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7. Chain Conditions

In the previous chapters we have met several finiteness conditions: an algebra can be finitely gener-
ated as in Definition 1.26 (b), a module can also be finitely generated as in Definition 3.3 (b) or have
finite length as in Definition 3.18, and in our study of Zorn’s Lemma in Remark 2.13 we discussed
whether an increasing chain of ideals in a ring has to stop after finitely many steps. Of course, this
can often make a difference: for example, a reduced algebra over a field is the coordinate ring of
a variety if and only if it is finitely generated (see Remark 1.31), and the Cayley-Hamilton theo-
rem in Proposition 3.25 together with its corollaries such as Nakayama’s Lemma in Corollary 3.27
only hold for finitely generated modules. So we will now take some time to study such finiteness
questions in more detail and see how they are related.

The key idea is to consider chains of submodules in a given module and check whether they have to
stop after finitely many terms.

Definition 7.1 (Noetherian and Artinian modules). Let M be an R-module.

(a) M is called Noetherian if every ascending chain

M0 ⊂M1 ⊂M2 ⊂ ·· ·
of submodules of M becomes stationary, i. e. if for every such chain there is an index n ∈ N
such that Mk = Mn for all k≥ n. Obviously, this is the same as saying that there is no infinite
strictly ascending chain M0 ⊊ M1 ⊊ M2 ⊊ · · · .

(b) Similarly, M is called Artinian if every descending chain

M0 ⊃M1 ⊃M2 ⊃ ·· ·
of submodules becomes stationary. Again, this is equivalent to requiring that there is no
infinite strictly descending chain M0 ⊋ M1 ⊋ M2 ⊋ · · · .

The conditions of (a) and (b) are often referred to as the ascending and descending chain condition,
respectively. The ring R itself is called Noetherian or Artinian if it has this property as an R-module;
the submodules above are then just ideals of R by Example 3.4 (a).

Example 7.2.
(a) Any field K is trivially Noetherian and Artinian as it has only the trivial ideals (0) and K.

More generally, a K-vector space V is Noetherian if and only if it is Artinian if and only if it
is finite-dimensional (i. e. finitely generated):

• If V is finite-dimensional, there can only be finite strictly ascending or descending
chains of vector subspaces of V since the dimension has to be strictly increasing or
decreasing in such a chain, respectively.

• If V is infinite-dimensional, we can obviously form a chain M0 ⊊ M1 ⊊ M2 ⊊ · · · with
dimK Mn = n for all n∈N: set M0 = 0, and Mn+1 =Mn+⟨vn+1 ⟩with vn+1 /∈Mn for all
n ∈ N. Similarly, we can also find an infinite descending chain M0 ⊋ M1 ⊋ M2 ⊋ · · ·
of infinite-dimensional subspaces of V with dimK(M/Mn) = n for all n: let M0 = M,
and Mn+1 = Mn ∩ kerϕn+1 for some linear map ϕn+1 : V → K that is not identically
zero on Mn. Then M/Mn ∼= (M/Mn+1)/(Mn/Mn+1) by Proposition 3.10 (b), and so
dimMn/Mn+1 = 1 implies dimM/Mn = n for all n by induction.

(b) The ring Z is Noetherian: if we had a strictly increasing chain of ideals I0 ⊊ I1 ⊊ I2 ⊊ · · ·
in Z, then certainly I1 ̸= 0, and thus I1 = (a) for some non-zero a ∈ Z. But there are only
finitely many ideals in Z that contain I1 since they correspond to ideals of the finite ring
Z/(a) by Lemma 1.21. Hence the chain cannot be infinitely long, and thus Z is Noetherian.
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On the other hand, Z is not Artinian, since there is an infinite decreasing chain of ideals

Z ⊋ 2Z ⊋ 4Z ⊋ 8Z ⊋ · · · .

(c) Let R =
⋃

n∈NR[x0,x1, . . . ,xn] be the polynomial ring over R in infinitely many variables.
Then R is neither Noetherian nor Artinian, since there are infinite chains of ideals

(x0)⊊ (x0,x1)⊊ (x0,x1,x2)⊊ · · · and (x0)⊋ (x2
0)⊋ (x3

0)⊋ · · · .

Exercise 7.3. For a prime number p ∈ N, consider M = Zp/Z as a Z-module (i. e. as an Abelian
group), where Zp ⊂ Q denotes the localization of Z at the element p as in Example 6.5 (c). Show
that:

(a) Every proper submodule of M is of the form
〈

1
pn

〉
.

(b) M is Artinian, but not Noetherian.

As you might expect, we will see in the following that Noetherian and Artinian modules have many
similar properties that can be obtained from one another by just reversing all inclusions — as e. g. in
the first two parts of the following lemma. However, there are also aspects in which the two concepts
of Noetherian and Artinian modules are fundamentally different (in particular when we specialize to
rings in the second half of this chapter). A first example of this is part (c) of the following equivalent
reformulation of our chain conditions, which asserts that a module is Noetherian if and only if each
of its submodules is finitely generated. There is no corresponding condition for Artinian modules,
and in fact this is one of the main reasons why in practice Noetherian modules are much more
important than Artinian ones.

Lemma 7.4 (Equivalent conditions for Noetherian and Artinian modules). Let M be an R-module.

(a) M is Noetherian if and only if every non-empty family of submodules of M has a maximal
element.

(b) M is Artinian if and only if every non-empty family of submodules of M has a minimal
element.

(c) M is Noetherian if and only if every submodule of M is finitely generated.

Proof.

(a) “⇒” Let A be a non-empty family of submodules of M. If there was no maximal element
of A, we could choose recursively a chain M0 ⊊ M1 ⊊ M2 ⊊ · · · from A, contradicting
the assumption that M is Noetherian.

“⇐” Consider a chain M0 ⊂M1 ⊂M2 ⊂ ·· · of submodules of M. By assumption, the set
A = {Mn : n ∈ N} has a maximal element Mn. But then Mk = Mn for all k ≥ n, hence
M is Noetherian.

(b) is proven in the same way as (a), just reversing all inclusions.11

(c) “⇒” Assume that we have a submodule N ≤M that is not finitely generated. Then we can
recursively pick m0 ∈ N and mn+1 ∈ N\⟨m0, . . . ,mn ⟩ for n ∈ N, and obtain a chain
M0 ⊊ M1 ⊊ M2 ⊊ · · · in M. This is a contradiction since M is Noetherian.

“⇐” Let M0 ⊂ M1 ⊂ M2 ⊂ ·· · be a chain of submodules of M. Then N =
⋃

n∈N Mn is
also a submodule of M (which can be shown in the same way as in the proof of
Corollary 2.17). So by assumption N can be generated by finitely many elements
m1, . . . ,mr ∈ N. Now by definition of N we must have mi ∈Mni for all i = 1, . . . ,r and
some n1, . . . ,nr ∈ N. With n = max{n1, . . . ,nr} we then have m1, . . . ,mr ∈Mn. Hence
N = ⟨m1, . . . ,mr ⟩ ≤Mn ≤ N, which implies Mk = Mn = N for all k ≥ n. □

Example 7.5.
(a) Any principal ideal domain R (as e. g. R = Z in Example 7.2 (b)) is Noetherian by Lemma

7.4 (c), since every ideal in R is even generated by one element.
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(b) Note that the R-algebra R[x] is a Noetherian ring by (a), but not a Noetherian R-module
by Example 7.2 (a) (as it is an infinite-dimensional R-vector space). So when applying the
chain conditions to algebras we have to be very careful whether we talk about Noetherian
resp. Artinian rings or modules, as this might make a difference! There is one important
case however in which there is no such difference:

(c) Let I be an ideal in a ring R, and let M be an R-module. Then M/IM is both an R/I-module
and an R-module, and by definition a subset of M/IM is an R/I-submodule if and only if it is
an R-submodule. So we conclude by Definition 7.1 that M/IM is Noetherian resp. Artinian
as an R/I-module if and only if it has this property as an R-module.

In particular, applying this result to M = R we see that the R-algebra R/I is Noetherian resp.
Artinian as a ring if and only if it has this property as an R-module.

Remark 7.6 (Maximal ideals in Noetherian rings). Let I be an ideal in a Noetherian ring R with
I ̸= R. Then every ascending chain of ideals in R becomes stationary, so by Remark 2.13 this means
that the existence of a maximal ideal in R that contains I is trivial and does not require Zorn’s Lemma
(for which we had to work quite a bit). In fact, this is just the statement of Lemma 7.4 (a) which tells
us that the family of all proper ideals of R containing I must have a maximal element.

Let us now prove some basic properties of Noetherian and Artinian modules.

Lemma 7.7. Let N be a submodule of an R-module M.

(a) M is Noetherian if and only if N and M/N are Noetherian.

(b) M is Artinian if and only if N and M/N are Artinian.

Proof. We just prove (a), since (b) can be proven in the same way, reversing all inclusions.

“⇒” Let M be Noetherian. First of all, any chain N0 ⊂ N1 ⊂ N2 ⊂ ·· · of submodules of N is also
a chain of submodules of M, and thus becomes stationary. Hence N is Noetherian.

Similarly, let P0 ⊂ P1 ⊂ P2 ⊂ ·· · be a chain of submodules of M/N. If we set Mk = q−1(Pk)
for all k ∈ N, where q : M→M/N is the quotient map, then M0 ⊂M1 ⊂M2 ⊂ ·· · is a chain
of submodules of M. As M is Noetherian, we have Mk = Mn for all k ≥ n with some n ∈ N.
But since q is surjective we then also have Pk = q(Mk) = q(Mn) = Pn for all k ≥ n. Hence
M/N is Noetherian.

“⇐” Let M0 ⊂M1 ⊂M2 ⊂ ·· · be an ascending chain of submodules in M. If we set Nk := Mk∩N
and Pk := (Mk +N)/N for all k ∈ N, then

N0 ⊂ N1 ⊂ N2 ⊂ ·· · and P0 ⊂ P1 ⊂ P2 ⊂ ·· ·
are chains of submodules of N and M/N, respectively. By assumption, both of them become
stationary, and hence there is an element n ∈ N such that Nk = Nn and Pk = Pn for all k ≥ n.
But then we obtain a commutative diagram for all k ≥ n

0 Nn Mn Pn 0

0 Nk Mk Pk 0

whose rows are exact by Proposition 3.10 (c) and Example 4.3 (b), and whose columns are
induced by the inclusions Mn→Mk. As the left and right vertical map are isomorphisms, so
is the middle one by Corollary 4.12, and thus we have Mk = Mn for k ≥ n as well. Hence M
is Noetherian. □

Remark 7.8.
(a) Of course, by Example 4.3 we can rephrase Lemma 7.7 by saying that for any short exact

sequence 0 −→ N −→M −→ P −→ 0 of R-modules the middle entry M is Noetherian (or
Artinian) if and only if N and P are Noetherian (or Artinian).
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(b) Let I be an ideal in a Noetherian (resp. Artinian) ring R. Combining Lemma 7.7 with Exam-
ple 7.5 (c) we see that then the quotient R/I is a Noetherian (resp. Artinian) ring as well.

Corollary 7.9. Let M and N be R-modules.

(a) The direct sum M⊕N is Noetherian if and only if M and N are Noetherian.

(b) If R is Noetherian and M is finitely generated, then M is also Noetherian.

The same statements also hold with “Noetherian” replaced by “Artinian”.

Proof. Again, we only show the statement for Noetherian modules, since the Artinian counterpart
follows in exactly the same way.

(a) By Remark 7.8 (a), this follows from the exact sequence 0−→M −→M⊕N −→ N −→ 0.

(b) Let M = ⟨m1, . . . ,mk ⟩ for some m1, . . . ,mk ∈M. Then the module homomorphism

ϕ : Rk→M, (a1, . . . ,ak) 7→ a1m1 + · · ·+akmk

is surjective, so that we have an exact sequence 0−→ kerϕ −→ Rk ϕ−→M −→ 0. Now as R
is Noetherian, so is Rk by (a), and hence also M by Remark 7.8 (a). □

Remark 7.10 (Structure Theorem for finitely generated Abelian groups). Let M be a finitely gener-
ated Abelian group, viewed as a finitely generated Z-module as in Example 3.2 (d). Of course, M
is then a Noetherian Z-module by Corollary 7.9 (b). But we can follow the idea of the proof of this
statement one step further: the Z-module kerϕ occurring in the proof is (again by Remark 7.8 (a))
finitely generated as well, and so we also find a surjective ring homomorphism ψ : Zl → kerϕ for
some l ∈ N. This results in another short exact sequence 0 −→ kerψ −→ Zl ψ−→ kerϕ −→ 0, and
thus by gluing as in Lemma 4.4 (b) in the exact sequence

0−→ kerψ −→ Zl ψ−→ Zk ϕ−→M −→ 0,

which means that M ∼= Zk/kerϕ = Zk/ imψ .

Now ψ ∈HomZ(Zl ,Zk) is just given by an integer k× l matrix by Remark 3.17 (b). Similarly to the
case of matrices over a field [G2, Proposition 16.42] one can show that it is possible to change bases
in Zl and Zk such that the matrix of ψ has non-zero entries only on the diagonal. But this means that
imψ is generated by a1e1, . . . ,akek for some a1, . . . ,ak ∈ Z, where e1, . . . ,ek denotes the standard
basis of Zk. Thus

M ∼= Zk/ imψ ∼= Z/a1Z×·· ·×Z/akZ,
and so we conclude that every finitely generated Abelian group is a product of cyclic groups. Of
course, by the Chinese Remainder Theorem [G1, Proposition 11.22] this can also be rewritten as

M ∼= Zr×Z/q1Z×·· ·×Z/qnZ
for r,n ∈ N and (not necessarily distinct) prime powers q1, . . . ,qn.

Let us now see how the finite length condition on modules is related to the concepts introduced in
this chapter.

Lemma 7.11. An R-module M is of finite length if and only if it is both Noetherian and Artinian.

Proof. If M is of finite length, then all strict chains of submodules of M are finite by Exercise 3.19
(b) and (c). So in this case M is clearly both Noetherian and Artinian.

Conversely, assume that M is both Noetherian and Artinian. Starting from M0 = 0, we try to construct
a chain M0 ⊊ M1 ⊊ M2 ⊊ · · · of submodules of M as follows: for n ∈ N let Mn+1 be a minimal
submodule of M that strictly contains Mn — as long as Mn ̸= M this works by Lemma 7.4 (b) since
M is Artinian. But as M is Noetherian as well, we cannot get such an infinite ascending chain of
submodules, and thus we conclude that we must have Mn = M for some n ∈ N. The resulting chain
0 = M0 ⊊ M1 ⊊ · · ·⊊ Mn = M is then a composition series for M, since by construction there are no
submodules between Mi−1 and Mi for all i = 1, . . . ,n. □
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Exercise 7.12. Let M be an R-module, and let ϕ : M→M be an R-module homomorphism. If M is
Noetherian (hence finitely generated) and ϕ is surjective, you already know by Corollary 3.28 that
ϕ has to be an isomorphism.

Now show that if M is Artinian and ϕ is injective, then ϕ is again an isomorphism.

(Hint: Consider the images of ϕn for n ∈ N.)

So far we have mostly considered chain conditions for general modules. For the rest of this chapter
we now want to specialize to the case of rings. In this case we can obtain stronger results, however
we will also see that this is where the Noetherian and Artinian conditions begin to diverge drastically.
So let us consider these two conditions in turn, starting with the more important case of Noetherian
rings.

The one central result on Noetherian rings is Hilbert’s Basis Theorem, which implies that “most
rings that you will meet in practice are Noetherian”.

Proposition 7.13 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then so is the polynomial
ring R[x].

Proof. Assume that R[x] is not Noetherian. Then by Lemma 7.4 (c) there is an ideal I ⊴R[x] that is
not finitely generated. We can therefore pick elements f0, f1, f2, . . . ∈ I as follows: let f0 ∈ I be a
non-zero polynomial of minimal degree, and for k ∈ N let fk+1 be a polynomial of minimal degree
in I\⟨ f0, . . . , fk ⟩.
Now for all k∈N let dk ∈N be the degree and ak ∈R the leading coefficient of fk, so that we can write
fk = ak xdk + (lower order terms). Note that dk ≤ dk+1 for all k by construction of the polynomials.
Moreover, since R is Noetherian the chain of ideals (a0) ⊂ (a0,a1) ⊂ (a0,a1,a2) ⊂ ·· · becomes
stationary, and thus we must have an+1 = c0a0+ · · ·+cnan for some n∈N and c0, . . . ,cn ∈R. We can
therefore cancel the leading term in fn+1 by subtracting a suitable linear combination of f0, . . . , fn:
in the polynomial

f ′n+1 := fn+1−
n

∑
k=0

ckxdn+1−dk fk

the xdn+1 -coefficient is an+1−c0a0−·· ·−cnan = 0. But this means that deg f ′n+1 < deg fn+1, and as
fn+1 /∈ ⟨ f0, . . . , fn ⟩ we must have f ′n+1 /∈ ⟨ f0, . . . , fn ⟩ as well. This contradicts our choice of fn+1,
proving that an ideal I as above cannot exist, and thus that R[x] is Noetherian. □

Corollary 7.14. Any finitely generated algebra over a Noetherian ring is itself a Noetherian ring.

Proof. Let R be a Noetherian ring. By Lemma 1.30, any finitely generated R-algebra is of the
form R[x1, . . . ,xn]/I for an ideal I in the polynomial ring R[x1, . . . ,xn]. Hilbert’s Basis Theorem now
implies by induction that the polynomial ring R[x1, . . . ,xn] = R[x1][x2] · · · [xn] is Noetherian. So by
Remark 7.8 (b) the quotient R[x1, . . . ,xn]/I is a Noetherian ring as well. □

Remark 7.15 (Geometric interpretation of Noetherian and Artinian rings). We have seen in Remark
1.31 that any coordinate ring A(X) of a variety X over a field K is a finitely generated K-algebra.
So by Corollary 7.14 we see that A(X) is always a Noetherian ring. In particular, by Lemma 7.4 (c)
this means that every ideal in A(X) is finitely generated, and hence that any subvariety of X can be
defined by finitely many polynomial equations.

It is also instructive to study the original chain conditions of Definition 7.1 in a geometric setting. As
the correspondence of Remark 1.10 between (radical) ideals in A(X) and subvarieties of X reverses
inclusions, the ascending chain condition on ideals for the Noetherian ring A(X) translates into a
descending chain condition on subvarieties of X , i. e. every chain

X0 ⊃ X1 ⊃ X2 ⊃ ·· ·
of subvarieties of X must become stationary. The geometric picture behind this is the following:
to make a subvariety smaller one has to drop an irreducible component or to reduce the dimension
of the subvariety (a concept that we will introduce in Chapter 11), and this process must always
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terminate since the number of components and the dimension are natural numbers. For example, in
X = A2

R we could have the following descending chain of subvarieties:

⊋ ⊋ ⊋ ⊋ ⊋ ⊋

R2 V (xy) V (y) V (y,x3− x) V (y,x2− x) V (y,x) /0

Of course, we can easily construct finite descending chains of subvarieties of A2
R of any length in

the same way, but infinite chains are impossible.

In contrast, as soon as X contains infinitely many points a1,a2,a3, . . . , it is easy to construct an
infinite strictly ascending chain of subvarieties X0 ⊊ X1 ⊊ X2 ⊊ of X by setting Xn = {ak : k ≤ n}
for all n ∈ N. As this corresponds to a strictly decreasing chain of ideals in A(X), we expect that a
coordinate ring A(X) is Artinian if and only if X is a finite collection of points — so that the Artinian
condition is a very strong one, in contrast to the Noetherian one.

12
To turn these expectations into rigorous statements, let us now study Artinian rings in detail and
prove some algebraic results that all correspond to the geometric idea that an Artinian ring R should
describe a finite union of points X . More precisely, consider the correspondence of subvarieties of
X and ideals of R as in Remark 2.7: as the only irreducible subvarieties of X are single points, we
would expect that any prime ideal of R is already maximal. Let us prove this now, together with the
fact that in an Artinian ring the zero ideal is always a product of maximal ideals — which can also
be translated into geometry by Remark 1.12 by saying that X is a union of finitely many points.

Proposition 7.16. Let R be an Artinian ring.

(a) There are (not necessarily distinct) maximal ideals P1, . . . ,Pn ⊴R such that P1 · · · · ·Pn = 0.

(b) R has only finitely many prime ideals, all of them are maximal, and occur among the
P1, . . . ,Pn in (a).

Proof.

(a) Let I = P1 · · · · ·Pn be a product of maximal ideals P1, . . . ,Pn such that I is minimal among
all ideals that can be written in this form — such a minimal element exists by Lemma 7.4
(b) since R is Artinian. We need to show that I = 0. First we note:

(i) I2 is obviously also a product of maximal ideals, and we have I2 ⊂ I. Hence I2 = I by
the minimality of I.

(ii) If P⊴R is any maximal ideal, then PI is also a product of maximal ideals with PI ⊂ I.
So again by the minimality of I we see that I = PI, which is clearly contained in P.
Hence I is contained in every maximal ideal of R.

Now let us assume for a contradiction that I ̸= 0. Then, as R is Artinian, Lemma 7.4 (b)
implies that there is a minimal ideal J⊴R with IJ ̸= 0. About this ideal we note:

• J is a principal ideal (so in particular finitely generated): there must be an element
b ∈ J with I · (b) ̸= 0, and we clearly have (b)⊂ J, so (b) = J by the minimality of J.

• IJ = J again by the minimality of J, since IJ ⊂ J and I · IJ = I2J = IJ ̸= 0 by (i).

Because of these two properties of J Nakayama’s Lemma in Corollary 3.27 gives us an
element a ∈ I with (1−a)J = 0. As J ̸= 0, this means that 1−a is not a unit in R. But then
(1−a) ̸= R, hence 1−a is contained in a maximal ideal P⊴R. But so is a ∈ I ⊂ P by (ii),
and thus we obtain the contradiction 1 = (1−a)+a ∈ P. Hence we conclude that I = 0.

(b) Let P⊴R be any prime ideal. Then Pi ⊂ P for some i = 1, . . . ,n, since otherwise there would
be elements ai ∈ Pi\P for all i, which implies a1 · · · · ·an ∈ P1 · · · · ·Pn = 0⊂ P although no
ai lies in P. But Pi is maximal, and so we must have P = Pi. □
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A somewhat surprising consequence of this proposition is that every Artinian ring is Noetherian —
a statement that is false for general modules as we have seen in Exercise 7.3:

Proposition 7.17 (Hopkins). For any ring R we have:

R is Artinian ⇔ R is Noetherian and every prime ideal of R is maximal.

Proof.

“⇒” Let R be Artinian. Then every prime ideal is maximal by Proposition 7.16 (b). Moreover, by
Proposition 7.16 (a) there are maximal ideals P1, . . . ,Pn of R giving a chain

0 = Q0 ⊂ Q1 ⊂ ·· · ⊂ Qn = R

of ideals in R, where Qi = Pi+1 ·Pi+2 · · · · ·Pn for i = 0, . . . ,n. Now for all i = 1, . . . ,n the
quotient Qi/Qi−1 = Qi/PiQi is an Artinian R-module by Lemma 7.7 (b), hence an Artinian
R/Pi-vector space by Example 7.5 (c), therefore also a Noetherian R/Pi-vector space by
Example 7.2 (a), and thus a Noetherian R-module again by Example 7.5 (c). So by induction
on i it follows from Lemma 7.7 (a) that Qi is a Noetherian R-module for all i = 0, . . . ,n. In
particular, R = Qn is Noetherian.

“⇐” Assume that R is Noetherian, but not Artinian. We have to find a prime ideal P of R that is
not maximal.

Consider the family of all ideals I of R such that R/I is not Artinian (as a ring or as an
R-module, see Example 7.5 (c)). This family is non-empty since it contains the zero ideal,
so as R is Noetherian it must have a maximal element P by Lemma 7.4 (a). Note that P is
certainly not a maximal ideal: otherwise R/P would be a field by Lemma 2.3 (b), hence
Artinian by Example 7.2 (a) — in contradiction to the choice of P.

It therefore suffices to prove that P is prime, i. e. by Lemma 2.3 (a) that S := R/P is an
integral domain. For any a ∈ R consider the exact sequence

0−→ S/ann(a) ·a−→ S−→ S/(a)−→ 0

of S-modules. As S is not Artinian, we know by Remark 7.8 (a) that at least one of the rings
S/ann(a) and S/(a) cannot be Artinian either. But since P was chosen to be maximal such
that S = R/P is not Artinian, taking a further quotient of S by a non-zero ideal must yield an
Artinian ring, and thus we conclude that ann(a) = 0 or a = 0. In other words, every non-zero
element of R/P is a non-zero-divisor, i. e. R/P is an integral domain. □

Example 7.18. Let I be a non-zero ideal in a principal ideal domain R. Then as in Example 1.4
we have I = (a) with a = pa1

1 · · · · · pan
n , where a1, . . . ,an ∈ N>0 and p1, . . . , pn are distinct prime

elements of R. We want to check the conditions of Proposition 7.17 for the ring S := R/I.

First of all, by Lemma 1.21 the ideals of S correspond to the ideals of R that contain I. These are the
ideals (b) with b |a, i. e. such that b = pb1

1 · · · · · pbn
n with bi ≤ ai for all i. In particular, S has only

finitely many ideals, which means by Definition 7.1 that S is trivially Noetherian as well as Artinian.

Moreover, since R is a principal ideal domain we have already seen in Example 2.6 (b) that every
non-zero prime ideal in R is maximal, and hence by Corollary 2.4 that every prime ideal in S is
maximal as well. Hence all three conditions of Proposition 7.17 are satisfied for S. In fact, the
maximal ideals of S are just the ideals (pi) for i = 1, . . . ,n. So the equation (p1)

a1 · · · · · (pn)
an = 0

also verifies the statement of Proposition 7.16 (a).

Example 7.19. Specializing Example 7.18 to the geometric case R = C[x], we see that

S = C[x]/( f ) with f = (x− x1)
a1 · · · · · (x− xn)

an

is an Artinian ring, where x1, . . . ,xn ∈ C are distinct and a1, . . . ,an ∈ N>0. In fact, X = V ( f ) =
{x1, . . . ,xn}⊂C is a finite collection of points, in accordance with Remark 7.15. But S is not reduced
unless a1 = · · · = an = 1 since the class of (x− x1) · · ·(x− xn) is nilpotent in S, and consequently S
is not the coordinate ring of X . Instead, the ring S remembers the local multiplicity information at
each point, i. e. the exponents a1, . . . ,an in f .
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So even if S corresponds to a finite collection of points, the structure of S is not completely deter-
mined by giving these points: it also contains some local information at each of these points. The
corresponding precise algebraic statement is that an Artinian ring is completely determined by its
localizations at all maximal ideals:

Proposition 7.20 (Structure Theorem for Artinian rings). Every Artinian ring R is a finite product
of local Artinian rings.

More precisely, if P1, . . . ,Pn are the distinct maximal ideals of R (see Proposition 7.16 (b)), then the
localizations RPi are also Artinian for all i = 1, . . . ,n, and the ring R is isomorphic to RP1×·· ·×RPn .

Proof. By Proposition 7.16 we can find k ∈ N such that Pk
1 · · · · ·Pk

n = 0. Note that Pk
1 , . . . ,P

k
n are

pairwise coprime by Exercise 2.24. Hence Pk
1 ∩ ·· · ∩Pk

n = Pk
1 · · · · ·Pk

n = 0 by Exercise 1.8, and so
the Chinese Remainder Theorem of Proposition 1.14 implies that

R ∼= R/Pk
1 ×·· ·×R/Pk

n .

As the factors R/Pk
i are clearly Artinian by Lemma 7.7 (b), it therefore only remains to be shown that

the ring R/Pk
i is isomorphic to the localization RPi for all i. In fact, it is straightforward to construct

mutually inverse ring homomorphisms, without loss of generality for i = 1:

• The ring homomorphism R→ RP1 , a 7→ a
1 contains Pk

1 in its kernel: if a ∈ Pk
1 we can choose

a j ∈ Pj\P1 for all j = 2, . . . ,n. Then u := ak
2 · · · · ·ak

n /∈ P1 since P1 is prime, and ua = a ·ak
2 ·

· · · ·ak
n ∈ Pk

1 · · · · ·Pk
n = 0. This means that a

1 = 0 in RP1 . Hence the above map gives rise to
a ring homomorphism R/Pk

1 → RP1 , a 7→ a
1 .

• Now consider the ring homomorphism R→ R/Pk
1 , a 7→ a. It maps any a ∈ R\P1 to a unit:

otherwise (a) would be contained in a maximal ideal of R/Pk
1 , which must be of the form

P/Pk
1 for a maximal ideal P ⊃ Pk

1 of R by Lemma 1.21 and Corollary 2.4. As P is prime
this means that P ⊃ P1, and hence P = P1 since P1 is maximal. But a ∈ P1/Pk

1 implies
a ∈ P1, a contradiction. By Exercise 6.12 we conclude that the above map gives us a ring
homomorphism RP1 → R/Pk

1 with a
1 7→ a. □

Example 7.21. Let us continue Example 7.18, i. e. consider the ring S = R/I for a principal ideal
domain R and I = (a) with a = pa1

1 · · · · · pan
n . In the proof of Proposition 7.20 we can then take any

k ∈ N with k ≥ ai for all i = 1, . . . ,n, and obtain

S/(pi)
k ∼= R/(a, pk

i ) = R/(pai
i )

by Example 1.4 (a). So the decomposition of S into local Artinian rings given by Proposition 7.20 is
just

S ∼= R/(pa1
1 )×·· ·×R/(pan

n ),

which by the proposition is also isomorphic to S(p1)×·· ·×S(pn).

Exercise 7.22. Let R be a Noetherian ring. Show:

(a) If R is an integral domain, every non-zero non-unit a ∈ R can be written as a product of
irreducible elements of R.

(b) For any ideal I ⊴R there is an n ∈ N such that (
√

I)n ⊂ I.

Exercise 7.23. Let S be a multiplicatively closed subset of a ring R. If R is Noetherian (resp.
Artinian), show that the localization S−1R is also Noetherian (resp. Artinian).

Exercise 7.24. Prove for any R-module M:

(a) If M is Noetherian then R/annM is Noetherian as well.

(b) If M is finitely generated and Artinian, then M is also Noetherian.

(Hint: You can reduce this to the statement of Proposition 7.17 that an Artinian ring is
Noetherian.)


