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5. Tensor Products

In the last two chapters we have developed powerful methods to work with modules and linear maps
between them. However, in practice bilinear (or more generally multilinear) maps are often needed
as well, so let us have a look at them now. Luckily, it turns out that to study bilinear maps we do
not have to start from scratch, but rather can reduce their theory to the linear case. More precisely,
for given R-modules M and N we will construct another module named M⊗N — the so-called
tensor product of M and N — such that bilinear maps from M×N to any other R-module P are in
natural one-to-one correspondence with linear maps from M⊗N to P. So instead of bilinear maps
from M×N we can then always consider linear maps from the tensor product, and thus use all the
machinery that we have developed so far for homomorphisms.

As the construction of this tensor product is a bit lengthy, let us first give an easy example that should
show the idea behind it.

Example 5.1 (Idea of tensor products). Let M and N be finitely generated free modules over a ring
R, and choose bases B = (b1, . . . ,bm) and C = (c1, . . . ,cn) of M and N, respectively. Then every
bilinear map α : M×N→ P to a third R-module P satisfies

α(λ1b1 + · · ·+λmbm,µ1c1 + · · ·+µncn) =
m

∑
i=1

n

∑
j=1

λiµ j α(bi,c j) (∗)

for all λ1, . . . ,λm,µ1, . . . ,µn ∈ R. Hence α is uniquely determined by specifying the values
α(bi,c j) ∈ P. Conversely, any choice of these values gives rise to a well-defined bilinear map
α : M×N→ P by the above formula.

Now let F be a free R-module of rank m ·n. We denote a basis of this space by bi⊗c j for i = 1, . . . ,m
and j = 1, . . . ,n — so at this point this is just a name for a basis of this module, rather than an
actual operation between elements of M and N. By the same argument as above, a linear map
ϕ : F → P can then be specified uniquely by giving arbitrary images ϕ(bi⊗ c j) ∈ P of the basis
elements [G2, Corollary 16.27]. Putting both results together, we see that there is a one-to-one
correspondence between bilinear maps α : M×N → P and linear maps ϕ : F → P, given on the
bases by α(bi,c j) = ϕ(bi⊗ c j): both maps can be specified by giving m ·n arbitrary elements of P.
So in the above sense F is a tensor product of M and N.

If M and N are no longer free, but still finitely generated, we can at least pick generators (b1, . . . ,bm)
and (c1, . . . ,cn) of M and N, respectively. Then (∗) shows that any bilinear map α : M×N → P is
still determined by the values α(bi,c j). But these values can no longer be chosen independently;
they have to be compatible with the relations among the generators. For example, if we have the
relation 2b1 + 3b2 = 0 in M, we must have 2α(b1,c j)+ 3α(b2,c j) = 0 for all j in order to get a
well-defined bilinear map α . For the tensor product, this means the following: if G is the submodule
of F generated by all relations — so in our example we would take 2b1⊗ c j +3b2⊗ c j for all j —
then bilinear maps α : M×N→ P now correspond exactly to those linear maps ϕ : F → P that are
zero on G. As these are the same as linear maps from F/G to P, we can now take F/G to be our
tensor product of M and N.

In fact, this idea of the construction of the tensor product should be clearly visible in the proof
of Proposition 5.5 below. The main difference will be that, in order to avoid unnatural choices of
generators, we will just take all elements of M and N as a generating set. This will lead to a huge
module F , but also to a huge submodule G of relations among these generators, and so the quotient
F/G will again be what we want.

07
But let us now see how to obtain the tensor product M⊗N rigorously. There are two options for this:
we can either construct it directly and then prove its properties, or define it to be a module having the
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desired property — namely that linear maps from M⊗N are the same as bilinear maps from M×N
— and show that such an object exists and is uniquely determined by this property. As this property
is actually much more important than the technical construction of M⊗N, we will take the latter
approach.

Definition 5.2 (Tensor products). Let M, N, and P be R-modules.

(a) A map α : M×N → P is called R-bilinear if α( · ,n) : M → P and α(m, ·) : N → P are
R-linear for all m ∈M and n ∈ N.

(b) A tensor product of M and N over R is an R-module T together
with a bilinear map τ : M×N→ T such that the following universal
property holds: for every bilinear map α : M×N → P to a third
module P there is a unique linear map ϕ : T → P such that α = ϕ ◦τ ,
i. e. such that the diagram on the right commutes. The elements of a
tensor product are called tensors.

M×N P

T

α

τ
ϕ

Remark 5.3. In the above notation, Definition 5.2 (b) just means that there is a one-to-one corre-
spondence

{bilinear maps M×N→ P} 1:1←→ {homomorphisms T → P}

α 7−→ ϕ

ϕ ◦ τ ←−7 ϕ

as explained in the motivation above.

Proposition 5.4 (Uniqueness of tensor products). A tensor product is unique
up to unique isomorphism in the following sense: if T1 and T2 together with
bilinear maps τ1 : M×N→ T1 and τ2 : M×N→ T2 are two tensor products
for M and N over R, there is a unique R-module isomorphism ϕ : T1 → T2
such that τ2 = ϕ ◦ τ1.

M×N T2

T1

τ2

τ1
ϕ

Proof. Consider the universal property of Definition 5.2 (b) for the first tensor product: as τ2 : M×
N → T2 is bilinear, there is a unique morphism ϕ : T1 → T2 with τ2 = ϕ ◦ τ1. In the same way,
reversing the roles of the tensor products we get a unique morphism ψ : T2→ T1 with τ1 = ψ ◦ τ2.

Now apply the universal property for the first tensor product again, this time
for the bilinear map τ1 : M×N → T1 as shown on the right. Note that we
have ψ ◦ϕ ◦ τ1 = ψ ◦ τ2 = τ1 as well as idT1 ◦τ1 = τ1, so that both ψ ◦ϕ

and idT1 make the diagram commute. Hence, by the uniqueness part of the
universal property we conclude that ψ ◦ϕ = idT1 . In the same way we see
that ϕ ◦ψ = idT2 , and thus ϕ is an isomorphism.

M×N T1

T1

τ1

τ1
id

ψ ◦ϕ

□

Proposition 5.5 (Existence of tensor products). Any two R-modules have a tensor product.

Proof. Let M and N be R-modules. We denote by F the R-module of all finite formal linear combi-
nations of elements of M×N, i. e. formal sums of the form

a1 (m1,n1)+ · · ·+ak (mk,nk)

for k ∈ N, a1, . . . ,ak ∈ R, and distinct (mi,ni) ∈ M×N for i = 1, . . . ,k. More precisely, F can be
modeled as the set of maps from M×N to R that have non-zero values at most at finitely many
elements, where the values at these elements (m1,n1), . . . ,(mk,nk) ∈ M×N are a1, . . . ,ak in the
above notation. In this picture, the R-module structure of F is then given by pointwise addition and
scalar multiplication. It is more intuitive however to think of the elements of F as linear combinations
of elements of M×N as above (rather than as functions from M×N to R), and so we will use this
notation in the rest of the proof.

Note that the various elements (m,n) ∈ M×N are by definition all independent in F — e. g. for
given a ∈ R, m ∈ M, and n ∈ N the linear combinations a(m,n), 1(am,n), and 1(m,an) are in
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general all different elements of F . In order to construct the tensor product we now want to enforce
just enough relations so that the formal linear combinations become bilinear: let G be the submodule
of F generated by all expressions

(m1 +m2,n)− (m1,n)− (m2,n), (am,n)−a(m,n),

(m,n1 +n2)− (m,n1)− (m,n2), and (m,an)−a(m,n)

for all a ∈ R, m,m1,m2 ∈M, and n,n1,n2 ∈ N, and set T := F/G. Then the map

τ : M×N→ T, (m,n) 7→ (m,n)

is R-bilinear by the very definition of these relations.

We claim that T together with τ is a tensor product for M and N over R. So to check the universal
property let α : M×N→ P be an R-bilinear map. Then we can define a homomorphism ϕ : T → P
by setting ϕ

(
(m,n)

)
:= α(m,n) and extending this by linearity, i. e.

ϕ
(
a1 (m1,n1)+ · · ·+ak (mk,nk)

)
= a1 α(m1,n1)+ · · ·+ak α(mk,nk).

Note that ϕ is well-defined since α is bilinear, and we certainly have α = ϕ ◦ τ . Moreover, it is also
obvious that setting ϕ

(
(m,n)

)
= α(m,n) is the only possible choice such that α = ϕ ◦ τ . Hence the

universal property is satisfied, and T together with τ is indeed a tensor product. □

Notation 5.6 (Tensor products). Let M and N be R-modules. By Propositions 5.4 and 5.5 there is
a unique tensor product of M and N over R up to isomorphism, i. e. an R-module T together with
a bilinear map τ : M×N → T satisfying the universal property of Definition 5.2 (b). We write T
as M⊗R N (or simply M⊗N if the base ring is understood), and τ(m,n) as m⊗ n. The element
m⊗n ∈M⊗N is often called the tensor product of m and n.

Remark 5.7.
(a) Tensors in M ⊗N that are of the form m⊗ n for m ∈ M and n ∈ N are called pure or

monomial. As we can see from the proof of Proposition 5.5, not every tensor in M⊗N
is pure — instead, the pure tensors generate M⊗N as an R-module, i. e. a general element of
M⊗N can be written as a finite linear combination ∑

k
i=1 ai (mi⊗ni) for k ∈N, a1, . . . ,ak ∈ R,

m1, . . . ,mk ∈M, and n1, . . . ,nk ∈ N.

Note that these generators are not independent, so that there are in general many different
ways to write a tensor as a linear combination of pure tensors. This makes it often a non-
trivial task to decide whether two such linear combinations are the same tensor or not.

(b) The tensor product of two elements of M and N is bilinear by Definition 5.2 (b), i. e. we have

(m1 +m2)⊗n = m1⊗n+m2⊗n and a(m⊗n) = (am)⊗n

in M⊗N for all a ∈ R, m,m1,m2 ∈ M, and n ∈ N, and similarly for the second factor. In
fact, the tensor product has been defined in such a way that the relations among tensors are
exactly those bilinear ones.

(c) Of course, using multilinear instead of bilinear maps, we can also define tensor products
M1⊗·· ·⊗Mk of more than two modules in the same way as above. We will see in Exercise
5.9 however that the result is nothing but a repeated application of the tensor product for
bilinear maps.

Before we give some examples of tensor product spaces, let us first prove a few simple properties
that will also make the study of the examples easier.

Lemma 5.8. For any R-modules M, N, and P there are natural isomorphisms

(a) M⊗N ∼= N⊗M;

(b) M⊗R∼= M;

(c) (M⊕N)⊗P∼= (M⊗P)⊕ (N⊗P).
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Proof. The strategy for all three proofs is the same: using the universal property of Definition 5.2
(b) we construct maps between the tensor products from bilinear maps, and then show that they are
inverse to each other.

(a) The map M×N→ N⊗M, (m,n) 7→ n⊗m is bilinear by Remark 5.7 (b), and thus induces a
(unique) linear map

ϕ : M⊗N→ N⊗M with ϕ(m⊗n) = n⊗m for all m ∈M and n ∈ N

by the universal property of M⊗N. In the same way we get a morphism ψ : N⊗M→M⊗N
with ψ(n⊗m) = m⊗ n. Then (ψ ◦ϕ)(m⊗ n) = m⊗ n for all m ∈ M and n ∈ N, so ψ ◦ϕ

is the identity on pure tensors. But the pure tensors generate M⊗N, and so we must have
ψ ◦ϕ = idM⊗N . In the same way we see that ϕ ◦ψ = idN⊗M . Hence ϕ is an isomorphism.

(b) From the bilinear map M×R→M, (m,a) 7→ am we obtain a linear map

ϕ : M⊗R→M with ϕ(m⊗a) = am for all m ∈M and a ∈ R

by the universal property. Furthermore, there is a linear map ψ : M→M⊗R, m 7→ m⊗ 1.
As

(ψ ◦ϕ)(m⊗a) = am⊗1 = m⊗a and (ϕ ◦ψ)(m) = m

for all m ∈M and a ∈ R, we conclude as in (a) that ϕ is an isomorphism.

(c) The bilinear map (M⊕N)×P→ (M⊗P)⊕ (N⊗P), ((m,n), p) 7→ (m⊗ p,n⊗ p) induces a
linear map

ϕ : (M⊕N)⊗P→ (M⊗P)⊕ (N⊗P) with ϕ((m,n)⊗ p) = (m⊗ p,n⊗ p)

as above. Similarly, we get morphisms M⊗P→ (M⊕N)⊗P with m⊗ p 7→ (m,0)⊗ p and
N⊗P→ (M⊕N)⊗P with n⊗ p 7→ (0,n)⊗ p, and thus by addition a linear map

ψ : (M⊗P)⊕ (N⊗P)→ (M⊕N)⊗P with ψ(m⊗ p,n⊗q) = (m,0)⊗ p+(0,n)⊗q.

Is is verified immediately that ϕ and ψ are inverse to each other on pure tensors, and thus
also on the whole tensor product space. □

Exercise 5.9 (Associativity of tensor products). Let M, N, and P be three R-modules. Prove that
there are natural isomorphisms

M⊗N⊗P∼= (M⊗N)⊗P∼= M⊗ (N⊗P)

where M⊗N⊗P is the tensor product constructed from trilinear maps as in Remark 5.7 (c).

Example 5.10.
(a) Let M and N be free R-modules of ranks m and n, respectively. Then M ∼= Rm and N ∼= Rn,

and so by Lemma 5.8 we have

M⊗N ∼= Rm⊗ (R⊕·· ·⊕R︸ ︷︷ ︸
n times

)∼= (Rm⊗R)⊕·· ·⊕ (Rm⊗R)∼= Rm⊕·· ·⊕Rm ∼= Rmn,

as expected from Example 5.1. So after a choice of bases the elements of M⊗N can be
described by m×n-matrices over R.

(b) Let I and J be coprime ideals in a ring R. Then there are elements a ∈ I and b ∈ J with
a+ b = 1, and so we obtain in the tensor product R/I⊗R/J for all monomial tensors r⊗ s
with r,s ∈ R

r⊗ s = (a+b)(r⊗ s) = ar⊗ s+ r⊗bs = 0

since ar = 0 ∈ R/I and bs = 0 ∈ R/J. But these monomial tensors generate the tensor
product, and so we conclude that R/I⊗R/J = 0. As a concrete example, we get Zp⊗ZZq = 0
for any two distinct primes p and q.

This shows that (in contrast to (a)) a tensor product space need not be “bigger” than its
factors, and might be 0 even if none of its factors are.
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(c) In the tensor product Z⊗ZZ2 we have

2⊗1 = 1⊗2 = 0

by bilinearity. However, if we now consider 2⊗ 1 as an element of 2Z⊗Z Z2, the above
computation is invalid since 1 /∈ 2Z. So is it still true that 2⊗1 = 0 in 2Z⊗ZZ2?

We can answer this question with Lemma 5.8 (b): we know that 2Z is isomorphic to Z
as a Z-module by sending 2 to 1, and so 2Z⊗Z Z2 is isomorphic to Z⊗Z Z2 ∼= Z2 by the
map ϕ : 2Z⊗Z Z2→ Z2, 2a⊗ b 7→ ab. But now ϕ(2⊗ 1) = 1 ̸= 0, and so indeed we have
2⊗1 ̸= 0 in 2Z⊗Z2.

The conclusion is that, when writing down tensor products m⊗n, we have to be very careful
to specify which tensor product space we consider: if n ∈ N and m lies in a submodule M′

of a module M, it might happen that m⊗ n is non-zero in M′⊗N, but zero in M⊗N. In
other words, for a submodule M′ of M it is not true in general that M′⊗N is a submodule of
M⊗N in a natural way! We will discuss this issue in more detail in Proposition 5.22 (b) and
Remark 5.23.

Exercise 5.11. Compute the tensor products Q/Z⊗ZQ/Z, Q⊗ZQ, C⊗RC, and Q[x]⊗QC.

Exercise 5.12. Assume that we have n rectangles R1, . . . ,Rn in the
plane, of size ai × bi for i = 1, . . . ,n, that fit together to form a
rectangle R of size a×b as in the picture on the right. Prove:

(a) a⊗b = ∑
n
i=1 ai⊗bi in R⊗QR.

(b) If each of the rectangles R1, . . . ,Rn has at least one side
with a rational length, then R must also have at least one
side with a rational length. a

b
R1

R2

R3
R4

R5

Exercise 5.13 (Dual vector spaces). Let V and W be vector spaces over a field K. We call V ∗ :=
HomK(V,K) the dual vector space to V . Moreover, denote by BLF(V ) the vector space of bilinear
forms V ×V → K.

(a) Show that there are (natural, i. e. basis-independent) linear maps

Φ : V ∗⊗W → Hom(V,W ) such that Φ(ϕ⊗w)(v) = ϕ(v) ·w,
Ψ : V ∗⊗V ∗→ BLF(V ) such that Ψ(ϕ⊗ψ)(v,v′) = ϕ(v) ·ψ(v′),

T : V ∗⊗V → K such that T (ϕ⊗ v) = ϕ(v).

(b) Prove that Φ and Ψ are injective.

(c) Prove that Φ and Ψ are in fact isomorphisms if V and W are finite-dimensional, but not in
general for arbitrary vector spaces.

(d) Assume that dimK V = n < ∞, so that V ∗⊗V is naturally isomorphic to HomK(V,V ) by (c),
which in turn is isomorphic to Mat(n× n,K) in the standard way after choosing a basis of
V . Using these isomorphisms, T becomes a linear map Mat(n×n,K)→ K that is invariant
under a change of basis. Which one?

08
To define homomorphisms between tensor products the following construction will be useful.

Construction 5.14 (Tensor product of homomorphisms). Let ϕ : M → N and ϕ ′ : M′ → N′ be
two homomorphisms of R-modules. Then the map M×M′→ N⊗N′, (m,m′) 7→ ϕ(m)⊗ϕ ′(m′) is
bilinear, and thus by the universal property of the tensor product gives rise to a homomorphism

ϕ⊗ϕ
′ : M⊗M′→ N⊗N′ such that (ϕ⊗ϕ

′)(m⊗m′) = ϕ(m)⊗ϕ
′(m′)

for all m ∈M and m′ ∈M′. We call ϕ⊗ϕ ′ the tensor product of ϕ and ϕ ′.
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Remark 5.15. Note that for ϕ ∈ HomR(M,N) and ϕ ′ ∈ HomR(M′,N′) we have already defined a
tensor product ϕ ⊗ϕ ′ as an element of HomR(M,N)⊗R HomR(M′,N′) in Notation 5.6 — whereas
Construction 5.14 gives an element of HomR(M⊗R M′,N⊗R N′). In fact, it is easy to see by the
universal property of the tensor product that there is a natural homomorphism

HomR(M,N)⊗R HomR(M′,N′)→ HomR(M⊗R M′,N⊗R N′)

that sends ϕ ⊗ ϕ ′ in the sense of Notation 5.6 to the morphism of Construction 5.14. It should
therefore not lead to confusion if we denote both constructions by ϕ⊗ϕ ′.

One application of tensor products is to extend the ring of scalars for a given module. For vector
spaces, this is a process that you know very well: suppose that we have e. g. a real vector space V
with dimRV = n < ∞ and want to study the eigenvalues and eigenvectors of a linear map ϕ : V →V .
We then usually set up the matrix A ∈Mat(n×n,R) corresponding to ϕ in some chosen basis, and
compute its characteristic polynomial. Often it happens that this polynomial does not split into linear
factors over R, and that we therefore want to pass from the real to the complex numbers.

But while it is perfectly possible to consider A as a complex matrix in Mat(n×n,C) instead and talk
about complex eigenvalues and eigenvectors of A, it is not clear what this means in the language of
the linear map ϕ: in the condition ϕ(x) = λx for an eigenvector of ϕ it certainly does not make sense
to take x to be a “complex linear combination” of the basis vectors, since such an element does not
exist in V , and so ϕ is not defined on it. We rather have to extend V first to a complex vector space,
and ϕ to a C-linear map on this extension. It turns out that the tensor product of V with C over R is
exactly the right construction to achieve this in a basis-independent language.

Construction 5.16 (Extension of scalars). Let M be an R-module, and R′ an R-algebra (so that R′

is a ring as well as an R-module). Moreover, for any a ∈ R′ we denote by µa : R′→ R′, s 7→ as the
multiplication map, which is obviously a homomorphism of R-modules. If we then set MR′ := M⊗R
R′, we obtain a scalar multiplication with R′ on MR′

R′×MR′ → MR′

(a,m⊗ s) 7→ a · (m⊗ s) := (1⊗µa)(m⊗ s) = m⊗ (as)

which turns MR′ into an R′-module. We say that MR′ is obtained from M by an extension of scalars
from R to R′. Note that any R-module homomorphism ϕ : M→ N then gives rise to an “extended”
R′-module homomorphism ϕR′ := ϕ⊗ id : MR′ → NR′ .

Example 5.17 (Complexification of a real vector space). Let V be a real vector space. Extending
scalars from R to C, we call VC = V ⊗RC the complexification of V . By Construction 5.16, this is
now a complex vector space.

Let us assume for simplicity that V is finitely generated, with basis (b1, . . . ,bn). Then V ∼= Rn by an
isomorphism that maps bi to the i-th standard basis vector ei for i = 1, . . . ,n, and consequently

VC = V ⊗RC ∼= Rn⊗RC ∼= (R⊗RC)n ∼= Cn

as R-modules by Lemma 5.8. But by definition of the scalar multiplication with C from Construction
5.16 this is also a C-module homomorphism, and thus an isomorphism of complex vector spaces.
Moreover, bi⊗1 maps to ei under this chain of isomorphisms for all i, and so as expected the vectors
b1⊗1, . . . ,bn⊗1 form a basis of the complexified vector space VC.

Finally, let us consider a linear map ϕ : V → V described by the matrix A ∈ Mat(n× n,R) with
respect to the basis (b1, . . . ,bn), i. e. we have ϕ(bi) = ∑

n
j=1 a j,ib j for all i. Then ϕC : VC→VC from

Construction 5.16 is an endomorphism of the complexified vector space, and since

ϕC(bi⊗1) = ϕ(bi)⊗1 =
n

∑
j=1

a j,i (b j⊗1)

we see that the matrix of ϕC with respect to the basis (b1⊗ 1, . . . ,bn⊗ 1) is precisely A again, just
now considered as a complex matrix.
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Of course, the same constructions can not only be used to pass from the real to the complex numbers,
but also for any field extension.

Exercise 5.18. Let M and N be R-modules, and R′ an R-algebra. Show that the extension of scalars
commutes with tensor products in the sense that there is an isomorphism of R′-modules

(M⊗R N)R′
∼= MR′ ⊗R′ NR′ .

In Construction 5.16 we have considered the case when one of the two factors in a tensor product
over a ring R is not only an R-module, but also an R-algebra. If both factors are R-algebras, we can
say even more: in this case, the resulting tensor product will also be an R-algebra in a natural way:

Construction 5.19 (Tensor product of algebras). Let R be a ring, and let R1 and R2 be R-algebras.
Then the map R1 × R2 × R1 × R2 → R1 ⊗ R2, (s, t,s′, t ′) 7→ (ss′)⊗ (tt ′) is multilinear, and so by
the universal property of the tensor product (and its associativity as in Exercise 5.9) it induces a
homomorphism

(R1⊗R2)⊗ (R1⊗R2)→ R1⊗R2 with (s⊗ t)⊗ (s′⊗ t ′) 7→ (ss′)⊗ (tt ′)

for all s,s′ ∈ R1 and t, t ′ ∈ R2. Again by the universal property of the tensor product this now
corresponds to a bilinear map

(R1⊗R2)× (R1⊗R2)→ R1⊗R2 with (s⊗ t,s′⊗ t ′) 7→ (s⊗ t) · (s′⊗ t ′) := (ss′)⊗ (tt ′).

It is obvious that this multiplication makes R1⊗R2 into a ring, and thus into an R-algebra. So the
tensor product of two R-algebras has again a natural structure of an R-algebra.

Example 5.20 (Multivariate polynomial rings as tensor products). Let R be a ring. We claim that
R[x,y]∼= R[x]⊗R R[y] as R-algebras, i. e. that polynomial rings in several variables can be thought of
as tensor products of polynomial rings in one variable.

In fact, there are R-module homomorphisms

ϕ : R[x]⊗R R[y]→ R[x,y], f ⊗g 7→ f g

(by the universal property of the tensor product) and

ψ : R[x,y] 7→ R[x]⊗R[y], ∑
i, j

ai, jxiy j 7→∑
i, j

ai, jxi⊗ y j.

As

(ψ ◦ϕ)(xi⊗ y j) = ψ(xiy j) = xi⊗ y j

and (ϕ ◦ψ)(xiy j) = ϕ(xi⊗ y j) = xiy j

for all i, j ∈ N and these elements xi⊗ y j and xiy j generate R[x]⊗R R[y] and R[x,y] as an R-module,
respectively, we see that ϕ and ψ are inverse to each other. Moreover, ϕ is also a ring homomorphism
with the multiplication in R[x]⊗R R[y] of Construction 5.19, since

ϕ(( f ⊗g) · ( f ′⊗g′)) = ϕ(( f f ′)⊗ (gg′)) = f f ′gg′ = ϕ( f ⊗g) ·ϕ( f ′⊗g′).

Hence R[x,y]∼= R[x]⊗R R[y] as R-algebras.

Exercise 5.21.
(a) Let I and J be ideals in a ring R. Prove that R/I⊗R R/J ∼= R/(I + J) as R-algebras.

(b) Let X ⊂An
K and Y ⊂Am

K be varieties over a field K, so that X×Y ⊂ Kn+m. Show that X×Y
is again a variety, and A(X×Y )∼= A(X)⊗K A(Y ) as K-algebras.

Finally, to conclude this chapter we want to study how tensor products behave in exact sequences.
The easiest way to see this is to trace it back to Exercise 4.9, in which we applied HomR( ·N) to an
exact sequence.

Proposition 5.22 (Tensor products are right exact).
(a) For any R-modules M, N, and P we have Hom(M,Hom(N,P))∼= Hom(M⊗N,P).
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(b) Let

M1
ϕ1−→M2

ϕ2−→M3 −→ 0

be an exact sequence of R-modules. Then for any R-module N the sequence

M1⊗N
ϕ1⊗id−→ M2⊗N

ϕ2⊗id−→ M3⊗N −→ 0

is exact as well.

Proof.

(a) A natural isomorphism can be constructed by identifying α ∈ Hom(M,Hom(N,P)) with
β ∈ Hom(M⊗N,P), where

α(m)(n) = β (m⊗n) ∈ P

for all m ∈ M and n ∈ N. Note that this equation can be used to define α in terms of β to
get a map Hom(M⊗N,P)→ Hom(M,Hom(N,P)), and also (by the universal property of
the tensor product) to define β in terms of α in order to get a map in the opposite direction.
Obviously, these two maps are then R-linear and inverse to each other.

(b) Starting from the given sequence, Exercise 4.9 (a) gives us an exact sequence

0−→ Hom(M3,Hom(N,P))−→ Hom(M2,Hom(N,P))−→ Hom(M1,Hom(N,P))

for all R-modules N and P, where the two non-trivial maps send αi ∈ Hom(Mi,Hom(N,P))
to αi−1 ∈ Hom(Mi−1,Hom(N,P)) with αi−1(mi−1)(p) = αi(ϕi−1(mi−1))(p) for i ∈ {2,3}
and all m1 ∈M1, m2 ∈M2, p ∈ P. Using the isomorphism of (a), this is the same as an exact
sequence

0−→ Hom(M3⊗N,P)−→ Hom(M2⊗N,P)−→ Hom(M1⊗N,P),

where the maps are now βi 7→ βi−1 with

βi−1(mi−1⊗ p) = βi(ϕi−1(mi−1)⊗ p) = βi((ϕi−1⊗ id)(mi−1⊗ p))

for i ∈ {2,3}. But using Exercise 4.9 (a) again, this means that the sequence

M1⊗N
ϕ1⊗id−→ M2⊗N

ϕ2⊗id−→ M3⊗N −→ 0

is also exact. □

Remark 5.23. Similarly to the case of Hom( · ,N) in Exercise 4.9, the statement of Proposition 5.22
(b) is in general not true with an additional zero module at the left, i. e. if ϕ1 is injective it does not
necessarily follow that ϕ1⊗ id is injective. In fact, we know this already from Example 5.10 (c),
where we have seen that for a submodule M1 of M2 we cannot conclude that M1⊗N is a submodule
of M2⊗N in a natural way.

In analogy to Exercise 4.9 we say that taking tensor products is right exact, but not exact. However,
we have the following result:

Exercise 5.24. Let 0−→M1 −→M2 −→M3 −→ 0 be a short exact sequence of R-modules. Show
that the sequence 0−→M1⊗N −→M2⊗N −→M3⊗N −→ 0 is also exact if one of the following
assumptions hold:

(a) the sequence 0−→M1 −→M2 −→M3 −→ 0 is split exact;

(b) N is a finitely generated, free R-module.

As an example of how Proposition 5.22 can be used, let us prove the following statement.

Corollary 5.25. Let I be an ideal in a ring R, and let M be an R-module. Then M/IM ∼= M⊗R R/I.
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Proof. By Example 4.3 (b) we know that the sequence

0−→ I −→ R−→ R/I −→ 0

is exact. So by Proposition 5.22 (b) it follows that

M⊗R I
ϕ−→M⊗R R

ψ−→M⊗R R/I −→ 0

is also exact, where ψ is the projection in the second factor, M⊗R R ∼= M by Lemma 5.8 (b), and
ϕ(m⊗a) = am using this isomorphism. In particular, the image of ϕ is just IM by Definition 3.12
(a), and so we conclude by the exactness of the sequence and the homomorphism theorem

M⊗R R/I = imψ ∼= M/kerψ = M/ imϕ = M/IM. □

Example 5.26 (Derivatives in terms of tensor products). Let V and W be normed real vector spaces
[G2, Definition 23.1], and let f : U →W be a function on an open subset U ⊂ V . Then for any
point a ∈U the derivative f ′(a) of f in a (if it exists) is an element of HomR(V,W ): it is just the
homomorphism such that x 7→ f (a)+ f ′(a)(x−a) is the affine-linear approximation of f at a [G2,
Definition 25.3 and Remark 25.6].

If we now want to define the second derivative f ′′ of f , the most natural way to do this is
to take the derivative of the map f ′ : U → HomR(V,W ), a 7→ f ′(a), with a suitable norm on
HomR(V,W ). By the same reasoning as above, this will now lead to an element f ′′(a) of
HomR(V,HomR(V,W )) [G2, Remark 26.5 (a)]. Similarly, the third derivative f ′′′(a) is an element
of HomR(V,HomR(V,HomR(V,W ))), and so on.

With Proposition 5.22 (a) we can now rephrase this in a simpler way in terms of tensor products: the
k-th derivative f (k)(a) of f in a point a ∈U is an element of HomR(V ⊗R · · ·⊗RV,W ) for k ∈ N>0,
where we take the k-fold tensor product of V with itself. So the higher derivatives of f can again be
thought of as linear maps, just with a tensor product source space. Of course, if V and W are finite-
dimensional with n = dimRV and m = dimRW , then HomR(V ⊗R · · ·⊗RV,W ) is of dimension nkm,
and the coordinates of f (k)(a) with respect to bases of V and W are simply the nk partial derivatives
of order k of the m coordinate functions of f .

Exercise 5.27. Show that l(M⊗N) ≤ l(M) · l(N) for any two R-modules M and N (where an ex-
pression 0 ·∞ on the right hand side is to be interpreted as 0). Does equality hold in general?

(Hint: It is useful to consider suitable exact sequences.)
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