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3. Modules

In linear algebra, the most important structure is that of a vector space over a field. For commutative
algebra it is therefore useful to consider the generalization of this concept to the case where the
underlying space of scalars is a commutative ring R instead of a field. The resulting structure is
called a module; we will introduce and study it in this chapter.

In fact, there is another more subtle reason why modules are very powerful: they unify many other
structures that you already know. For example, when you first heard about quotient rings you were
probably surprised that in order to obtain a quotient ring R/I one needs an ideal I of R, i. e. a
structure somewhat different from that of a (sub-)ring. In contrast, we will see in Example 3.4 (a)
that ideals as well as quotient rings of R are just special cases of modules over R, so that one can deal
with both these structures in the same way. Even more unexpectedly, it turns out that modules over
certain rings allow a special interpretation: modules over Z are nothing but Abelian groups, whereas
a module over the polynomial ring K[x] over a field K is exactly the same as a K-vector space V
together with a linear map ϕ : V → V (see Examples 3.2 (d) and 3.8, respectively). Consequently,
general results on modules will have numerous consequences in many different setups.

So let us now start with the definition of modules. In principle, their theory that we will then
quickly discuss in this chapter is entirely analogous to that of vector spaces [G2, Chapters 13 to 18].
However, although many properties just carry over without change, others will turn out to be vastly
different. Of course, proofs that are literally the same as for vector spaces will not be repeated here;
instead we will just give references to the corresponding well-known linear algebra statements in
these cases.

Definition 3.1 (Modules). Let R be a ring. An R-module is a set M together with two operations

+ : M×M→M and · : R×M→M

(an “addition” in M and a “scalar multiplication” with elements of R) such that for all m,n ∈M and
a,b ∈ R we have:

(a) (M,+) is an Abelian group;

(b) (a+b) ·m = a ·m+b ·m and a · (m+n) = a ·m+a ·n;

(c) (a ·b) ·m = a · (b ·m);

(d) 1 ·m = m.

We will also call M a module over R, or just a module if the base ring is clear from the context.

Example 3.2.
(a) For a field R, an R-module is by definition exactly the same as an R-vector space [G2, Defi-

nition 13.1].

(b) Of course, the zero set {0} is a module, which we often simply write as 0.

(c) For n ∈N>0 the set Rn = {(a1, . . . ,an) : a1, . . . ,an ∈ R} is an R-module with componentwise
addition and scalar multiplication. More generally, for two R-modules M and N the product
M×N with componentwise addition and scalar multiplication is an R-module again.

(d) A Z-module is just the same as an Abelian group. In fact, any Z-module is an Abelian group
by definition 3.1 (a), and in any Abelian group (M,+) we can define a multiplication with
integers in the usual way by (−1) ·m :=−m and a ·m := m+ · · ·+m (a times) for a ∈N and
m ∈M.

(e) Any R-algebra M is also an R-module by Remark 1.24, if we just forget about the possibility
to multiply two elements of M.
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Definition 3.3 (Submodules, sums, and quotients). Let M be an R-module.

(a) A submodule of M is a non-empty subset N ⊂M satisfying m+ n ∈ N and am ∈ N for all
m,n ∈ N and a ∈ R. We write this as N ≤M. Of course, N is then an R-module itself, with
the same addition and scalar multiplication as in M.

(b) For any subset S⊂M the set

⟨S ⟩ := {a1m1 + · · ·+anmn : n ∈ N,a1, . . . ,an ∈ R,m1, . . . ,mn ∈ S} ⊂M

of all R-linear combinations of elements of S is the smallest submodule of M that contains
S. It is called the submodule generated by S. If S = {m1, . . . ,mn} is finite, we write ⟨S ⟩=
⟨{m1, . . . ,mn}⟩ also as ⟨m1, . . . ,mn ⟩. The module M is called finitely generated if M = ⟨S ⟩
for a finite set S⊂M.

(c) For submodules N1, . . . ,Nn ≤M their sum

N1 + · · ·+Nn = {m1 + · · ·+mn : mi ∈ Ni for all i = 1, . . . ,n}
is obviously a submodule of M again. If moreover every element m ∈ N1 + · · ·+Nn has a
unique representation as m = m1 + · · ·+mn with mi ∈ Ni for all i, we call N1 + · · ·+Nn a
direct sum and write it also as N1⊕·· ·⊕Nn.

(d) If N ≤M is a submodule, the set

M/N := {x : x ∈M} with x := x+N

of equivalence classes modulo N is again a module [G2, Proposition 15.16], the so-called
quotient module of M modulo N.

Example 3.4.
(a) Let R be a ring. If we consider R itself as an R-module, a submodule of R is by definition

the same as an ideal I of R. Moreover, the quotient ring R/I is then by Definition 3.3 (d) an
R-module again.

Note that this is the first case where modules and vector spaces behave in a slightly different
way: if K is a field then the K-vector space K has no non-trivial subspaces.

(b) The polynomial ring K[x1, . . . ,xn] over a field K is finitely generated as a K-algebra (by
x1, . . . ,xn), but not finitely generated as a K-module, i. e. as a K-vector space (the monomials
1,x1,x2

1, . . . are linearly independent). So if we use the term “finitely generated” we always
have to make sure to specify whether we mean “finitely generated as an algebra” or “finitely
generated as a module”, as these are two different concepts.

Exercise 3.5. Let N be a submodule of a module M over a ring R. Show:

(a) If N and M/N are finitely generated, then so is M.

(b) If M is finitely generated, then so is M/N.

(c) If M is finitely generated, N need not be finitely generated.

Definition 3.6 (Morphisms). Let M and N be R-modules.

(a) A morphism of R-modules (or R-module homomorphism, or R-linear map) from M to N
is a map ϕ : M→ N such that

ϕ(m+n) = ϕ(m)+ϕ(n) and ϕ(am) = aϕ(m)

for all m,n ∈ M and a ∈ R. The set of all such morphisms from M to N will be denoted
HomR(M,N) or just Hom(M,N); it is an R-module again with pointwise addition and scalar
multiplication.

(b) A morphism ϕ : M → N of R-modules is called an isomorphism if it is bijective. In this
case, the inverse map ϕ−1 : N →M is a morphism of R-modules again [G2, Lemma 13.25
(a)]. We call M and N isomorphic (written M ∼= N) if there is an isomorphism between
them.
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Example 3.7.
(a) For any ideal I in a ring R, the quotient map ϕ : R→ R/I, a 7→ a is a surjective R-module

homomorphism.

(b) Let M and N be Abelian groups, considered as Z-modules as in Example 3.2 (d). Then a
Z-module homomorphism ϕ : M→ N is the same as a homomorphism of Abelian groups,
since ϕ(m+n) = ϕ(m)+ϕ(n) already implies ϕ(am) = aϕ(m) for all a ∈ Z.

(c) For any R-module M we have HomR(R,M)∼= M: the maps

M→ HomR(R,M), m 7→ (R→M,a 7→ am) and HomR(R,M)→M, ϕ 7→ ϕ(1)

are obviously R-module homomorphisms and inverse to each other. On the other hand,
the module HomR(M,R) is in general not isomorphic to M: for the Z-module Z2 we have
HomZ(Z2,Z) = 0 by (b), as there are no non-trivial group homomorphisms from Z2 to Z.

(d) If N1, . . . ,Nn are submodules of an R-module M such that their sum N1⊕·· ·⊕Nn is direct,
the morphism

N1×·· ·×Nn→ N1⊕·· ·⊕Nn, (m1, . . . ,mn) 7→ m1 + · · ·+mn

is bijective, and hence an isomorphism. One therefore often uses the notation N1⊕·· ·⊕Nn
for N1×·· ·×Nn also in the cases where N1, . . . ,Nn are R-modules that are not necessarily
submodules of a given ambient module M.

Example 3.8 (Modules over polynomial rings). Let R be a ring. Then an R[x]-module M is the same
as an R-module M together with an R-module homomorphism ϕ : M→M:

“⇒” Let M be an R[x]-module. Of course, M is then also an R-module. Moreover, multiplication
with x has to be R-linear, so ϕ : M→M,m 7→ x ·m is an R-module homomorphism.

“⇐” If M is an R-module and ϕ : M→M an R-module homomorphism we can give M the struc-
ture of an R[x]-module by setting x ·m := ϕ(m), or more precisely by defining scalar multi-
plication by ( n

∑
i=0

aixi
)
·m :=

n

∑
i=0

aiϕ
i(m),

where ϕ i denotes the i-fold composition of ϕ with itself, and ϕ0 := idM .

Remark 3.9 (Images and kernels of morphisms). Let ϕ : M→N be a homomorphism of R-modules.

(a) For any submodule M′ ≤M the image ϕ(M′) is a submodule of N [G2, Lemma 13.21 (a)].
In particular, ϕ(M) is a submodule of N, called the image of ϕ .

(b) For any submodule N′ ≤ N the inverse image ϕ−1(N′) is a submodule of M [G2, Lemma
13.21 (b)]. In particular, ϕ−1(0) is a submodule of M, called the kernel of ϕ .

Proposition 3.10 (Isomorphism theorems).
(a) For any morphism ϕ : M→ N of R-modules there is an isomorphism

M/kerϕ → imϕ, m 7→ ϕ(m).

(b) For R-modules N′ ≤ N ≤M we have

(M/N′)/(N/N′) ∼= M/N.

(c) For two submodules N,N′ of an R-module M we have

(N +N′)/N′ ∼= N/(N∩N′).

Proof. The proofs of (a) and (b) are the same as in [G2, Proposition 15.23] and Exercise 1.22,
respectively. For (c) note that N → (N +N′)/N′, m 7→ m is a surjective R-module homomorphism
with kernel N∩N′, so the statement follows from (a). □

Exercise 3.11. Let N be a proper submodule of an R-module M. Show that the following statements
are equivalent:
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(a) There is no submodule P of M with N ⊊ P ⊊ M.

(b) The module M/N has only the trivial submodules 0 and M/N.

(c) M/N ∼= R/I for a maximal ideal I ⊴R.

The concepts so far were all entirely analogous to the case of vector spaces. There are a few con-
structions however that are only useful for modules due to the existence of non-trivial ideals in the
base ring. Let us introduce them now.

Definition 3.12 (IM, module quotients, annihilators). Let M be an R-module.

(a) For an ideal I ⊴R we set

IM := ⟨{am : a ∈ I,m ∈M}⟩
= {a1m1 + · · ·+anmn : n ∈ N,a1, . . . ,an ∈ I,m1, . . . ,mn ∈M}.

Note that IM is a submodule of M, and M/IM is an R/I-module in the obvious way.

(b) For two submodules N,N′ ≤M the module quotient (not to be confused with the quotient
modules of Definition 3.3 (d)) is defined to be

N′ :N := {a ∈ R : aN ⊂ N′} ⊴R.

In particular, for N′ = 0 we obtain the so-called annihilator

annN := annR N := {a ∈ R : aN = 0} ⊴R

of N. The same definition can also be applied to a single element m ∈M instead of a sub-
module N: we then obtain the ideals

N′ :m := {a ∈ R : am ∈ N′} and ann m := {a ∈ R : am = 0}
of R.

Example 3.13.
(a) If M, N, and N′ are submodules of the R-module R, i. e. ideals of R by Example 3.4 (a), the

product IM and quotient N′ : N of Definition 3.12 are exactly the product and quotient of
ideals as in Construction 1.1.

(b) If I is an ideal of a ring R then annR(R/I) = I.

Let us recall again the linear algebra of vector spaces over a field K. At the point where we are
now, i. e. after having studied subspaces and morphisms in general, one usually restricts to finitely
generated vector spaces and shows that every such vector space V has a finite basis. This makes V
isomorphic to Kn with n = dimK V ∈ N [G2, Proposition 14.23]. In other words, we can describe
vectors by their coordinates with respect to some basis, and linear maps by matrices — which are
then easy to deal with.

For a finitely generated module M over a ring R this strategy unfortunately breaks down. Ultimately,
the reason for this is that the lack of a division in R means that a linear relation among generators of
M cannot necessarily be used to express one of them in terms of the others (so that it can be dropped
from the set of generators). For example, the elements m = 2 and n = 3 in the Z-module Z satisfy
the linear relation 3m−2n = 0, but neither is m an integer multiple of n, nor vice versa. So although
Z= ⟨m,n⟩ and these two generators are linearly dependent over Z, neither m nor n alone generates
Z.

The consequence of this is that a finitely generated module M need not have a linearly independent
set of generators. But this means that M is in general not isomorphic to Rn for some n ∈ N, and thus
there is no obvious well-defined notion of dimension. It is in fact easy to find examples for this: Z2
as a Z-module is certainly not isomorphic to Zn for some n.

So essentially we have two choices if we want to continue to carry over our linear algebra results on
finitely generated vector spaces to finitely generated modules:
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• restrict to R-modules that are of the form Rn for some n ∈ N; or

• go on with general finitely generated modules, taking care of the fact that generating sys-
tems cannot be chosen to be independent, and thus that the coordinates with respect to such
systems are no longer unique.

In the rest of this chapter, we will follow both strategies to some extent, and see what they lead to.
Let us start by considering finitely generated modules that do admit a basis.

Definition 3.14 (Bases and free modules). Let M be a finitely generated R-module.

(a) We say that a family (m1, . . . ,mn) of elements of M is a basis of M if the R-module homo-
morphism

Rn→M, (a1, . . . ,an) 7→ a1m1 + · · ·+anmn

is an isomorphism.

(b) If M has a basis, i. e. if it is isomorphic to Rn for some n, it is called a free R-module.

Example 3.15. If I is a non-trivial ideal in a ring R then R/I is never a free R-module: there can be
no isomorphism

ϕ : Rn→ R/I, (a1, . . . ,an) 7→ a1m1 + · · ·+anmn

since in any case ϕ(0, . . . ,0) = ϕ(a,0, . . . ,0) for every a ∈ I.

Exercise 3.16. Let R be an integral domain. Prove that a non-zero ideal I ⊴R is a principal ideal if
and only if it is a free R-module.

Remark 3.17 (Linear algebra for free modules). Let M and N be finitely generated, free R modules.

(a) Any two bases of M have the same number of elements: assume that we have a basis with n
elements, so that M ∼= Rn as R-modules. Choose a maximal ideal I of R by Corollary 2.17.
Then R/I is a field by Lemma 2.3 (b), and M/IM is an R/I-vector space by Definition 3.12
(a). Its dimension is

dimR/I M/IM = dimR/I Rn/IRn = dimR/I(R/I)n = n,

and so n is uniquely determined by M. We call n the rank rkM of M.

(b) In the same way as for vector spaces, we see that HomR(Rm,Rn) is isomorphic to the R-
module Mat(n×m,R) of n×m-matrices over R [G2, Proposition 16.11]. Hence, after
choosing bases for M and N we also have HomR(M,N) ∼= Mat(n×m,R) with m = rkM
and n = rkN [G2, Proposition 16.23].

(c) An R-module homomorphism ϕ : M→ M is an isomorphism if and only if its matrix A ∈
Mat(m×m,R) as in (b) is invertible, i. e. if and only if there is a matrix A−1 ∈Mat(m×m,R)
such that A−1 A = AA−1 = E is the unit matrix. As expected, whether this is the case can be
checked with determinants as follows.

(d) For a square matrix A ∈ Mat(m×m,R) the determinant detA is defined in the usual way
[G2, Proposition 18.12]. It has all the expected properties; in particular there is an adjoint
matrix A# ∈Mat(m×m,R) such that A# A = AA# = detA ·E (namely the matrix with (i, j)-
entry (−1)i+ j detA′j,i, where A′j,i is obtained from A by deleting row j and column i) [G2,
Proposition 18.20 (a)]. With this we can see that A is invertible if and only if detA is a unit
in R:

“⇒” If there is an inverse matrix A−1 then 1 = detE = det(A−1 A) = detA−1 ·detA, so detA
is a unit in R.

“⇐” If detA is a unit, we see from the equation A# A = AA# = detA ·E that (detA)−1 ·A# is
an inverse of A.

05

So all in all finitely generated, free modules behave very much in the same way as vector spaces.
However, most modules occurring in practice will not be free — in fact, submodules and quotient
modules of free modules, as well as images and kernels of homomorphisms of free modules, will in
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general not be free again. So let us now also find out what we can say about more general finitely
generated modules.

First of all, the notion of dimension of a vector space, or rank of a free module as in Remark 3.17
(a), is then no longer defined. The following notion of the length of a module can often be used to
substitute this.

Definition 3.18 (Length of modules). Let M be an R-module.

(a) A composition series for M is a finite chain

0 = M0 ⊊ M1 ⊊ M2 ⊊ · · ·⊊ Mn = M

of submodules of M that cannot be refined, i. e. such that there is no submodule N of M with
Mi−1 ⊊ N ⊊ Mi for any i = 1, . . . ,n. (By Exercise 3.11, this is equivalent to Mi/Mi−1 having
no non-trivial submodules for all i, and to Mi/Mi−1 being isomorphic to R modulo some
maximal ideal for all i).

The number n above will be called the length of the series.

(b) If there is a composition series for M, the shortest length of such a series is called the length
of M and denoted lR(M) (in fact, we will see in Exercise 3.19 (b) that then all composition
series have this length). Otherwise, we set formally lR(M) = ∞.

If there is no risk of confusion about the base ring, we write lR(M) also as l(M).

Exercise 3.19. Let M be an R-module of finite length, i. e. an R-module that admits a composition
series. Show that:

(a) If N < M is a proper submodule of M then l(N)< l(M).

(b) Every composition series for M has length l(M).

(c) Every chain 0 = M0 ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mn = M of submodules of M can be refined to a
composition series for M.

Example 3.20.
(a) Let V be a vector space over a field K. If V has finite dimension n, there is a chain

0 =V0 ⊊V1 ⊊ · · ·⊊Vn =V

of subspaces of V with dimK Vi = i for all i. Obviously, this chain cannot be refined. Hence it
is a composition series for V , and we conclude by Exercise 3.19 (b) that l(V ) = n = dimK V .

On the other hand, if V has infinite dimension, there are chains of subspaces of V of any
length. By Exercise 3.19 this is only possible if l(V ) = ∞.

So for vector spaces over a field, the length is just the same as the dimension.

(b) There is no statement analogous to (a) for free modules over a ring: already Z has infinite
length over Z, since there are chains

0 ⊊ (2n)⊊ (2n−1)⊊ · · ·⊊ (2)⊊ Z
of ideals in Z of any length.

(c) Certainly, a module M of finite length must be finitely generated: otherwise there would
be infinitely many elements (mi)i∈N of M such that all submodules Mi = ⟨m1, . . . ,mi ⟩ are
distinct. But then 0 = M0 ⊊ M1 ⊊ M2 ⊊ · · · is an infinite chain of submodules, which by
Exercise 3.19 is impossible for modules of finite length.

On the other hand, a finitely generated module need not have finite length, as we have seen in
(b). In fact, we will study the relation between the conditions of finite generation and finite
length in more detail in Chapter 7.

Exercise 3.21. What are the lengths of Z8 and Z12 as Z-modules? Can you generalize this statement
to compute the length of any quotient ring R/I as an R-module, where I is an ideal in a principal
ideal domain R?
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Let us now show that the length of modules satisfies the same relations as the dimension of vector
spaces when taking sums, intersections, quotients, or images and kernels [G2, Corollary 15.31,
Proposition 15.17, and Corollary 15.26].

Proposition 3.22 (Additivity of the length of modules). For any submodule N of an R-module M we
have

l(N)+ l(M/N) = l(M).

Proof. Let us assume first that l(M)< ∞. By Exercise 3.19 (c), the chain 0≤ N ≤M can be refined
to a composition series

0 = N0 ⊊ · · ·⊊ Nn = N = M0 ⊊ · · ·⊊ Mm = M (∗)
for M, where l(M) = n+m by Exercise 3.19 (b). Of course, the first part of this chain is then a
composition series for N, and so l(N) = n. Moreover, setting Pi := Mi/N for i = 1, . . . ,m we obtain
a chain

0 = P0 ⊊ · · ·⊊ Pm = M/N
in which Pi/Pi−1 ∼= Mi/Mi−1 by Proposition 3.10 (b). As these modules have no non-trivial submod-
ules, we see that the above chain of length m is a composition series for M/N, so that we get the
desired result l(N)+ l(M/N) = n+m = l(M).

Conversely, if l(N) and l(M/N) are finite, there are composition series

0 = N0 ⊊ · · ·⊊ Nn = N and 0 = P0 ⊊ · · ·⊊ Pm = M/N

for N and M/N, respectively. Setting Mi := q−1(Pi) with the quotient map q : M → M/N for all
i = 1, . . . ,m, we have Mi/N = Pi. So as above, Mi/Mi−1 ∼= Pi/Pi−1 has no non-trivial submodules,
and we obtain a composition series (∗) for M. This means that M has finite length as well, and the
above argument can be applied to prove the equation l(N)+ l(M/N) = l(M) again.

The only remaining case is that both sides of the equation of the proposition are infinite — but then
of course the statement is true as well. □

Corollary 3.23.
(a) For any two submodules M1,M2 of an R-module M we have

l(M1 +M2)+ l(M1∩M2) = l(M1)+ l(M2).

(b) For any R-module homomorphism ϕ : M→ N we have

l(kerϕ)+ l(imϕ) = l(M).

Proof.

(a) By Proposition 3.10 (c) we have (M1 +M2)/M2 ∼= M1/(M1 ∩M2). Calling this module Q,
we obtain by Proposition 3.22

l(M1 +M2) = l(M2)+ l(Q) and l(M1) = l(M1∩M2)+ l(Q).

So if l(M2) = ∞ then l(M1 +M2) = ∞, and the statement of the corollary holds. The same is
true if l(M1∩M2) = ∞ and thus l(M1) = ∞. Otherwise, we obtain

l(Q) = l(M1 +M2)− l(M2) = l(M1)− l(M1∩M2),

and hence the corollary holds in this case as well.

(b) This is just Proposition 3.22 applied to the homomorphism theorem M/kerϕ ∼= imϕ of
Proposition 3.10 (a). □

Remark 3.24. An easy consequence of Corollary 3.23 (b) is that for a homomorphism ϕ : M→M
from a module of finite length to itself we have

ϕ injective ⇔ ϕ surjective ⇔ ϕ bijective

as in [G2, Corollary 15.27], since ϕ is injective if and only if l(kerϕ) = 0, and surjective if and only
if l(imϕ) = l(M) (see Exercise 3.19 (a)).
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What happens in this statement if we consider a module M that is only finitely generated, but not
necessarily of finite length (see Example 3.20 (c))? It is actually easy to see that in this case an
injective morphism ϕ : M → M need not be bijective: the map ϕ : Z→ Z, m 7→ 2m is a simple
counterexample. In view of this example it is probably surprising that the statement that a surjective
map is also bijective still holds — this is what we want to show in Corollary 3.28 below. The main
ingredient in the proof is the following generalization of the Cayley-Hamilton theorem from linear
algebra.

Proposition 3.25 (Cayley-Hamilton). Let M be a finitely generated R-module, I an ideal of R, and
ϕ : M→M an R-module homomorphism with ϕ(M) ⊂ IM. Then there is a monic polynomial (i. e.
its leading coefficient is 1)

χ = xn +an−1xn−1 + · · ·+a0 ∈ R[x]

with a0, . . . ,an−1 ∈ I and

χ(ϕ) := ϕ
n +an−1ϕ

n−1 + · · ·+a0 id = 0 ∈ HomR(M,M),

where ϕ i denotes the i-fold composition of ϕ with itself.

Proof. Let m1, . . . ,mn be generators of M. By assumption we have ϕ(mi) ∈ IM for all i, and thus
there are ai, j ∈ I with

ϕ(mi) =
n

∑
j=1

ai, j m j for all i = 1, . . . ,n.

Considering M as an R[x]-module by setting x ·m := ϕ(m) for all m ∈M as in Example 3.8, we can
rewrite this as

n

∑
j=1

(xδi, j−ai, j)m j = 0 with δi, j :=

{
1 if i = j,
0 if i ̸= j

for all i = 1, . . . ,n. Note that the left hand side of this equation, taken for all i, gives us an element
of Mn. If we multiply this from the left with the adjoint matrix of (xδi, j−ai, j)i, j ∈Mat(n×n,R[x])
as in Remark 3.17 (d), we get

det((xδi,k−ai,k)i,k) ·m j = 0

for all j. So χ := det((xδi,k − ai,k)i,k) acts as the zero homomorphism on M, and expanding the
determinant shows that the non-leading coefficients of this polynomial lie in fact in I. □

Remark 3.26. If R is a field and thus M a finitely generated vector space, we can only take I = R in
Proposition 3.25. In the proof, we can then choose m1, . . . ,mn to be a basis of M, so that (ai, j)i, j is the
matrix of ϕ with respect to this basis, and χ is the characteristic polynomial of ϕ [G2, Definitions
19.17 and Remark 19.22]. So in this case the statement of Proposition 3.25 is just the ordinary
Cayley-Hamilton theorem for endomorphisms of finite-dimensional vector spaces [G2, Exercise
20.24]. For general rings however, the generators m1, . . . ,mn are no longer independent, and so there
are several choices for the matrix (ai, j)i, j.

The following easy consequence of Proposition 3.25 is usually attributed to Nakayama. In fact, there
are many versions of Nakayama’s lemma in the literature (we will also meet some other closely
related statements in Exercise 6.16), but this one is probably one of the strongest. It concerns the
construction IM of Definition 3.12 (a) for an ideal I in a ring R and an R-module M. More precisely,
let us assume that M ̸= 0 and IM = M. Of course, if R is a field this is only possible if I = R, i. e.
if 1 ∈ I. If R is a general ring however, it does not necessarily follow that 1 ∈ I — but Nakayama’s
Lemma states that in the case of a finitely generated module M there is at least an element a ∈ I that
acts as the identity on M, i. e. such that am = m for all m ∈M.

Corollary 3.27 (Nakayama’s Lemma). Let M be a finitely generated R-module, and I an ideal of
R with IM = M. Then there is an element a ∈ I with am = m for all m ∈M.
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Proof. As M = IM we can apply Proposition 3.25 to ϕ = id and our given ideal I to obtain
a0, . . . ,an−1 ∈ I such that

idn+an−1 idn−1+ · · ·+a0 id = (1+an−1 + · · ·+a0) id = 0 ∈ HomR(M,M).

Setting a :=−an−1−·· ·−a0 ∈ I, this just means that (1−a)m = 0, i. e. am = m for all m ∈M. □

Corollary 3.28. If M is a finitely generated R-module, any surjective homomorphism ϕ : M→M is
an isomorphism.

Proof. As in Example 3.8, consider M as an R[x]-module by setting x ·m := ϕ(m) for all m ∈ M.
Then x ·M = ϕ(M) = M since ϕ is surjective, so we can apply Corollary 3.27 with I = (x) to obtain
a polynomial f ∈ (x), i. e. a polynomial f = anxn+an−1xn−1+ · · ·+a1x without constant coefficient,
such that

f ·m = anϕ
n(m)+an−1ϕ

n−1(m)+ · · ·+a1ϕ(m) = m for all m ∈M.

But this means that ϕ(m) = 0 implies m = 0, and so ϕ is injective. □

Exercise 3.29. For a prime number p ∈ N consider the subring R = { a
b : a,b ∈ Z, p ̸ | b} of Q, and

let M =Q as an R-module.

(a) Show that R has exactly one maximal ideal I. Which one?

(In fact, this will be obvious once we have studied localizations — see Example 6.6 and
Corollary 6.10.)

(b) For the ideal of (a), prove that IM = M, but there is no a ∈ I with am = m for all m ∈M.

(c) Find a “small” set of generators for M as an R-module. Can you find a finite one? A minimal
one?


