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1. Affine Curves

In this first chapter we will introduce plane curves both from an algebraic and a geometric point of
view. As explained in the introduction, they will be given as solutions of polynomial equations. So
let us start by fixing the corresponding notations.

Rings are always assumed to be commutative with a multiplicative neutral element 1. The multi-
plicative group of units of a ring R will be denoted by R∗.

Notation 1.1 (Polynomials). Throughout these notes, K will always denote a fixed ground field. By
K[x1, . . . ,xn] we will denote the polynomial ring in n variables x1, . . . ,xn over K, i. e. the ring of finite
formal sums

f = ∑
i1,...,in∈N

ai1,...,in xi1
1 · · · · · x

in
n

with all ai1,...,in ∈ K (see e. g. [G1, Chapter 9] how this concept of “formal sums” can be defined
in a mathematically rigorous way). Note that we can regard it as an iterated univariate polynomial
ring since K[x1, . . . ,xn] = K[x1, . . . ,xn−1][xn]. Of course, for a polynomial f as above and a point
P = (c1, . . . ,cn) ∈ Kn, the value of f at P is defined as

f (P) := ∑
i1,...,in∈N

ai1,...,in ci1
1 · · · · · c

in
n ∈ K.

Unless stated otherwise, the degree of a term ai1,...,in xi1
1 · · · · · xin

n as above is meant to be the total
degree i1 + · · ·+ in in all variables together. The maximum degree occurring in a term with non-zero
coefficient of a polynomial f ̸= 0 is called the degree deg f of f . We call F homogeneous if all its
terms have the same degree.

It is easy to see that K[x1, . . . ,xn] is an integral domain, and that deg( f g) = deg f + degg holds for
all non-zero polynomials f ,g. The units of K[x1, . . . ,xn] are just the non-zero constant polynomials,
which we can identify with K∗ = K\{0}.

Fact 1.2 (Factorial rings). The polynomial ring K[x1, . . . ,xn] is a factorial ring (also called a unique
factorization domain) [G6, Proposition 8.1 and Remark 8.4]. This means that prime and irreducible
elements agree, and that every non-zero non-unit has a decomposition as a product of irreducible
polynomials in a unique way (up to permutations, and up to multiplication with units). In the fol-
lowing, we will usually use this unique factorization property without mentioning. Note however
that, as it is already the case for the integers Z, performing such factorizations in K[x1, . . . ,xn] ex-
plicitly or even determining if a given polynomial is irreducible is usually hard.

Definition 1.3 (Affine varieties).
(a) For n ∈ N we call An := An

K := Kn the affine n-space over K.

It is customary to use the different notation An for Kn here since Kn is also a K-vector space
and a ring. We will usually write An

K if we want to ignore these additional structures: For
example, addition and scalar multiplication are defined on Kn, but not on An

K . The affine
space An

K will be the ambient space for our zero loci of polynomials below.

(b) For a subset S⊂ K[x1, . . . ,xn] of polynomials we call

V (S) := {P ∈ An : f (P) = 0 for all f ∈ S} ⊂ An

the (affine) zero locus of S. Subsets of An of this form are called (affine) varieties. If
S = { f1, . . . , fk} is a finite set, we will write V (S) =V ({ f1, . . . , fk}) also as V ( f1, . . . , fk).

In these notes we will mostly restrict ourselves to zero loci of a single polynomial in two
variables. We will then usually call these variables x and y instead of x1 and x2.
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Remark 1.4. Obviously, for two polynomials f ,g ∈ K[x,y] we have . . .

(a) V ( f )∪V (g) =V ( f g), as f g(P) = 0 for a point P ∈ A2 if and only if f (P) = 0 or g(P) = 0;

(b) V ( f )∩V (g) =V ( f ,g) by definition.

One would probably expect now that a plane curve is just the zero locus of a polynomial in two
variables. However, for our purposes it turns out to be more convenient to define a (plane) curve as
such a polynomial itself rather than as its zero locus — this will simplify many statements and proofs
later on when we want to study curves algebraically, i. e. in terms of their polynomials. Often, we
will denote polynomials by capital instead of small letters if we want to think of them in this way.
However, as it is obvious that two polynomials F and G with F = λG for some λ ∈ K∗ have the
same zero locus (and thus determine the same geometric object), we incorporate this already in the
definition of a curve:

Definition 1.5 (Affine curves).

(a) An (affine plane algebraic) curve (over K) is a non-constant polynomial F ∈K[x,y] modulo
units, i. e. modulo the equivalence relation F ∼G if F = λG for some λ ∈K∗. We will write
it just as F , not indicating this equivalence class in the notation — this will not lead to any
confusion.

We call V (F) = {P ∈ A2 : F(P) = 0} the set of points of F .

(b) The degree of a curve is its degree as a polynomial. Curves of degree 1,2,3, . . . are usually
referred to as lines, quadrics/conics, cubics, and so on.

(c) A curve F is called irreducible if it is as a polynomial, and reducible otherwise. Similarly,
if F = F1

a1 · · · · ·Fak
k is the irreducible decomposition of F as a polynomial (see Fact 1.2),

we will also call this the irreducible decomposition of the curve F . The curves F1, . . . ,Fk
are then called the (irreducible) components of F and a1, . . . ,ak their multiplicities.

A curve F is called reduced if all its irreducible components have multiplicity 1.

Remark 1.6.

(a) Obviously, the notions of Definition 1.5 are well-defined, i. e. they do not change when
multiplying a polynomial with a unit in K∗. All our future constructions with curves will
also have this property, and it will be equally obvious in all these cases as well. In the
following, we will therefore not mention this fact any more.

(b) In the literature, a curve often refers to the set of points V (F) as in Definition 1.5 (a), i. e. to
the geometric object in A2 rather than to the polynomial F .

Example 1.7. Especially in the case of the ground field K = R, we will usually visualize a curve F
by drawing its set of points V (F) in the plane — although this does not contain the full information
on the curve, as we will see below.

(a) The curve x+ y is a line, and hence irreducible (as a polynomial of degree 1 cannot be a
product of two non-constant polynomials). Its square (x+ y)2 has the same set of points as
x+ y, but it is a quadric. It is neither irreducible nor reduced.

More generally, it is obvious that curves with the same irreducible components, just with
different multiplicities, have the same set of points.

(b) The quadric xy is reducible as well, but it is reduced since it has two irreducible components
x and y of multiplicity 1.

(c) In contrast to its appearance (see the picture below), the cubic F = y2 +x−x3 is irreducible:
If we had F = GH for some non-constant G and H, and thus V (F) = V (G)∪V (H) by
Remark 1.4 (a), then one of these factors would have to be a line and the other one a quadric.
But F does not contain a line as we can see from the picture.
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(d) The set of points of the real curve F = x2 + y2 + 1 is empty, but by our definition F is
nevertheless a curve — and also different from the curve x2 + y2 +2, whose set of points is
also empty. If we consider F over the complex numbers however, it has a non-empty set of
points, but it is hard to visualize as it lies in A2

C = A4
R.

(a) (c)(b)

Exercise 1.8. Prove algebraically that the curve y2 + x− x3 of Example 1.7 (c) is irreducible.

Even if we defined a curve to be a polynomial (modulo scalars), we would of course rather like to
think of it as a geometric object in A2 as in the pictures in Examples 0.1 or 1.7. For the rest of this
chapter we will therefore study to what extent the set of points V (F) determines back F , i. e. whether
we can “draw V (F) in the plane to specify F”. We have already seen two reasons why this does not
work in general:

• If a curve F is non-reduced as in Example 1.7 (a), we cannot determine the multiplicities on
its components from V (F).

• If (as in the case K = R) there are non-constant polynomials without zeros, the set of points
V (F) might be empty as in Example 1.7 (d), and thus does not determine back F .

We now want to see that these are essentially the only two problems that can arise, and simultane-
ously prove that the intersection of two curves without a common component is finite. For this, we
need two algebraic prerequisites.

Remark 1.9 (Algebraically closed fields). A field K is called algebraically closed if every non-
constant polynomial F ∈ K[x] in one variable has a zero. The most prominent example is clearly
K =C [G4, Proposition 6.20] — but it can be shown that every field is contained in an algebraically
closed one, so that considering only curves over algebraically closed fields would not be a serious
restriction. In fact, many textbooks on algebraic geometry restrict to this case altogether. In these
notes however we will at least develop the general theory for arbitrary ground fields up to Chapter
5 in order not to exclude e. g. the geometrically most intuitive case of real curves from the very
beginning.
Note that any algebraically closed field is necessarily infinite: If K = {c1, . . . ,cn} was finite, the
polynomial F = ∏

n
i=1(x− ci)+1 would have no zero.

Construction 1.10 (Quotient fields). For any integral domain R, there is an associated quotient field

QuotR =
{a

b
: a,b ∈ R with b ̸= 0

}
,

where the “fraction” a
b denotes the equivalence class of the pair (a,b) under the relation

(a,b)∼ (a′,b′) ⇔ ab′ = a′b.

It is in fact a field with the standard addition and multiplication rules for fractions. The ring R is then
a subring of QuotR by identifying a ∈ R with a

1 ∈ QuotR [G6, Example 6.5 (b)].
The easiest example is R =Z, in which case we just have QuotR =Q. For our purposes the most im-
portant example is the polynomial ring R = K[x1, . . . ,xn], for which QuotR is denoted K(x1, . . . ,xn)
and called the field of rational functions over K. Note that, despite its name, its elements are not
defined as functions, but rather as formal quotients of polynomials as e. g. x1+x2

x1−x2
∈ K(x1,x2). They

do, however, define functions on the subset of An where the denominator is non-zero.
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Lemma 1.11. Let F be an affine curve.

(a) If K is algebraically closed then V (F) is infinite.

(b) If K is infinite then A2
K\V (F) is infinite.

Proof. As F is not a constant polynomial, it has positive degree in at least one of the variables x and
y. By symmetry we may assume that this is x, so that F = anxn + · · ·+a0 for some a0, . . . ,an ∈ K[y]
with n > 0 and an ̸= 0.

Being non-zero, the polynomial an ∈ K[y] has only finitely many zeros. But K is in any case infinite
by Remark 1.9, hence there are infinitely many y∈K with an(y) ̸= 0. For each such y, the polynomial
F(x,y) is non-constant in x, so in case (a) there is an x ∈ K with F(x,y) = 0, and in case (b) there is
an x ∈ K with F(x,y) ̸= 0 (as F( · ,y) has only finitely many zeros). □

01

Proposition 1.12 (Finiteness of the intersection of curves). Let F and G be two curves without a
common component.

(a) The ideal ⟨F,G⟩ in K[x,y] contains a non-zero polynomial that depends only on x (and hence
by symmetry also a non-zero polynomial that depends only on y).

(b) The intersection V (F,G) of the two curves is finite.

Proof.

(a) By assumption, F and G are coprime in K[x,y]. We claim that they are then also coprime in
K(x)[y]. In fact, if they had a common factor in K(x)[y] then after clearing denominators we
would have aF = HF ′ and aG = HG′ for some H,F ′,G′ ∈ K[x,y] and non-zero a ∈ K[x],
where H has a positive y-degree. But then every irreducible factor of a must divide H or
both F ′ and G′ in K[x,y]. So by replacing H or both F ′ and G′ by these quotients we arrive
at a new decomposition F = HF ′ and G = HG′ with H,F ′,G′ ∈ K[x,y] and H of positive
y-degree, in contradiction to F and G being coprime in K[x,y].

Now the ring K(x)[y] as a univariate polynomial ring over a field K(x) is a principal ideal
domain [G1, Example 10.23]. So as F,G ∈ K(x)[y] are coprime we can write 1 as a linear
combination of F and G with coefficients in K(x)[y] [G1, Proposition 10.13 (b)], which
means after clearing denominators again that c = DF +EG for some D,E ∈ K[x,y] and a
non-zero c ∈ K[x]. Hence, c ∈ ⟨F,G⟩ is a non-constant polynomial that depends only on x.

(b) Continuing the above notation, if P ∈V (F,G) we have c(P) = D(P)F(P)+E(P)G(P) = 0.
This restricts the x-coordinate of all points P ∈ V (F,G) to the finitely many zeros of c. By
symmetry, we then also have only finitely many choices for the y-coordinate, i. e. V (F,G) is
finite. □

Corollary 1.13. Let F be a curve over an algebraically closed field. Then for any irreducible curve
G we have

G |F ⇔ V (G)⊂V (F).

In particular, the irreducible components of F (but not their multiplicities, see Example 1.7 (a)) can
be recovered from V (F).

Proof.

“⇒” Assume that F = GH for some curve H. If P ∈ V (G), i. e. G(P) = 0, then we also have
F(P) = G(P)H(P) = 0, and hence P ∈V (F).

“⇐” Now assume that V (G) ⊂ V (F). Then V (F,G) = V (G) is infinite by Lemma 1.11 (a). By
Proposition 1.12 (b) this means that F and G must have a common component. As G is
irreducible, this is only possible if G |F . □
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Remark 1.14 (Specifying a curve by its set of points). By Corollary
1.13, over an algebraically closed field we can specify a curve by giving
its set of points together with a multiplicity on each irreducible compo-
nent. For example, the picture on the right (where the circle has radius
1 and the numbers at the components are their multiplicities) represents
the curve (x2 + y2−1)(x− y)2. (Note however that this is a real picture,
but Corollary 1.13 would only hold over C.)

If we do not specify multiplicities in a picture, we usually mean the cor-
responding reduced curve, i. e. where all multiplicities are 1.

1

2

Notation 1.15. Due to the above correspondence between a curve F and its set of points V (F), we
will sometimes write:

(a) P ∈ F instead of P ∈V (F), i. e. F(P) = 0 (“P lies on the curve F”);

(b) F ∩G instead of V (F,G) for the points that lie on both F and G;

(c) F ∪G for the curve FG (see Remark 1.4 (a));

(d) G⊂ F instead of G |F .

Exercise 1.16 (Pythagorean triples in algebraic geometry). Let F = x2+y2−1∈K[x,y] be the “unit
circle” over K. Assume that the characteristic of K is not 2, i. e. that 1+1 ̸= 0 in K.

(a) Considering the intersection points of an arbitrary line L (with
slope t) through (−1,0) with F , show that the set of points of F
is

V (F)= {(−1,0)}∪
{(

1− t2

1+ t2 ,
2t

1+ t2

)
: t ∈ K with 1+ t2 ̸= 0

}
.

(b) Using (a), prove that the integer solutions (a,b,c) of the equa-
tion a2 + b2 = c2 (the so-called Pythagorean triples) are, up
to a permutation of a and b, exactly the triples of the form
λ (u2− v2,2uv,u2 + v2) with λ ,u,v ∈ Z.

F

L


