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9. Integral Ring Extensions

In this chapter we want to discuss a concept in commutative algebra that has its original motivation in
algebra, but turns out to have surprisingly many applications and consequences in geometry as well.
To explain its background, recall from the “Introduction to Algebra” class that the most important
objects in field theory are algebraic and finite field extensions. More precisely, if K ⊂ K′ is an
inclusion of fields an element a ∈ K′ is called algebraic over K if there is a non-zero polynomial
f ∈K[x] with coefficients in K such that f (a) = 0. The field extension K ⊂K′ is then called algebraic
if every element of K′ is algebraic over K [G3, Definition 2.1].

Of course, for an algebraic element a ∈ K′ over K there is then also a monic polynomial relation
an + cn−1an−1 + · · ·+ c0 = 0 for some n ∈ N>0 and c0, . . . ,cn−1 ∈ K, since we can just divide f by
its leading coefficient. This trivial statement actually has far-reaching consequences: it means that
we can use the equation an =−cn−1an−1−·· ·−c0 to reduce any monomial ak for k ∈N (and in fact
also the multiplicative inverses of non-zero polynomial expressions in a) to a K-linear combination
of the first n powers 1,a, . . . ,an−1, and that consequently the extension field K(a) of K generated
by a is a finite-dimensional vector space over K — we say that K ⊂ K(a) is a finite field extension
[G3, Definition 2.12 and Proposition 2.14 (b)]. This means that the field extension K ⊂K(a) is quite
easy to deal with, since we can use the whole machinery of (finite-dimensional) linear algebra for its
study.

What happens now if instead of an extension K ⊂ K′ of fields we consider an extension R ⊂ R′

of rings? We can certainly still have a look at elements a ∈ R′ satisfying a polynomial relation
cnan + cn−1an−1 + · · ·+ c0 = 0 with c0, . . . ,cn ∈ R (and not all of them being 0). But now it will in
general not be possible to divide this equation by its leading coefficient cn to obtain a monic relation.
Consequently, we can in general not use this relation to express higher powers of a in terms of lower
ones, and hence the R-algebra R[a] generated by a over R need not be a finite R-module. A simple
example for this can already be found in the ring extension Z⊂Q: for example, the rational number
a= 1

2 satisfies a (non-monic) polynomial relation 2a−1= 0 with coefficients in Z, but certainly Z[a],
which is the ring of all rational numbers with a finite binary expansion, is not a finitely generated
Z-module.

We learn from this that in the case of a ring extension R⊂ R′ we should often not consider elements
of R′ satisfying polynomial relations with coefficients in R, but rather require monic relations in the
first place. So let us start by giving the corresponding definitions.

Definition 9.1 (Integral and finite ring extensions).
(a) If R ⊂ R′ are rings, we call R′ an extension ring of R. We will also say in this case that

R⊂ R′ is a ring extension.

Note: sometimes in the literature a ring extension is meant to be any ring homomorphism
R→ R′, even if it is not injective (so that R′ is an arbitrary R-algebra as in Definition 1.23
(a)).

(b) Let R be a ring. An element a of an extension ring R′ of R is called integral over R if there
is a monic polynomial f ∈ R[x] with f (a) = 0, i. e. if there are n ∈ N>0 and c0, . . . ,cn−1 ∈ R
with an +cn−1an−1 + · · ·+c0 = 0. We say that R′ is integral over R if every element of R′ is
integral over R.

(c) A ring extension R⊂ R′ is called finite if R′ is finitely generated as an R-module.

Remark 9.2.
(a) Note that the usage of the word “integral” for the concept of Definition 9.1 (b) is completely

unrelated to the appearance of the same word in the term “integral domain”.
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(b) If R and R′ are fields, the notions of integral and finite ring extensions actually coincide
with those of algebraic and finite field extensions [G3, Definitions 2.1 and 2.12]. In fact,
for this case you might already know some of the next few results in this chapter from the
“Introduction to Algebra” class, in particular Proposition 9.5 and Lemma 9.6.

Example 9.3. Let R be a unique factorization domain, and let R′ = QuotR be its quotient field. We
claim that a ∈ R′ is integral over R if and only if a ∈ R.

In fact, it is obvious that any element of R is integral over R, so let us prove the converse. Assume
that a = p

q is integral over R with p and q coprime, i. e. there is a polynomial equation( p
q

)n
+ cn−1

( p
q

)n−1
+ · · ·+ c0 = 0

with c0, . . . ,cn−1 ∈ R. We multiply with qn to get

pn + cn−1 pn−1q+ · · ·+ c0qn = 0, i. e. pn =−q(cn−1 pn−1 + · · ·+ c0qn−1).

in R. So q | pn, which is only possible if q is a unit since p and q are coprime. Hence a = p
q ∈ R.

So in particular, if R is not a field then R′ ̸= R, and hence the ring extension R⊂ R′ is not integral.

Example 9.4 (Geometric examples of integral extensions). Let R = C[x] and R′ = R[y]/( f ) =
C[x,y]/( f ), where f ∈ R[y] is a (non-constant) polynomial relation for the additional variable y.
Geometrically, we then have R = A(X) and R′ = A(X ′) for X = A1

C and the curve X ′ in A2
C given by

the equation f (x,y) = 0. The ring extension map R→ R′ corresponds to the morphism of varieties
π : X ′ → X , (x,y) 7→ x in the sense of Construction 0.11. In the following figure we show three
examples of this setting, where we only draw the real points to keep the pictures inside A2

R.

(a) (b) (c)

X ′

X

X ′

X

X ′

X

π π π

f = y2− x2 f = xy−1 f = xy

The subtle but important difference between these examples is that in case (a) the given relation
f ∈ R[y] is monic in y, whereas in (b) and (c) it is not (with the leading term being xy). This has
geometric consequences for the inverse images π−1(x) of points x ∈ X , the so-called fibers of π:

(a) In this case, the generator y of R′ over R is integral since it satisfies the monic relation
y2−x2 = 0. In fact, Proposition 9.5 will show that this implies that the whole ring extension
R ⊂ R′ is integral. Geometrically, the monic relation means that plugging in an arbitrary
value for x will always give a quadratic equation y2− x2 = 0 for y, leading to two points in
any fiber π−1(x) (counted with multiplicities).

(b) In this example, y ∈ R′ does not satisfy a monic relation over R: considering the leading
term in y it is obvious that there are no polynomials g,h ∈ R[y] with g monic in y such that
g = h(xy−1). Hence the extension R ⊂ R′ is not integral. Geometrically, the consequence
is now that after plugging in a value for x the relation xy−1 = 0 for y is linear for x ̸= 0 but
constant for x = 0, leading to an empty fiber π−1(0) = /0 whereas all other fibers contain a
single point.

(c) This case is similar to (b): again, the ring extension R ⊂ R′ is not integral, and the relation
xy = 0 does not remain linear in y when setting x = 0. This time however, this leads to an
infinite fiber π−1(0) instead of an empty one.
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Summarizing, we would expect that a morphism of varieties corresponding to an integral ring exten-
sion is surjective with finite fibers. In fact, we will see this in Example 9.19, and thinking of integral
extensions geometrically as morphisms with this property is a good first approximation — even if
the precise geometric correspondence is somewhat more complicated (see e. g. Example 9.25).

But let us now start our rigorous study of integral and finite extensions by proving their main alge-
braic properties.

Proposition 9.5 (Integral and finite ring extensions). An extension ring R′ is finite over R if and only
if R′ = R[a1, . . . ,an] for integral elements a1, . . . ,an ∈ R′ over R.

Moreover, in this case the whole ring extension R⊂ R′ is integral.

Proof.

“⇒”: Let R′ = ⟨a1, . . . ,an ⟩ be finitely generated as an R-module. Of course, we then also have
R′ = R[a1, . . . ,an], i. e. R′ is generated by the same elements as an R-algebra. We will prove
that every element of R′ is integral over R, which then also shows the “moreover” statement.

So let a ∈ R′. As R′ is finite over R, we can apply the Cayley-Hamilton theorem of Proposi-
tion 3.25 to the R-module homomorphism ϕ : R′→ R′, x 7→ ax to obtain a monic polynomial
equation

ϕ
k + ck−1ϕ

k−1 + · · ·+ c0 = 0

in HomR(R′,R′) for some c0, . . . ,ck−1 ∈ R, and hence ak + ck−1ak−1 + · · ·+ c0 = 0 by plug-
ging in the value 1. Thus a is integral over R.

“⇐”: Let R′ = R[a1, . . . ,an] with a1, . . . ,an integral over R, i. e. every ai satisfies a monic polyno-
mial relation of some degree ri over R. Now by Lemma 1.28 every element of R′ is a poly-
nomial expression of the form ∑k1,...,kn ck1,...,kn ak1

1 · · · · · akn
n for some ck1,...,kn ∈ R, and we

can use the above polynomial relations to reduce the exponents to ki < ri for all i = 1, . . . ,n.
Hence R′ is finitely generated over R by all monomial expressions ak1

1 · · · · ·akn
n with ki < ri

for all i. □

Lemma 9.6 (Transitivity of integral and finite extensions). Let R⊂ R′ ⊂ R′′ be rings.

(a) If R⊂ R′ and R′ ⊂ R′′ are finite, then so is R⊂ R′′.

(b) If R⊂ R′ and R′ ⊂ R′′ are integral, then so is R⊂ R′′.

Proof.

(a) Let a1, . . . ,an generate R′ as an R-module, and b1, . . . ,bm generate R′′ as an R′-module. Then
every element of R′′ is of the form ∑

m
i=1 cibi for some ci ∈ R′, i. e. ∑

m
i=1

(
∑

n
j=1 ci, ja j

)
·bi for

some ci, j ∈ R. Hence the finitely many products a j bi generate R′′ as an R-module.

(b) Let a ∈ R′′. As a is integral over R′, there are n ∈ N>0 and elements c0, . . . ,cn−1 of R′

such that an + cn−1an−1 + · · ·+ c0 = 0. Then a is also integral over R[c0, . . . ,cn−1]. In ad-
dition, we know that c0, . . . ,cn−1 are integral over R. Hence Proposition 9.5 tells us that
R[c0, . . . ,cn−1,a] is finite over R[c0, . . . ,cn−1] and R[c0, . . . ,cn−1] is finite over R. Therefore
R[c0, . . . ,cn−1,a] is finite over R by (a), and thus a is integral over R by Proposition 9.5
again. □

A nice property of integral extensions is that they are compatible with quotients, localizations, and
polynomial rings in the following sense.

Lemma 9.7. Let R′ be an integral extension ring of R.

(a) If I is an ideal of R′ then R′/I is an integral extension ring of R/(I∩R).

(b) If S is a multiplicatively closed subset of R then S−1R′ is an integral extension ring of S−1R.

(c) R′[x] is an integral extension ring of R[x].
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Proof.

(a) Note that the map R/(I ∩ R)→ R′/I, a 7→ a is well-defined and injective, hence we can
regard R′/I as an extension ring of R/(I ∩R). Moreover, for all a ∈ R′ there is a monic
relation an + cn−1an−1 + · · ·+ c0 = 0 with c0, . . . ,cn−1 ∈ R, and hence by passing to the
quotient also an + cn−1 an−1 + · · ·+ c0 = 0. So a is integral over R/(I∩R).

(b) Again, the ring homomorphism S−1R→ S−1R′, a
s 7→

a
s is obviously well-defined and injec-

tive. Moreover, for a
s ∈ S−1R′ we have a monic relation an + cn−1an−1 + · · ·+ c0 = 0 with

c0, . . . ,cn−1 ∈ R, and thus also(a
s

)n
+

cn−1

s

(a
s

)n−1
+ · · ·+ c0

sn = 0.

Hence a
s is integral over S−1R.

(c) Let f = anxn + · · ·+ a0 ∈ R′[x], i. e. a0, . . . ,an ∈ R′. Then a0, . . . ,an are integral over R, so
also over R[x], and thus R[x][a0, . . . ,an] = R[a0, . . . ,an][x] is integral over R[x] by Proposition
9.5. In particular, this means that f is integral over R[x]. □

Exercise 9.8.

(a) Is
√

2+
√

2+ 1
2

3
√

3 ∈ R integral over Z?

(b) Let R′ = R[x], R = R[x2− 1] ⊂ R′, P′ = (x− 1)⊴R′, and P = P′ ∩R. Show that R′ is an
integral extension of R, but the localization R′P′ is not an integral extension of RP. Is this a
contradiction to Lemma 9.7 (b)?

(Hint: consider the element 1
x+1 .)

An important consequence of our results obtained so far is that the integral elements of a ring exten-
sion always form a ring themselves. This leads to the notion of integral closure.

Corollary and Definition 9.9 (Integral closures).

(a) Let R⊂ R′ be a ring extension. The set R of all integral elements in R′ over R is a ring with
R⊂ R⊂ R′. It is called the integral closure of R in R′. We say that R is integrally closed in
R′ if its integral closure in R′ is R.

(b) An integral domain R is called integrally closed or normal if it is integrally closed in its
quotient field QuotR.

Proof. It is clear that R⊂ R⊂ R′, so we only have to show that R is a subring of R′. But this follows
from Proposition 9.5: if a,b ∈ R′ are integral over R then so is R[a,b], and hence in particular a+b
and a ·b. □

Example 9.10. Every unique factorization domain R is normal, since by Example 9.3 the only
elements of QuotR that are integral over R are the ones in R.

In contrast to Remark 9.2 (b), note that for a field R Definition 9.9 (b) of an integrally closed domain
does not specialize to that of an algebraically closed field: we do not require that R admits no
integral extensions at all, but only that it has no integral extensions within its quotient field QuotR.
The approximate geometric meaning of this concept can be seen in the following example.

Example 9.11 (Geometric interpretation of normal domains). Let R=A(X) be the coordinate ring of
an irreducible variety X . The elements ϕ = f

g ∈ QuotR of the quotient field can then be interpreted
as rational functions on X , i. e. as quotients of polynomial functions that are well-defined except
at some isolated points of X (where the denominator g vanishes). Hence the condition of R being
normal means that every rational function ϕ satisfying a monic relation ϕn+cn−1ϕn−1+ · · ·+c0 = 0
with c0, . . . ,cn−1 ∈ R is already an element of R, so that its value is well-defined at every point of X .
Now let us consider the following two concrete examples:
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(a) Let R = C[x], corresponding to the variety X = A1
C. By Example 9.10 we know that R is

normal. In fact, this can also be understood geometrically: the only way a rational function
ϕ on A1

C can be ill-defined at a point a ∈ A1
C is that it has a pole, i. e. that it is of the

form x 7→ f
(x−a)k for some k ∈ N>0 and f ∈ QuotR that is well-defined and non-zero at a.

But then ϕ cannot satisfy a monic relation of the form ϕn + cn−1ϕn−1 + · · ·+ c0 = 0 with
c0, . . . ,cn−1 ∈ C[x] since ϕn has a pole of order kn at a which cannot be canceled by the
lower order poles of the other terms cn−1ϕn−1 + · · ·+ c0 = 0. Hence any rational function
satisfying such a monic relation is already a polynomial function, which means that R is
normal.

(b) Let X =V (y2−x2−x3)⊂A2
R and R = A(X) =R[x,y]/(y2−x2−x3).

The curve X is shown in the picture on the right: locally around the
origin (i. e. for small x and y) the term x3 is small compared to x2 and
y2, and thus X is approximatively given by (y−x)(y+x)= y2−x2≈ 0,
which means that it consists of two branches crossing the origin with
slopes ±1.

X

y

x

In this case the ring R is not normal: the rational function ϕ = y
x ∈ Quot(R)\R satisfies the

monic equation ϕ2− x−1 = y2

x2 − x−1 = x3+x2

x2 − x−1 = 0. Geometrically, the reason why
ϕ is ill-defined at 0 is not that it has a pole (i. e. tends to ∞ there), but that it approaches
two different values 1 and −1 on the two local branches of the curve. This means that ϕ2

approaches a unique value 1 at the origin, and thus has a well-defined value at this point —
leading to the monic quadratic equation for ϕ . So the reason for R not being normal is the
“singular point” of X at the origin. In fact, one can think of the normality condition geo-
metrically as some sort of “non-singularity” statement (see also Example 11.37 and Remark
12.15 (b)).

Exercise 9.12 (Integral closures can remove singularities). As in Example 9.11 (b) let us again
consider the ring R =R[x,y]/(y2−x2−x3), and let K = QuotR be its quotient field. For the element
t := y

x ∈ K, show that the integral closure R of R in K is R[t], and that this is equal to R[t]. What is
the geometric morphism of varieties corresponding to the ring extension R⊂ R?

Exercise 9.13. Let R be an integral domain, and let S⊂ R be a multiplicatively closed subset. Prove:

(a) Let R′ ⊃ R be an extension ring of R. If R is the integral closure of R in R′, then S−1R is the
integral closure of S−1R in S−1R′.

(b) If R is normal, then S−1R is normal.

(c) (Normality is a local property) If RP is normal for all maximal ideals P⊴R, then R is normal.

Exercise 9.14. Let R ⊂ R′ be an extension of integral domains, and let R be the integral closure of
R in R′.

Show that for any two monic polynomials f ,g ∈ R′[t] with f g ∈ R[t] we have f ,g ∈ R[t].

(Hint: From the “Introduction to Algebra” class you may use the fact that any polynomial over a
field K has a splitting field, so in particular an extension field L⊃ K over which it splits as a product
of linear factors [G3, Proposition 4.15].)

16
Checking whether an element a∈R′ of a ring extension R⊂R′ is integral over R can be difficult since
we have to show that there is no monic polynomial over R at all that vanishes at a. The following
lemma simplifies this task if R is a normal domain: it states that in this case it suffices to consider
only the minimal polynomial of a over the quotient field K = QuotR (i. e. the uniquely determined
monic polynomial f ∈ K[x] of smallest degree having a as a zero [G3, Definition 2.4]), since this
polynomial must already have coefficients in R if a is integral.

Lemma 9.15. Let R⊂ R′ be an integral extension of integral domains, and assume that R is normal.

(a) For any a ∈ R′ its minimal polynomial f over K = QuotR actually has coefficients in R.
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(b) If moreover a ∈ PR′ for some prime ideal P⊴R, then the non-leading coefficients of f are
even contained in P.

Proof.

(a) As a is integral over R there is a monic polynomial g ∈ R[x] with g(a) = 0. Then f |g over
K [G3, Remark 2.5], i. e. we have g = f h for some h ∈ K[x]. Applying Exercise 9.14 to the
extension R⊂ K (and R = R since R is normal) it follows that f ∈ R[x] as required.

(b) Let a = p1a1 + · · ·+ pkak for some p1, . . . , pk ∈ P and a1, . . . ,ak ∈ R′. Replacing R′ by
R[a1, . . . ,ak] we may assume by Proposition 9.5 that R′ is finite over R. Then we can apply
the Cayley-Hamilton theorem of Proposition 3.25 to ϕ : R′→ R′, x 7→ ax: since the image
of this R-module homomorphism lies in PR′, we obtain a polynomial relation

ϕ
n + cn−1ϕ

n−1 + · · ·+ c0 = 0 ∈ HomR(R′,R′)

with c0, . . . ,cn−1 ∈ P. Plugging in the value 1 this means that we have a monic polynomial
g ∈ R[x] with non-leading coefficients in P such that g(a) = 0.

By the proof of (a) we can now write g = f h, where f ∈ R[x] is the minimal polynomial of a
and h ∈ R[x]. Reducing this equation modulo P gives x n = f h in (R/P)[x]. But as R/P is an
integral domain by Lemma 2.3 (a) this is only possible if f and h are powers of x themselves
(otherwise the highest and lowest monomial in their product would have to differ). Hence
the non-leading coefficients of f lie in P. □

Example 9.16 (Integral elements in quadratic number fields). Let d ∈ Z\{0,1} be a square-free
integer. We want to compute the elements in Q(

√
d) = {a+ b

√
d : a,b ∈ Q} ⊂ C that are integral

over Z, i. e. the integral closure R of R = Z in R′ =Q(
√

d). These subrings of C play an important
role in number theory; you have probably seen them already in the “Elementary Number Theory”
class [M, Chapter 8].

It is obvious that the minimal polynomial of a+b
√

d ∈Q(
√

d)\Q over Q is

(x−a−b
√

d)(x−a+b
√

d) = x2−2ax+a2−db2.

So as Z is normal by Example 9.10 we know by Lemma 9.15 (a) (applied to the integral extension
R⊂ R) that a+b

√
d is integral over Z if and only if this polynomial has integer coefficients. Hence

R = {a+b
√

d : a,b ∈Q,−2a ∈ Z,a2−db2 ∈ Z},
which is the usual way how this ring is defined in the “Elementary Number Theory” class [M,
Definition 8.12]. Note that this is in general not the same as the ring Z+Z

√
d — in fact, one can

show that R = Z+Z
√

d only if d ̸= 1 mod 4, whereas for d = 1 mod 4 we have R = Z+Z 1+
√

d
2

[M, Proposition 8.16].

Remark 9.17 (Geometric properties of integral ring extensions). After having discussed the alge-
braic properties of integral extensions, let us now turn to the geometric ones (some of which were
already motivated in Example 9.4). So although we will continue to allow general (integral) ring
extensions R ⊂ R′, our main examples will now be coordinate rings R = A(X) and R′ = A(X ′) of
varieties X and X ′, respectively. The inclusion map i : R→ R′ then corresponds to a morphism of
varieties π : X ′→ X as in Construction 0.11 and Example 9.4.

We are going to study the contraction and extension of prime ideals by the ring homomorphism i
— by Remarks 1.18 and 2.7 this means that we consider images and inverse images of irreducible
subvarieties under π . As i is injective, i. e. R is a subring of R′, note that

• the contraction of a prime ideal P′⊴R′ is exactly (P′)c = P′∩R; and

• the extension of a prime ideal P⊴R is exactly Pe = PR′.

Moreover, by Example 2.9 (b) we know that the contraction P′∩R of a prime ideal P′⊴R′ is always
prime again, which means geometrically that the image of an irreducible subvariety X ′ under π is
irreducible. The main geometric questions that we can ask are whether conversely any prime ideal
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P⊴R is of the form P′∩R for some prime ideal P′⊴R′ (maybe with some additional requirements
about P′), corresponding to studying whether there are irreducible subvarieties of X ′ with given
image under π (and what we can say about them).

For the rest of this chapter, our pictures to illustrate such questions will always
be of the form as shown on the right: we will draw the geometric varieties and
subvarieties, but label them with their algebraic counterparts. The arrow from
the top to the bottom represents the map π , or algebraically the contraction map
P′ 7→ P′∩R on prime ideals (with the actual ring homomorphism i going in the
opposite direction). For example, in the picture on the right the point V (P′) in
X ′ for a maximal ideal P′⊴R′ is mapped to the point V (P) in X for a maximal
ideal P⊴R, which means that P′∩R = P.

P′R′

∩R

PR

There are four main geometric results on integral ring extensions in the above spirit; they are com-
monly named Lying Over, Incomparability, Going Up, and Going Down. We will treat them now in
turn. The first one, Lying Over, is the simplest of them — it just asserts that for an integral extension
R⊂ R′ every prime ideal in R is the contraction of a prime ideal in R′. In our pictures, we will always
use gray color to indicate objects whose existence we are about to prove.

Proposition 9.18 (Lying Over). Let R⊂ R′ be a ring extension, and P⊴R prime.

(a) There is a prime ideal P′⊴R′ with P′∩R = P if and only if PR′∩R⊂ P.

(b) If R⊂ R′ is integral, then this is always the case.

We say in this case that P′ is lying over P.

P′R′:

R: P

Proof.

(a) “⇒” If P′∩R = P then PR′∩R = (P′∩R)R′∩R⊂ P′R′∩R = P′∩R = P.

“⇐” Consider the multiplicatively closed set S = R\P. As PR′ ∩ S = (PR′ ∩R)\P = /0 by
assumption, Exercise 6.14 (a) implies that there is a prime ideal P′⊴R′ with PR′ ⊂ P′

and P′ ∩ S = /0. But the former inclusion implies P ⊂ PR′ ∩R ⊂ P′ ∩R and the latter
P′∩R = P′∩P⊂ P, so we get P′∩R = P as desired.

(b) Let a ∈ PR′ ∩R. Since a ∈ PR′ it follows from the Cayley-Hamilton theorem as in the first
half of the proof of Lemma 9.15 (b) that there is a monic relation an+cn−1an−1+ · · ·+c0 = 0
with c0, . . . ,cn−1 ∈ P. As moreover a ∈ R, this means that an = −cn−1an−1−·· ·− c0 ∈ P,
and thus a ∈ P as P is prime. □

Example 9.19. Let us consider the three ring extensions R′ of R = C[x] from Example 9.4 again.

R′ = C[x,y]/(xy)
(c)

R′

R P

Q′

P′

R

R′ P′

(a)
R′ = C[x,y]/(y2− x2)

P

R′

R

R′ = C[x,y]/(xy−1)
(b)

P

Recall that the extension (a) is integral by Proposition 9.5. Correspondingly, the picture above on
the left shows a prime ideal P′ lying over P, i. e. such that P′ ∩ R = P. In contrast, in case (b)
there is no prime ideal lying over P, which means by Proposition 9.18 (b) that the ring extension
R ⊂ R′ cannot be integral (as we have already seen in Example 9.4). In short, over an algebraically
closed field the restriction of the Lying Over property to maximal ideals P⊴R (i. e. to points of the
corresponding variety) means that morphisms of varieties corresponding to integral ring extensions
are always surjective.
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Of course, a prime ideal P′⊴R′ lying over a given prime ideal P⊴R is in general not unique —
there are e. g. two choices for P′ in example (a) above. The case (c) is different however: as the fiber
over P is one-dimensional, there are not only many choices for prime ideals lying over P, but also
such prime ideals P′ and Q′ with Q′ ⊊ P′ as shown in the picture above. We will prove now that
such a situation cannot occur for integral ring extensions, which essentially means that the fibers of
the corresponding morphisms have to be finite.

Proposition 9.20 (Incomparability). Let R⊂ R′ be an integral ring extension.
If P′ and Q′ are distinct prime ideals in R′ with P′ ∩R = Q′ ∩R then P′ ̸⊂ Q′

and Q′ ̸⊂ P′.

Proof. Let P′∩R = Q′∩R and P′ ⊂ Q′. We will prove that Q′ ⊂ P′ as well, so
that P′ = Q′.

P′ Q′̸⊂
̸⊃R′:

R: P

Assume for a contradiction that there is an element a ∈ Q′\P′. By Lemma 9.7 (a) we know that
R′/P′ is integral over R/(P′∩R), so there is a monic relation

an + cn−1 an−1 + · · ·+ c0 = 0 (∗)

in R′/P′ with c0, . . . ,cn−1 ∈ R. Pick such a relation of minimal degree n. Since a ∈ Q′ this relation
implies c0 ∈Q′/P′, but as c0 ∈R too we conclude that c0 ∈ (Q′∩R)/(P′∩R)= (Q′∩R)/(Q′∩R)= 0.
Hence (∗) has no constant term. But since a ̸= 0 in the integral domain R′/P′ we can then divide the
relation by a to get a monic relation of smaller degree — in contradiction to the choice of n. □

In geometric terms, the following corollary is essentially a restatement of the finite fiber property:
it says that in integral ring extensions only maximal ideals can contract to maximal ideals, i. e. that
points are the only subvarieties that can map to a single point in the target space.

Corollary 9.21. Let R⊂ R′ be an integral ring extension.

(a) If R and R′ are integral domains then R is a field if and only if R′ is a field.

(b) A prime ideal P′⊴R′ is maximal if and only if P′∩R is maximal.

Proof.

(a) “⇒” Assume that R is a field, and let P′⊴R′ be a maximal ideal. Moreover, consider the
zero ideal 0⊴R′, which is prime since R′ is an integral domain. Both ideals contract
to a prime ideal in R by Exercise 2.9, hence to 0 since R is a field. Incomparability as
in Proposition 9.20 then implies that P′ = 0. So 0 is a maximal ideal of R′, and thus R′

is a field.

“⇐” Now assume that R is not a field. Then there is a non-zero maximal ideal P⊴R. By
Lying Over as in Proposition 9.18 (b) there is now a prime ideal P′⊴R′ with P′∩R=P,
in particular with P′ ̸= 0. So R′ has a non-zero prime ideal, i. e. R′ is not a field.

(b) By Lemmas 2.3 (a) and 9.7 (a) we know that R/(P′∩R)⊂ R′/P′ is an integral extension of
integral domains, so the result follows from (a) with Lemma 2.3 (b). □

Exercise 9.22. Which of the following extension rings R′ are integral over R = C[x]?

(a) R′ = C[x,y,z]/(z2− xy);

(b) R′ = C[x,y,z]/(z2− xy,y3− x2);

(c) R′ = C[x,y,z]/(z2− xy,x3− yz).
17

Remark 9.23. In practice, one also needs “relative versions” of the Lying
Over property: let us assume that we have an (integral) ring extension R⊂ R′

and two prime ideals P⊂ Q in R. If we are now given a prime ideal P′ lying
over P or a prime ideal Q′ lying over Q, can we fill in the other prime ideal so
that P′ ⊂ Q′ and we get a diagram as shown on the right?

P′ Q′R′: ⊂

R: P ⊂ Q



9. Integral Ring Extensions 87

Although these two questions look symmetric, their behavior is in fact rather different. Let us start
with the easier case — the so-called Going Up property — in which we prescribe P′ and are looking
for the bigger prime ideal Q′. It turns out that this always works for integral extensions. The proof
is quite simple: we can reduce it to the standard Lying Over property by first taking the quotient by
P′ since this keeps only the prime ideals containing P′ by Lemma 1.21.

Proposition 9.24 (Going Up). Let R ⊂ R′ be an integral ring extension.
Moreover, let P,Q⊴R be prime ideals with P ⊂ Q, and let P′⊴R′ be prime
with P′∩R = P.

Then there is a prime ideal Q′⊴R′ with P′ ⊂ Q′ and Q′∩R = Q.

P′ Q′R′: ⊂

R: P ⊂ Q

Proof. As R′ is integral over R, we know that R′/P′ is integral over R/(P′∩R) = R/P by Lemma 9.7
(a). Now Q/P is prime by Corollary 2.4, and hence Lying Over as in Proposition 9.18 (b) implies
that there is a prime ideal in R′/P′ contracting to Q/P, which must be of the form Q′/P′ for a prime
ideal Q′⊴R′ with P′ ⊂ Q′ by Lemma 1.21 and Corollary 2.4 again. Now (Q′/P′)∩R/P = Q/P
means that Q′∩R = Q, and so the result follows. □

Example 9.25. The ring extension (a) below, which is the same as in Example 9.4 (a), shows a
typical case of the Going Up property (note that the correspondence between subvarieties and ideals
reverses inclusions, so that the bigger prime ideal Q resp. Q′ corresponds to the smaller subvariety).

R

R′ R′

R
P

Q

P′

Q′

Q
P

P′

(a) (b)

In contrast, in the extension (b) the ring

R′ = C[x,y]/I with I = (xy−1)∩ (x,y)

is the coordinate ring of the variety as in Example 9.4 (b) together with the origin. In this case, it
is easily seen geometrically that the extension R ⊂ R′ with R = C[x] satisfies the Lying Over and
Incomparability properties as explained in Example 9.19, however not the Going Up property: as
in the picture above, the maximal ideal (x,y) of the origin is the only prime ideal in R′ lying over
Q, but it does not contain the given prime ideal P′ lying over P. We see from this example that
we can regard the Going Up property as a statement about the “continuity of fibers”: if we have a
family of points in the base space specializing to a limit point (corresponding to P ⊂ Q in R) and
a corresponding family of points in the fibers (corresponding to P′), then these points in the fiber
should “converge” to a limit point Q′ over Q. So by Proposition 9.24 the extension (b) above is not
integral (which of course could also be checked directly).

Example 9.26. Let us now consider the opposite “Going Down” direction in Remark 9.23, i. e. the
question whether we can always construct the smaller prime ideal P′ from Q′ (for given P ⊂ Q of
course). Picture (a) below shows this for the extension of Example 9.4 (a).

This time the idea to attack this question is to reduce it to Lying Over by localizing at Q′ instead of
taking quotients, since this keeps exactly the prime ideals contained in Q′ by Example 6.8. Surpris-
ingly however, in contrast to Proposition 9.24 the Going Down property does not hold for general
integral extensions. The pictures (b) and (c) below show typical examples of this (in both cases it
can be checked that the extension is integral):
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Q′

glue

R′

P

R
R

R′ R′

R

P′

Q′

P

Q′

P Q
Q Q

(a) (b) (c)

• In case (b) the space corresponding to R′ has two components, of which one is only a single
point lying over Q. The consequence is that Going Down obviously fails if we choose Q′

to be this single point. In order to avoid such a situation we can require R′ to be an integral
domain, i. e. to correspond to an irreducible space.

• The case (c) is more subtle: the space R′ = C[x,y] corresponds to a (complex) plane, and
geometrically R is obtained from this by identifying the two dashed lines in the picture
above. In fact, this is just a 2-dimensional version of the situation of Example 9.11 (b) and
Exercise 9.12. Although both spaces are irreducible in this case, the singular shape of the
base space corresponding to R makes the Going Down property fail for the choices of P, Q,
and Q′ shown above: note that the diagonal line and the two marked points in the top space
are exactly the inverse image of the curve P in the base. As one might expect from Example
9.11 (b), we can avoid this situation by requiring R to be normal.

The resulting proposition is then the following.

Proposition 9.27 (Going Down). Let R ⊂ R′ be an integral ring extension.
Assume that R is normal and R′ an integral domain. Now let P ⊂ Q be prime
ideals in R, and let Q′⊴R′ be a prime ideal with Q′∩R = Q.

Then there is a prime ideal P′⊴R′ with P′ ⊂ Q′ and P′∩R = P.

P′ Q′R′: ⊂

R: P ⊂ Q

Proof. The natural map R′→ R′Q′ is injective since R′ is an integral domain. So we can compose it
with the given extension to obtain a ring extension R⊂ R′Q′ as in the picture below on the right. We
will show that there is a prime ideal in R′Q′ lying over P; by Example 6.8 it must be of the form P′Q′
for some prime ideal P′ ⊂ Q′. Since P′Q′ contracts to P′ in R′, we then have P′∩R = P as required.

To prove Lying Over for P in the extension R⊂ R′Q′ it suffices by Proposition
9.18 (a) to show that PR′Q′ ∩R⊂ P. So let a∈ PR′Q′ ∩R, in particular a = p

s for
some p ∈ PR′ and s ∈ R′\Q′. We may assume without loss of generality that
a ̸= 0. As R is normal we can apply Lemma 9.15 (b) to see that the minimal
polynomial of p over K = QuotR is of the form

f = xn + cn−1xn−1 + · · ·+ c0

for some c0, . . . ,cn−1 ∈ P. Note that as a minimal polynomial f is irreducible
over K [G3, Lemma 2.6]. But we also know that a ∈ R ⊂ K, and hence the
polynomial

Q′R′: ⊂

R: P ⊂ Q

R′Q′ : P′Q′

P′

1
an f (ax) = xn +

cn−1

a
xn−1 + · · ·+ c0

an =: xn + c′n−1 xn−1 + · · ·+ c′0

obtained from f by a coordinate transformation is irreducible over K as well. As it is obviously
monic and satisfies 1

an f (as) = 1
an f (p) = 0, it must be the minimal polynomial of s [G3, Lemma

2.6], and so its coefficients c′0, . . . ,c
′
n−1 lie in R by Proposition 9.15 (a).
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Now assume for a contradiction that a /∈ P. The equations c′n−i ai = cn−i ∈ P of elements of R then
imply c′n−i ∈ P for all i = 1, . . . ,n since P is prime. So as s ∈ R′ we see that

sn =−c′n−1 sn−1−·· ·− c′0 ∈ PR′ ⊂ QR′ ⊂ Q′R′ = Q′,

which means that s∈Q′ since Q′ is prime. This contradicts s∈R′\Q′, and thus a∈P as required. □

Exercise 9.28. Let R⊂ R′ be an arbitrary ring extension. Show:

(a) The extension R ⊂ R′ has the Going Up property if and only if for all prime ideals P′⊴R′

and P = P′∩R the natural map Spec(R′/P′)→ Spec(R/P) is surjective.

(b) The extension R⊂ R′ has the Going Down property if and only if for all prime ideals P′⊴R′

and P = P′∩R the natural map Spec(R′P′)→ Spec(RP) is surjective.


