aF + f ′′H, so that f and hence also f

g are zero in OP/⟨F,H ⟩. This shows the
injectivity of the first map.

(b) If F and G have no common component through P the statement follows immediately from
(a) by taking dimensions as in Construction 2.9. Otherwise the equation is true as ∞ = ∞ by
Exercise 2.8 (b). □ 02

Touching the mathematical field of computer algebra, we are now ready to explicitly compute the
intersection multiplicity µP(F,G) of two arbitrary curves F and G at a point P where they do not
have a common component. By Remark 2.4 (a) it suffices to do this at the origin P = 0. Let us start
with the simple case when one of the curves is the horizontal axis; this will be needed in the general
algorithm afterwards.

Example 2.11 (Intersection multiplicity with the horizontal axis). Let F be an affine curve that does
not contain the horizontal axis y. We want to compute the intersection multiplicity µ0(y,F) with this
axis at the origin.

By Remark 2.4 (c) we may remove all multiples of y from F , i. e. replace F by the polynomial
F(x,0) ∈ K[x], which is not the zero polynomial since y is not a component of F . We can write
F(x,0) = xm g where g ∈ K[x] is non-zero at the origin, so that m is the multiplicity of 0 in F(x,0).
Hence we obtain

µ0(y,F) = µ0(y,F(x,0)) (Remark 2.4 (c))

= µ0(y,xm g)

= m µ0(y,x)+µ0(y,g) (Proposition 2.10 (b))
= m (Example 2.6 and Lemma 2.5 (a)).

Note that this coincides with the expectation from the beginning of this chapter: If f ∈ K[x] is a
univariate polynomial with a zero x0 of multiplicity m (which is just x0 = 0 in our current case) then
the intersection multiplicity of its graph y− f with the x-axis at the point (x0,0) is m.

Algorithm 2.12 (Computation of the intersection multiplicity µ0(F,G)). Let F and G be two curves
(or polynomials) without common component through the origin. We then repeat the following
procedure recursively to compute the intersection multiplicity µ0(F,G):

(a) If F(0) ̸= 0 or G(0) ̸= 0, i. e. if one of the curves does not pass through the origin, we stop
with µ0(F,G) = 0 by Lemma 2.5 (a).

(b) Otherwise, if F and G both contain a monomial independent of y, we write

F = axm + (terms involving y or with a lower power of x),

G = bxn + (terms involving y or with a lower power of x)

for some a,b ∈ K∗ and m,n ∈ N>0, where we may assume (by possibly swapping F and G)
that m≥ n. Similarly to a standard polynomial long division we then set

F ′ := F− a
b

xm−nG,
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hence canceling the xm-term in F . By Remark 2.4 (c) we then have µ0(F,G) = µ0(F ′,G),
so we can replace F by F ′ (which also passes through the origin) and repeat this step (b).
As this procedure makes the number m+ n strictly smaller in each step, we will eventually
arrive at a situation with one of the polynomials not having a monomial independent of y,
leading to the final case:

(c) If one of the polynomials F and G, say F , does not contain a monomial independent of y,
we can factor F = yF ′ and obtain by Proposition 2.10 (b)

µ0(F,G) = µ0(y,G)+µ0(F ′,G).

In this expression, the multiplicity µ0(y,G) can be computed directly by Example 2.11: It
is the lowest power of x in a term of G independent of y. Note that this number is non-
zero as G(0) = 0. Hence we have µ0(F ′,G) < µ0(F,G); so if we now repeat the algorithm
recursively to compute µ0(F ′,G) it will terminate in finitely many steps.

Example 2.13. Let us compute the intersection multiplicity µ0(F,G) at the origin of the two curves
F = y2− x3 and G = x2− y3 as in the picture below on the right. We follow Algorithm 2.12 and
indicate which step we performed each time:

µ0(y2− x3,x2− y3)
(b)
= µ0(y2− x3 + x(x2− y3),x2− y3)

= µ0(y2− xy3,x2− y3)

(c)
= µ0(y,x2− y3)︸ ︷︷ ︸

=2 by 2.11

+µ0(y− xy2,x2− y3)

(c)
= 2+µ0(y,x2− y3)︸ ︷︷ ︸

=2 by 2.11

+µ0(1− xy,x2− y3)︸ ︷︷ ︸
=0 by (a)

= 4.

G

F

Remark 2.14 (Curves with common components). If F and G have a common component through
0, Algorithm 2.12 still performs correct computations, but it might not terminate. For example, for
the curves F = x2 and G = xy− x with common component x it yields

µ0(x2,xy− x)
(b)
= µ0(x2 + x(xy− x),xy− x)

= µ0(x2y,xy− x)
(c)
= µ0(y,xy− x)︸ ︷︷ ︸

=1 by 2.11

+µ0(x2,xy− x),

leading to an infinite loop. However, if for arbitrary given F and G it does terminate with a finite
answer, then by Exercise 2.8 (b) we have proven simultaneously with this computation that F and
G have no common component through the origin. In contrast, if the algorithm does not seem to
terminate we will find in Remark 4.8 (c) a rigorous way to decide whether F and G have a common
component through 0.

Exercise 2.15. Draw the real curves F = x2 + y2 + 2y and G = y3x6− y6x2, determine their irre-
ducible decompositions, their intersection points, and their intersection multiplicities at these points.

Following our algorithm, we can now also give an easy and important criterion for when the inter-
section multiplicity is 1.

Notation 2.16 (Homogeneous parts of polynomials). For a polynomial F ∈ K[x,y] of degree d and
i = 0, . . . ,d, we define the degree-i part of F to be the sum of all terms of F of degree i. Hence all
Fi are homogeneous, and we have F = F0 + · · ·+Fd . We call F0 the constant part, F1 the linear part,
and Fd the leading part of F .

Proposition 2.17 (Intersection multiplicity 1). Let F and G be two curves (or polynomials) through
the origin. Then µ0(F,G) = 1 if and only if the linear parts F1 and G1 are linearly independent.
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Proof. We prove the statement following Algorithm 2.12, using the notation from there.

By assumption F and G pass through the origin, so we are not in case (a) of the algorithm. In case
(b), note that F ′1 and G1 are linearly independent if and only if F1 and G1 are, as either F ′1 = F1 (if
m > n) or F ′1 = F1− a

b G1 (if m = n). Hence we can consider the first time we reach case (c). As
µ0(y,G)> 0 we then have

µ0(F,G) = 1 ⇔ µ0(y,G) = 1 and µ(F ′,G) = 0

⇔ G contains a monomial x1y0 and F ′ contains a constant term
(by Example 2.11 and Lemma 2.5 (a))

⇔ G1 = ax+by for some a ∈ K∗,b ∈ K, and F1 = cy for some c ∈ K∗

⇔ F1 and G1 are linearly independent,

where the last implication “⇐” follows since F = yF ′ clearly does not contain a monomial x1y0. □
In fact, Proposition 2.17 has an easy geometric interpretation in the
spirit of the beginning of this chapter: F1 and G1 can be thought of
as the linear approximations of F and G around the origin. If these ap-
proximations are non-zero, hence lines, they can be thought of as the
tangents to the curves as in the picture on the right, and the proposition
states that the intersection multiplicity is 1 if and only if these tangent
directions are not the same.

G

F1
G1

F

0

In general, it is the lowest non-zero terms of a curve F that can be considered as the best local
approximation of F around 0. We can use this idea to define tangents to arbitrary curves (i. e. even
if the linear approximation F1 vanishes) as follows.

Definition 2.18 (Tangents and multiplicities of points). Let F be a curve.

(a) The smallest m∈N for which the homogeneous part Fm is non-zero is called the multiplicity
m0(F) of F at the origin. Any linear factor of Fm (considered as a curve) is called a tangent
to F at the origin.

(b) For a general point P = (x0,y0) ∈ A2, tangents at P and the multiplicity mP(F) are defined
by first shifting coordinates to x′ = x−x0 and y′ = y−y0, and then applying (a) to the origin
(x′,y′) = (0,0).

Exercise 2.19. Given a linear coordinate transformation that maps the origin to itself and a curve F
to F ′, show that m0(F) = m0(F ′), and that the transformation maps any tangent of F to a tangent of
F ′. In particular, despite its appearance, Definition 2.18 is independent of the choice of coordinates
on A2.

By definition, we clearly have mP(F)> 0 if and only if P∈ F . The most important case of Definition
2.18 is then mP(F) = 1, i. e. if there is a non-zero local linear approximation for F around P. There
is a special terminology for this case.

Definition 2.20 (Smooth and singular points). Let F be a curve.

(a) A point P ∈ F is called smooth or regular if mP(F) = 1. Note that F has then a unique
tangent at P, which we will denote by TPF . For P = 0, it is simply given by the linear part
F1 of F .

If P is not a smooth point, i. e. if mP(F)> 1, we say that P is a singular point or a singularity
of F . As a special case, a singularity with mP(F) = 2 such that F has (exactly) two different
tangents there is called a node.

(b) The curve F is said to be smooth or regular if all its points are smooth. Otherwise, F is
called singular.

Example 2.21. Let us consider the origin in the real curves in the following picture.
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(a) (b) (c) (d)
y− x2 y2− x2− x3 y2− x3 x2 + y2

For the case (a), the curve F = y− x2 in (a) has (no constant but) a linear term y. Hence, we have
m0(F) = 1, the origin is a smooth point of the curve, and its tangent there is T0F = y.
For the other three curves, the origin is a singular point of multiplicity 2. In (b), this singularity is
a node, since the quadratic term is y2− x2 = (y− x)(y+ x), and thus we have the two tangents y− x
and y+ x, shown as dashed lines in the picture. The curve in (c) has only one tangent y which is of
multiplicity 2. Finally, in (d) there is no tangent at all since x2 + y2 does not contain a linear factor
over R. Note that, in any case, knowing the tangents of F at the origin (which are easy to compute)
tells us to some extent what the curve looks like locally around 0.

With these notations we can now reformulate Proposition 2.17.

Corollary 2.22 (Transverse intersections). Let P be a point in the intersection of two curves F and
G. Then µP(F,G) = 1 if and only if P is a smooth point of both F and G, and TPF ̸= TPG.
We say in this case that F and G intersect transversely at P.

Remark 2.23 (Additivity of point multiplicities). Note that mP(FG) = mP(F)+mP(G). Hence,
any point that lies on at least two (not necessarily distinct) irreducible components has multiplicity
at least 2, and is thus a singular point. In particular, all points on a component of multiplicity at least
2 (in the sense of Definition 1.5 (c)) are always singular.

To check if a given curve F is smooth, i. e. whether every point P ∈ F is a smooth point of F , there
is a simple criterion that does not require to shift P to the origin first. It uses the (partial) derivatives
∂F
∂x and ∂F

∂y of F , which can be defined purely formally over an arbitrary ground field and then satisfy
the usual rules of differentiation [G1, Exercise 9.10].

Proposition 2.24 (Affine Jacobi Criterion). Let P = (x0,y0) be a point on an affine curve F.

(a) P is a singular point of F if and only if ∂F
∂x (P) =

∂F
∂y (P) = 0.

(b) If P is a smooth point of F the tangent to F at P is given by

TPF =
∂F
∂x

(P) · (x− x0)+
∂F
∂y

(P) · (y− y0).

Proof. Substituting x = x′+x0 and y = y′+y0, i. e. x′ = x−x0 and y′ = y−y0, we can consider F as
a polynomial in x′ and y′. If we expand

F = ax′+by′+ (higher order terms in x′ and y′),

then by definition F is singular at (x′,y′) = (0,0), i. e. at P, if and only if a = b = 0. But by the chain
rule of differentiation we have

a =
∂F
∂x′

(0) =
∂F
∂x

(P) and b =
∂F
∂y′

(0) =
∂F
∂y

(P),

so that (a) follows. Moreover, if F is smooth at P then its tangent is just the term of F linear in x′

and y′, i. e.

ax′+by′ =
∂F
∂x

(P) · (x− x0)+
∂F
∂y

(P) · (y− y0),

as claimed in (b). □
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Example 2.25. Consider again the real curve F = y2−x2−x3 from Example 2.21 (b). To determine
its singular points, we compute the partial derivatives

∂F
∂x

=−2x−3x2 and
∂F
∂y

= 2y.

Its common zeros are (0,0) and (− 2
3 ,0). But the latter does not lie on the curve, and so we conclude

that the origin is the only singular point of F .

Smoothness of a curve F at a point P has another important algebraic consequence: It means that the
containment of ideals containing F in OP (or in other words of ideals in OP/⟨F ⟩) can be checked
by a simple comparison of intersection multiplicities.

Proposition 2.26 (Comparing ideals using intersection multiplicities). Let P be a smooth point on
a curve F. Then for any two curves G and H that do not have a common component with F through
P we have

⟨F,G⟩ ⊂ ⟨F,H ⟩ in OP ⇔ µP(F,G)≥ µP(F,H).

In particular, we have ⟨F,G⟩= ⟨F,H ⟩ in OP if and only if µP(F,G) = µP(F,H).
03

Proof.

“⇒”: Clearly, if ⟨F,G⟩ ⊂ ⟨F,H ⟩ then µP(F,G) = dimOP/⟨F,G⟩ ≥ dimOP/⟨F,H ⟩= µP(F,H).

“⇐”: Let L be a line through P which is not the tangent TPF . Then µP(F,L) = 1 by Corollary
2.22, and hence µP(F,Ln) = n for all n ∈ N by Proposition 2.10. Let n be the maximum
number such that ⟨F,G⟩ ⊂ ⟨F,Ln ⟩ in OP (this exists since ⟨F,G⟩ ⊂ OP = ⟨F,L0 ⟩, and
⟨F,G⟩ ⊂ ⟨F,Ln ⟩ requires n≤ µP(F,G) by the direction “⇒” that we have already shown).

We claim that then ⟨F,G⟩ = ⟨F,Ln ⟩ in OP, i. e. that Ln ∈ ⟨F,G⟩. To see this, note that
⟨F,G⟩ ⊂ ⟨F,Ln ⟩ implies G = aF + bLn for some a,b ∈ OP. If we had b(P) = 0 it would
follow that b ∈ IP = ⟨F,L⟩ by Lemma 2.5 (b), i. e. b = cF + dL for some c,d ∈ OP, which
means that G = aF +(cF + dL)Ln ∈ ⟨F,Ln+1 ⟩ and thus contradicts the maximality of n.
Hence b(P) ̸= 0, i. e. b is a unit in OP, and we obtain Ln = 1

b (G−aF) ∈ ⟨F,G⟩ as desired.

Of course, now ⟨F,G⟩ = ⟨F,Ln ⟩ implies that µP(F,G) = µP(F,Ln) = n, so that we ob-
tain ⟨F,G⟩ = ⟨F,LµP(F,G) ⟩. But the same holds for H instead of G, and so the inequality
µP(F,G)≥ µP(F,H) yields

⟨F,G⟩= ⟨F,LµP(F,G) ⟩ ⊂ ⟨F,LµP(F,H) ⟩= ⟨F,H ⟩. □

Example 2.27. Proposition 2.26 is false without the smoothness assumption on F : For the real curve
F = x2−y2 = (x−y)(x+y) (i. e. the union of the two diagonals in A2, with singular point 0), G = x,
and H = y, we have ⟨F,G⟩ = ⟨x,y2 ⟩ and ⟨F,H ⟩ = ⟨y,x2 ⟩. Hence µ0(F,G) = µ0(F,H) = 2, but
⟨F,G⟩ ̸= ⟨F,H ⟩ (since y /∈ ⟨x,y2 ⟩, as otherwise we would have ⟨x,y2 ⟩= ⟨x,y⟩, in contradiction to
µ0(x,y2) = 2 ̸= 1 = µ0(x,y)).

Remark 2.28 (Geometric interpretation of smooth curves). Mainly for the ground field K = R, our
results on smooth curves have an intuitive interpretation:

(a) The Jacobi Criterion of Proposition 2.24 (a) states that P is a smooth point of a real curve
F if and only if the Implicit Function Theorem [G2, Proposition 27.9] can be applied to
the equation F = 0 around P, so that V (F) is a 1-dimensional submanifold of R2 [G2,
Definition 27.17]. Hence, in this case V (F) is locally the graph of a differentiable function
(expressing y as a function of x or vice versa), and thus we arrive at the intuitive interpretation
of smoothness as “having no sharp corners”.

(b) To interpret Proposition 2.26, let us continue the picture of (a) and consider a local (analytic)
coordinate z around P on the 1-dimensional manifold V (F). In accordance with the idea of
intersection multiplicity at the beginning of this chapter, a curve G should have intersection
multiplicity n with F at P if on F it is locally a function of the form azn in this coordinate,
with a a non-zero function at P (corresponding to a unit in OP). Now if n = µP(F,G) ≥
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µP(F,H) = m then in the same way H is of the form bzm for a function b non-zero at P, so
that bzm = H divides azn = G. This means that ⟨G⟩ ⊂ ⟨H ⟩ in OP/⟨F ⟩ (i. e. as functions
on F , a point of view that we will discuss in detail starting in Chapter 6) and thus that
⟨F,G⟩ ⊂ ⟨F,H ⟩ in OP.

(c) In fact, the analytic idea of (b) has a direct counterpart in commutative algebra that can then
be applied over arbitrary ground fields: For a smooth curve F the ring OP/⟨F ⟩ is a so-called
discrete valuation ring [G6, Chapter 12]. This means that the non-zero elements of this ring
have a valuation — a natural number that can be interpreted as the order of the zero as a
function on F , and hence as the local intersection multiplicity with F . It is then a result in
commutative algebra that the non-zero ideals in a discrete valuation ring are in one-to-one
correspondence with these valuations as above [G6, Corollary 12.17]. This is precisely the
statement of Proposition 2.26.

Exercise 2.29 (Cusps). Let P be a point on an affine curve F . We say that P is a cusp if mP(F) = 2,
there is exactly one tangent L to F at P, and µP(F,L) = 3.

(a) Give an example of a real curve with a cusp, and draw a picture of it.

(b) If F has a cusp at P, prove that F has only one irreducible component passing through P.

(c) If F and G have a cusp at P, what is the minimum possible value for the intersection multi-
plicity µP(F,G)?

Exercise 2.30.
(a) Find all singular points of the curve F = (x2+y2−1)3+10x2y2 ∈R[x,y], and determine the

multiplicities and tangents to F at these points.

(b) Show that an irreducible curve F over a field of characteristic 0 has only finitely many
singular points.

Can you find weaker assumptions on F that also imply that F has only finitely many singular
points?

(c) Show that an irreducible cubic can have at most one singular point, and that over an alge-
braically closed field this singularity must be a node or a cusp as in Exercise 2.29.


