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13. Dedekind Domains

In the last chapter we have mainly studied 1-dimensional regular local rings, i. e. geometrically the
local properties of smooth points on curves. We now want to patch these local results together to
obtain global statements about 1-dimensional rings (resp. curves) that are “locally regular”. The
corresponding notion is that of a Dedekind domain.

Definition 13.1 (Dedekind domains). An integral domain R is called Dedekind domain if it is
Noetherian of dimension 1, and for all maximal ideals P⊴R the localization RP is a regular local
ring.

Remark 13.2 (Equivalent conditions for Dedekind domains). As a Dedekind domain R is an integral
domain of dimension 1, its prime ideals are exactly the zero ideal and all maximal ideals. So every
localization RP for a maximal ideal P is a 1-dimensional local ring. As these localizations are also
Noetherian by Exercise 7.23, we can replace the requirement in Definition 13.1 that the local rings
RP are regular by any of the equivalent conditions in Proposition 12.14. For example, a Dedekind
domain is the same as a 1-dimensional Noetherian domain such that all localizations at maximal
ideals are discrete valuation rings.

This works particularly well for the normality condition as this is a local property and can thus be
transferred to the whole ring:

Lemma 13.3. A 1-dimensional Noetherian domain is a Dedekind domain if and only if it is normal.

Proof. By Remark 13.2 and Proposition 12.14, a 1-dimensional Noetherian domain R is a Dedekind
domain if and only if all localizations RP at a maximal ideal P are normal. But by Exercise 9.13 (c)
this is equivalent to R being normal. □25

Example 13.4.
(a) By Lemma 13.3, any principal ideal domain which is not a field is a Dedekind domain: it is

1-dimensional by Example 11.3 (c), clearly Noetherian, and normal by Example 9.10 since
it is a unique factorization domain by Example 8.3 (a). For better visualization, the following
diagram shows the implications between various properties of rings for the case of integral
domains that are not fields. Rings that are always 1-dimensional and / or local are marked
as such. It is true that every regular local ring is a unique factorization domain, but we have
not proven this here since this requires more advanced methods — we have only shown in
Proposition 11.40 that any regular local ring is an integral domain.
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(b) Let X be an irreducible curve over an algebraically closed field. Assume that X is smooth,
i. e. that all points of X are smooth in the sense of Example 11.37 and Definition 11.38. Then
the coordinate ring A(X) is a Dedekind domain: it is an integral domain by Lemma 2.3 (a)
since I(X) is a prime ideal by Remark 2.7 (b). It is also 1-dimensional by assumption and
Noetherian by Remark 7.15. Moreover, by Hilbert’s Nullstellensatz as in Remark 10.11 the



13. Dedekind Domains 117

maximal ideals in A(X) are exactly the ideals of points, and so our smoothness assumption
is the same as saying that all localizations at maximal ideals are regular.
In fact, irreducible smooth curves over algebraically closed fields are the main geometric
examples for Dedekind domains. However, there is also a large class of examples in number
theory, which explains why the concept of a Dedekind domain is equally important in num-
ber theory and geometry: it turns out that the ring of integral elements in a number field, i. e.
in a finite field extension of Q, is always a Dedekind domain. Let us prove this now.

Proposition 13.5 (Integral elements in number fields). Let Q⊂ K be a finite field extension, and let
R be the integral closure of Z in K. Then R is a Dedekind domain.

Proof. As a subring of a field, R is clearly an integral domain. Moreover, by Example 11.3 (c) and
Lemma 11.8 we have dimR = dimZ= 1. It is also easy to see that R is normal: if a ∈QuotR⊂ K is
integral over R it is also integral over Z by transitivity as in Lemma 9.6 (b), so it is contained in the
integral closure R of Z in K. Hence by Lemma 13.3 it only remains to show that R is Noetherian —
which is in fact the hardest part of the proof. We will show this in three steps.

(a) We claim that |R/pR|< ∞ for all prime numbers p ∈ Z.
Note that R/pR is a vector space over Zp = Z/pZ. It suffices to show that dimZp R/pR ≤
dimQ K since this dimension is finite by assumption. So let a1, . . . ,an ∈ R/pR be linearly
independent over Zp. We will show that a1, . . . ,an ∈ K are also independent over Q, so that
n ≤ dimQ K. Otherwise there are λ1, . . . ,λn ∈ Q not all zero with λ1a1 + · · ·+ λnan = 0.
After multiplying these coefficients with a common scalar we may assume that all of them
are integers, and not all of them are divisible by p. But then λ1 a1 + · · ·+ λn an = 0 is
a non-trivial relation in R/pR with coefficients in Zp, in contradiction to a1, . . . ,an being
independent over Zp.

(b) We will show that |R/mR|< ∞ for all m ∈ Z\{0}.
In fact, this follows by induction on the number of prime factors in m: for one prime factor
the statement is just that of (a), and for more prime factors it follows from the exact sequence
of Abelian groups

0−→ R/m1R
·m2−→ R/m1m2R−→ R/m2R−→ 0,

since this means that |R/m1m2R|= |R/m1R| · |R/m2R|< ∞.
(c) Now let I ⊴R be any non-zero ideal. We claim that m ∈ I for some m ∈ Z\{0}.

Otherwise we would have

dimR/I = dimZ/(I∩Z) = dimZ= 1

by Lemma 11.8, since R/I is integral over Z/(I ∩Z) by Lemma 9.7 (a). But dimR has to
be bigger than dimR/I, since a chain of prime ideals in R/I corresponds to a chain of prime
ideals in R containing I, which can always be extended to a longer chain by the zero ideal
since R is an integral domain. Hence dimR > 1, a contradiction.

Putting everything together, we can choose a non-zero m ∈ I ∩Z by (c), so that mR⊴ I. Hence
|I/mR| ≤ |R/mR| < ∞ by (b), so I/mR = {a1, . . . ,an} for some a1, . . . ,an ∈ I. But then the ideal
I = (a1, . . . ,an,m) is finitely generated, and hence R is Noetherian. □

Example 13.6. Consider again the ring R = Z[
√

5 i] of Example 8.3 (b). By Example 9.16, it is the
integral closure of Z in Q(

√
5 i). Hence Proposition 13.5 shows that R is a Dedekind domain.

We see from this example that a Dedekind domain is in general not a unique factorization domain,
as e. g. by Example 8.3 (b) the element 2 is irreducible, but not prime in R, so that it does not have
a factorization into prime elements. However, we will prove now that a Dedekind domain always
has an analogue of the unique factorization property for ideals, i. e. every non-zero ideal can be
written uniquely as a product of non-zero prime ideals (which are then also maximal since Dedekind
domains are 1-dimensional). In fact, this is the most important property of Dedekind domains in
practice.
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Proposition 13.7 (Prime factorization of ideals in Dedekind domains). Let R be a Dedekind domain.

(a) Let P⊴R be a maximal ideal, and let Q⊴R be any ideal. Then

Q is P-primary ⇔ Q = Pk for some k ∈ N>0.

Moreover, the number k is unique in this case.

(b) Any non-zero ideal I ⊴R has a “prime factorization”

I = Pk1
1 · · · · ·P

kn
n

with k1, . . . ,kn ∈ N>0 and distinct maximal ideals P1, . . . ,Pn ⊴R. It is unique up to permuta-
tion of the factors, and P1, . . . ,Pn are exactly the associated prime ideals of I.

Proof.

(a) The implication “⇐” holds in arbitrary rings by Lemma 8.12 (b), so let us show the opposite
direction “⇒”. Let Q be P-primary, and consider the localization map R→ RP. Then Qe is
a non-zero ideal in the localization RP, which is a discrete valuation ring by Remark 13.2.
So by Corollary 12.17 we have Qe = (Pe)k for some k, and hence Qe = (Pk)e as extension
commutes with products by Exercise 1.19 (c). Contracting this equation now gives Q = Pk

by Lemma 8.33, since Q and Pk are both P-primary by Lemma 8.12 (b).

The number k is unique since Pk = Pl for k ̸= l would imply (Pe)k = (Pe)l by extension, in
contradiction to Corollary 12.17.

(b) As R is Noetherian, the ideal I has a minimal primary decomposition I = Q1 ∩ ·· · ∩Qn by
Corollary 8.21. Since I is non-zero, the corresponding associated prime ideals P1, . . . ,Pn of
these primary ideals are distinct and non-zero, and hence maximal as dimR= 1. In particular,
there are no strict inclusions among the ideals P1, . . . ,Pn, and thus all of them are minimal
over I. By Proposition 8.34 this means that the ideals Q1, . . . ,Qn in our decomposition are
unique.

Now by (a) we have Qi = Pki
i for unique ki ∈ N>0 for i = 1, . . . ,n. This gives us a unique

decomposition I = Pk1
1 ∩ ·· ·∩Pkn

n , and thus also a unique factorization I = Pk1
1 · · · · ·Pkn

n by
Exercise 1.8 since the ideals Pk1

1 , . . . ,Pkn
n are pairwise coprime by Exercise 2.24. □

Example 13.8. Recall from Examples 8.3 (b) and 13.6 that the element 2 in the Dedekind domain
R =Z[

√
5 i] does not admit a factorization into prime elements. But by Proposition 13.7 (b) the ideal

(2) must have a decomposition as a product of maximal ideals (which cannot all be principal, as
otherwise we would have decomposed the number 2 into prime factors). Concretely, we claim that
this decomposition is

(2) = (2,1+
√

5 i)2.

To see this, note first that the ideal (2,1+
√

5 i) is maximal by Lemma 2.3 (b) since the quotient

Z[
√

5 i]/(2,1+
√

5 i) ∼= Z/(2) ∼= Z2

is a field. Moreover, we have (2)⊂ (2,1+
√

5 i)2 since

2 = (1+
√

5 i)2−22−2
√

5 i(1+
√

5 i) ∈ (2,1+
√

5 i)2,

and (2,1+
√

5 i)2 ⊂ (2) as

22 ∈ (2), 2(1+
√

5 i) ∈ (2), and (1+
√

5 i)2 =−4+2
√

5 i ∈ (2).

To understand the geometric meaning of the prime factorization of ideals we need a lemma first.

Lemma 13.9 (Ideals in Dedekind domains). Let R be a Dedekind domain.

(a) For all distinct maximal ideals P1, . . . ,Pn of R and k1, . . . ,kn, l1, . . . , ln ∈ N we have

Pk1
1 · · · · ·P

kn
n ⊂ Pl1

1 · · · · ·P
ln
n ⇔ li ≤ ki for all i = 1, . . . ,n.



13. Dedekind Domains 119

(b) For any a ∈ R\{0} we have

(a) = Pν1(a)
1 · · · · ·Pνn(a)

n ,

where P1, . . . ,Pn are the associated prime ideals of (a), and νi denotes the valuation of the
discrete valuation ring RPi (restricted to R).

Proof. By Exercise 6.29 (a) ideal containment is a local property, i. e. we can check it on all local-
izations RP for maximal ideals P. Moreover, products commute with localization by Exercise 1.19
(c), and the localization of Pi at a maximal ideal P ̸= Pi is the unit ideal by Example 6.25 (a). Hence:

(a) We have

Pk1
1 · · · · ·P

kn
n ⊂ Pl1

1 · · · · ·P
ln
n ⇔ (Pe

i )
ki ⊂ (Pe

i )
li in RPi for all i

⇔ li ≤ ki for all i. (Corollary 12.17)

(b) By Proposition 13.7 (b) we know that (a) = Pk1
1 · · · · · Pkn

n for suitable k1, . . . ,kn ∈ N if
P1, . . . ,Pn are the associated prime ideals of (a). To determine the exponent ki for i= 1, . . . ,n,
we localize at RPi to get (a) = (Pe

i )
ki in the discrete valuation ring RPi , and use Proposition

12.13 to conclude from this that ki = νi(a). □

Remark 13.10. If a is a non-zero element in a Dedekind domain R and P⊴R a maximal ideal that is
not an associated prime ideal of (a), the same argument as in the proof of Lemma 13.9 (b) shows that
the valuation of a in the discrete valuation ring RP is 0. Hence the ideals P1, . . . ,Pn in the statement
of this lemma are exactly the maximal ideals of R so that the valuation of a in the corresponding
discrete valuation ring is non-zero.

Remark 13.11 (Geometric interpretation of the prime factorization of ideals). Let X be an irre-
ducible smooth curve over an algebraically closed field, so that its coordinate ring R = A(X) is a
Dedekind domain by Example 13.4 (b). Now let f ∈ R be a non-zero polynomial function on X , and
let a1, . . . ,an ∈ X be the zeroes of f , with corresponding maximal ideals P1, . . . ,Pn ⊴R. Moreover,
for i = 1, . . . ,n let ki be the order of vanishing of f at ai as in Remark 12.2, i. e. the valuation of f in
the ring RPi of local functions on X at ai. Then Lemma 13.9 (b) (together with Remark 13.10) states
that

( f ) = Pk1
1 · · · · ·P

kn
n .

In other words, the prime factorization of a principal ideal ( f ) in the coordinate ring of X encodes
the orders of vanishing of the function f at all points of X . Here is a concrete example of this
construction that will also be used later on in Example 13.29.

Example 13.12. Consider the complex plane cubic curve X = V (y2− x(x− 1)(x− λ )) ⊂ A2
C for

some λ ∈ C\{0,1}. The picture (a) below shows approximately the real points of X in the case
λ ∈ R>1: the vertical line x = c for c ∈ R intersects X in two real points symmetric with respect to
this axis if 0 < c < 1 or c > λ , in exactly the point (c,0) if c ∈ {0,1,λ}, and in no real point in all
other cases.

X

(a) (b)

P2

P1x0 λ1

x = c

l
P3

l′

P′1

P′2
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It is easy to check as in Example 11.39 (b) that all points of X are smooth, so that the coordinate ring
R = C[x,y]/(y2− x(x−1)(x−λ )) of X is a Dedekind domain by Example 13.4 (b).

Now let l ∈ R be a general linear function as in picture (b) above. On the curve X it vanishes
at three points (to order 1) since the cubic equation y2 = x(x− 1)(x− λ ) together with a general
linear equation in x and y will have three solutions. If P1, P2, and P3 are the maximal ideals in R
corresponding to these points, Remark 13.11 shows that (l) = P1 ·P2 ·P3 in R.

Note that for special linear functions it might happen that some of these points coincide, as in the case
of l′ above which vanishes to order 2 at the point P′1. Consequently, in this case we get (l′) = P′1

2 ·P2.

For computational purposes, the unique factorization property for ideals allows us to perform calcu-
lations with ideals in Dedekind domains very much in the same way as in principal ideal domains.
For example, the following Proposition 13.13 is entirely analogous (both in its statement and in its
proof) to Example 1.4.

Proposition 13.13 (Operations on ideals in Dedekind domains). Let I and J be two non-zero ideals
in a Dedekind domain, with prime factorizations

I = Pk1
1 · · · · ·P

kn
n and J = Pl1

1 · · · · ·P
ln
n

as in Proposition 13.7, where P1, . . . ,Pn are distinct maximal ideals and k1, . . . ,kn, l1, . . . , ln ∈ N.
Then

I + J = Pm1
1 · · · · ·P

mn
n with mi = min(ki, li),

I∩ J = Pm1
1 · · · · ·P

mn
n with mi = max(ki, li),

I · J = Pm1
1 · · · · ·P

mn
n with mi = ki + li

for i = 1, . . . ,n. In particular, I · J = (I + J) · (I∩ J).

Proof. By Proposition 13.7 (b) we can write all three ideals as Pm1
1 · · · · ·Pmn

n for suitable m1, . . . ,mn
(if we possibly enlarge the set of maximal ideals occurring in the factorizations). So it only remains
to determine the numbers m1, . . . ,mn for the three cases.

The ideal I + J is the smallest ideal containing both I and J. By Lemma 13.9 (a) this means that
mi is the biggest number less than or equal to both ki and li, i. e. min(ki, li). Analogously, the
intersection I ∩ J is the biggest ideal contained in both I and J, so in this case mi is the smallest
number greater than or equal to both ki and li, i. e. max(ki, li). The exponents mi = ki + li for the
product are obvious. □

As a Dedekind domain is in general not a unique factorization domain, it clearly follows from Exam-
ple 8.3 (a) that it is usually not a principal ideal domain either. However, a surprising result following
from the computational rules in Proposition 13.13 is that every ideal in a Dedekind domain can be
generated by two elements. In fact, there is an even stronger statement:

Proposition 13.14. Let R be a Dedekind domain, and let a be a non-zero element in an ideal I ⊴R.
Then there is an element b ∈ R such that I = (a,b).

In particular, every ideal in R can be generated by two elements.

Proof. By assumption (a)⊂ I are non-zero ideals, so we know by Proposition 13.7 (b) and Lemma
13.9 (a) that

(a) = Pk1
1 · · · · ·P

kn
n and I = Pl1

1 · · · · ·P
ln
n

for suitable distinct maximal ideals P1, . . . ,Pn ⊴R and natural numbers li ≤ ki for all i = 1, . . . ,n. By
the uniqueness part of Proposition 13.7 (b) we can pick elements

bi ∈ Pl1+1
1 · · · · ·Pli

i · · · · ·P
ln+1
n

∖
Pl1+1

1 · · · · ·Pli+1
i · · · · ·Pln+1

n ⊂ I

for all i. Then bi ∈ P
l j+1
j for all j ̸= i, but bi /∈ Pli+1

i , since otherwise by Proposition 13.13

bi ∈ Pli+1
i ∩

(
Pl1+1

1 · · · · ·Pli
i · · · · ·P

ln+1
n

)
= Pl1+1

1 · · · · ·Pln+1
n
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in contradiction to our choice of bi. Hence

b := b1 + · · ·+bn /∈ Pli+1
i

for all i, but certainly b ∈ I. We now claim that I = (a,b). To see this, note first that by Proposition
13.13 the prime factorization of (a,b) = (a)+(b) can contain at most the maximal ideals occurring
in (a), so we can write (a,b) = Pm1

1 · · · · ·Pmn
n for suitable m1, . . . ,mn. But by Lemma 13.9 (a) we

see that:

• li ≤ mi for all i since (a,b)⊂ I;

• mi ≤ li for all i since b /∈ Pli+1
i , and hence (a,b) ̸⊂ Pli+1

i .

Therefore we get mi = li for all i, which means that I = (a,b). □ 26
We have now studied prime factorizations of ideals in Dedekind domains in some detail. However,
recall that the underlying valuations on the local rings are defined originally not only on these dis-
crete valuation rings, but also on their quotient field. Geometrically, this means that we can equally
well consider orders of rational functions, i. e. quotients of polynomials, at a smooth point of a
curve. These orders can then be positive (if the function has a zero), negative (if it has a pole), or
zero (if the function has a non-zero value at the given point). Let us now transfer this extension
to the quotient field to the global case of a Dedekind domain R. Instead of ideals we then have to
consider corresponding structures (i. e. R-submodules) that do not lie in R itself, but in its quotient
field QuotR.

Definition 13.15 (Fractional ideals). Let R be an integral domain with quotient field K = QuotR.

(a) A fractional ideal of R is an R-submodule I of K such that aI ⊂ R for some a ∈ R\{0}.
(b) For a1, . . . ,an ∈ K we set as expected

(a1, . . . ,an) := Ra1 + · · ·+Ran

and call this the fractional ideal generated by a1, . . . ,an (note that this is in fact a fractional
ideal since we can take for a in (a) the product of the denominators of a1, . . . ,an).

Example 13.16.
(a) A subset I of an integral domain R is a fractional ideal of R if and only if it is an ideal in R

(the condition in Definition 13.15 (a) that aI ⊂ R for some a is vacuous in this case since we
can always take a = 1).

(b)
( 1

2

)
= 1

2 Z ⊂ Q is a fractional ideal of Z. In contrast, the localization Z(2) ⊂ Q of Example
6.5 (d) is not a fractional ideal of Z: it is a Z-submodule of Q, but there is no non-zero
integer a such that aZ(2) ⊂ Z.

Remark 13.17. Let R be an integral domain with quotient field K.

(a) Let I be a fractional ideal of R. The condition aI ⊂ R of Definition 13.15 (a) ensures that
I is finitely generated if R is Noetherian: as aI is an R-submodule in R it is actually an
ideal in R, and hence of the form aI = (a1, . . . ,an) for some a1, . . . ,an ∈ R. But then also
I =

( a1
a , . . . ,

an
a

)
is finitely generated.

(b) The standard operations on ideals of Construction 1.1 can easily be extended to fractional
ideals, or more generally to R-submodules of K. In the following, we will mainly need
products and quotients: for two R-submodules I and J of K we set

IJ :=
{ n

∑
i=1

ai bi : n ∈ N, a1, . . . ,an ∈ I, b1, . . . ,bn ∈ J
}
,

I : K J := {a ∈ K : aJ ⊂ I}.
Note that IJ is just the smallest R-submodule of K containing all products ab for a ∈ I
and b ∈ J, as expected. The index K in the notation of the quotient I : K J distinguishes
this construction from the ordinary ideal quotient I : J = {a ∈ R : aJ ⊂ I}— note that both
quotients are defined but different in general if both I and J are ordinary ideals in R.
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Exercise 13.18. Let K be the quotient field of a Noetherian integral domain R. Prove that for any
two fractional ideals I and J of R and any multiplicatively closed subset S⊂ R we have:

(a) S−1(IJ) = S−1I ·S−1J,

(b) S−1(I : K J) = S−1I : K S−1J.

Our goal in the following will be to check whether the multiplication as in Remark 13.17 (b) defines
a group structure on the set of all non-zero fractional ideals of an integral domain R. As associativity
and the existence of the neutral element R are obvious, the only remaining question is the existence
of inverse elements, i. e. whether for a given non-zero fractional ideal I there is always another
fractional ideal J with IJ = R. We will see now that this is indeed the case for Dedekind domains,
but not in general integral domains.

Definition 13.19 (Invertible and principal ideals). Let R be an integral domain, and let I be an
R-submodule of K = QuotR.

(a) I is called an invertible ideal or (Cartier) divisor if there is an R-submodule of J of K such
that IJ = R.

(b) I is called principal if I = (a) for some a ∈ K.

Lemma 13.20. As above, let K be the quotient field of an integral domain R, and let I be an R-
submodule of K.

(a) If I is an invertible ideal with IJ = R, then J = R : K I.

(b) We have the implications

I non-zero principal ⇒ I invertible ⇒ I fractional.

Proof.

(a) By definition of the quotient, IJ = R implies R = IJ ⊂ I (R : K I) ⊂ R, so we have equality
IJ = I (R : K I). Multiplication by J now gives the desired result J = R : K I.

(b) If I = (a) is principal with a ∈ K∗ then (a) ·
( 1

a

)
= R, hence I is invertible.

Now let I be an invertible ideal, i. e. I (R : K I) = R by (a). This means that
n

∑
i=1

ai bi = 1

for some n ∈ N and a1, . . . ,an ∈ I and b1, . . . ,bn ∈ R : K I. Then we have for all b ∈ I

b =
n

∑
i=1

ai bi b︸︷︷︸
∈R

.

So if we let a ∈ R be the product of the denominators of a1, . . . ,an, we get ab ∈ R. Therefore
aI ⊂ R, i. e. I is fractional. □

Example 13.21.
(a) Let R be a principal ideal domain. Then every non-zero fractional ideal I of R is principal:

we have aI ⊂ R for some a ∈ QuotR\{0}. This is an ideal in R, so of the form (b) for some
b ∈ R\{0}. It follows that I =

( b
a

)
, i. e. I is principal.

In particular, Lemma 13.20 (b) implies that the notions of principal, invertible, and fractional
ideals all agree for non-zero ideals in a principal ideal domain.

(b) The ideal I = (x,y) in the ring R = R[x,y] is not invertible: setting K = QuotR = R(x,y) we
have

R : K I = { f ∈ R(x,y) : x f ∈ R[x,y] and y f ∈ R[x,y]}= R[x,y].

But I (R : K I) = (x,y)R[x,y] ̸= R, and hence I is not invertible by Lemma 13.20 (a).
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Proposition 13.22 (Invertible = fractional ideals in Dedekind domains). In a Dedekind domain,
every non-zero fractional ideal is invertible.

Proof. Let I be a non-zero fractional ideal of a Dedekind domain R. Assume that I is not invertible,
which means by Lemma 13.20 (a) that I (R : K I) ̸= R. As the inclusion I (R : K I)⊂ R is obvious, this
means that I (R : K I) is a proper ideal of R. It must therefore be contained in a maximal ideal P by
Corollary 2.17.

Extending this inclusion by the localization map R→ RP then gives Ie (RP : K Ie) ⊂ Pe by Exercise
13.18. This means by Lemma 13.20 (a) that Ie is not invertible in RP. But RP is a discrete valuation
ring by Remark 13.2, hence a principal ideal domain by Proposition 12.14, and so Ie cannot be a
fractional ideal either by Example 13.21 (a). This is clearly a contradiction, since I is assumed to be
fractional. □

Remark 13.23. By construction, the invertible ideals of an integral domain R form an Abelian
group under multiplication, with neutral element R. As expected, we will write the inverse R : K I of
an invertible ideal I as in Lemma 13.20 (a) also as I−1. Proposition 13.22 tells us that for Dedekind
domains this group of invertible ideals can also be thought of as the group of non-zero fractional
ideals.

Moreover, it is obvious that the non-zero principal fractional ideals form a subgroup:

• every non-zero principal fractional ideal is invertible by Lemma 13.20 (b);

• the neutral element R = (1) is principal;

• for two non-zero principal fractional ideals (a) and (b) their product (ab) is principal;

• for any non-zero principal fractional ideal (a) its inverse (a−1) is also principal.

So we can define the following groups that are naturally attached to any integral domain.

Definition 13.24 (Ideal class groups). Let R be an integral domain.

(a) The group of all invertible ideals of R (under multiplication) is called the ideal group or
group of (Cartier) divisors of R. We denote it by DivR.

(b) We denote by PrinR≤ DivR the subgroup of (non-zero) principal ideals.

(c) The quotient PicR := DivR/PrinR of all invertible ideals modulo principal ideals is called
the ideal class group, or group of (Cartier) divisor classes, or Picard group of R.

Let us restrict the study of these groups to Dedekind domains. In this case, the structure of the ideal
group is easy to understand with the following proposition.

Proposition 13.25 (Prime factorization for invertible ideals). Let I be an invertible ideal in a
Dedekind domain R. Then I = Pk1

1 · · · · · Pkn
n for suitable distinct maximal ideals P1, . . . ,Pn and

k1, . . . ,kn ∈ Z, and this representation is unique up to permutation of the factors.

Proof. By Lemma 13.20 (b) we know that aI is an ideal in R for a suitable a ∈ R\{0}. Now by
Proposition 13.7 (b) we have aI = Pr1

1 · · · · ·Prn
n and (a) = Ps1

1 · · · · ·Psn
n for suitable distinct maximal

ideals P1, . . . ,Pn and r1, . . . ,rn,s1, . . . ,sn ∈ N, and so we get a factorization

I = (a)−1 ·aI = Pr1−s1
1 · · · · ·Prn−sn

n

as desired. Moreover, if we have two such factorizations Pk1
1 · · · · · Pkn

n = Pl1
1 · · · · · Pln

n with
k1, . . . ,kn, l1, . . . , ln ∈ Z, we can multiply this equation with suitable powers of P1, . . . ,Pn so that
the exponents become non-negative. The uniqueness statement then follows from the corresponding
one in Proposition 13.7 (b). □

Remark 13.26. Let R be a Dedekind domain. Proposition 13.25 states that the ideal group DivR is
in fact easy to describe: we have an isomorphism

DivR→{ϕ : mSpecR→ Z : ϕ is non-zero only on finitely many maximal ideals}
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sending any invertible ideal Pk1
1 · · · · ·Pkn

n to the map ϕ : mSpecR→ Z with only non-zero values
ϕ(Pi) = ki for i = 1, . . . ,n. This is usually called the free Abelian group generated by mSpecR
(since the maximal ideals generate this group, and there are no non-trivial relations among these
generators).

The group DivR is therefore very “big”, and also at the same time not very interesting since its
structure is so simple. In contrast, the ideal class group PicR=DivR/PrinR is usually much smaller,
and contains a lot of information on R. It is of great importance both in geometry and number theory.
It is out of the scope of this course to study it in detail, but we will at least give one interesting
example in each of these areas. But first let us note that the ideal class group can be thought of as
measuring “how far away R is from being a principal ideal domain”:

Proposition 13.27. For a Dedekind domain R the following statements are equivalent:

(a) R is a principal ideal domain.

(b) R is a unique factorization domain.

(c) PicR is the trivial group, i. e. |PicR|= 1.

Proof.

(a)⇒ (b) is Example 8.3 (a).

(b)⇒ (c): By Exercise 8.32 (b) every maximal ideal P⊴R (which is also a minimal non-zero
prime ideal as dimR = 1) is principal. But these maximal ideals generate the group DivR by
Proposition 13.25, and so we have PrinR = DivR, i. e. |PicR|= 1.

(c)⇒ (a): By Definition 13.24 the assumption |PicR| = 1 means that every invertible ideal is
principal. But every non-zero ideal of R is invertible by Proposition 13.22, so the result
follows. □

Example 13.28 (A non-trivial Picard group in number theory). Let R = Z[
√

5 i] be the integral
closure of Z in K = Q(

√
5 i) as in Examples 8.3 (b) and 13.6. We have seen there already that R is

a Dedekind domain but not a principal ideal domain: the ideal I1 := (2,1+
√

5 i) is not principal. In
particular, the class of I1 in the Picard group PicR is non-trivial. We will now show that this is the
only non-trivial element in PicR, i. e. that |PicR|= 2 and thus necessarily PicR∼= Z/2Z as a group,
with the two elements given by the classes of the ideals I0 := (1) and I1. Unwinding Definition
13.24, we therefore claim that every invertible ideal of R is of the form aI0 or aI1 for some a ∈ K∗.

So let I be an invertible ideal of R. Then I is also a non-zero fractional ideal by Lemma 13.20 (b),
and thus there is a number b ∈ K∗ with bI ⊂ R. But note that

R = Z[
√

5 i] = {m+n
√

5 i : m,n ∈ Z}

is just a rectangular lattice in the complex plane, and so there is an element c ∈ bI ⊂ K of minimal
non-zero absolute value. Replacing I by b

c I (which is an equivalent element in the Picard group) we
can therefore assume that I is an invertible ideal with 1 ∈ I, hence R ⊂ I, and that 1 is a non-zero
element of minimal absolute value in I.

Let us find out whether I can contain more elements except the ones of R. To do this, it suffices to
consider points in the rectangle with corners 0, 1,

√
5 i, and 1+

√
5 i shown in the pictures below:

I is an additive subgroup of C containing R, and so the complete set of points in I will just be an
R-periodic repeated copy of the points in this rectangle.

To figure out if I contains more points in this rectangle, we proceed in three steps illustrated below.

(a) By construction, I contains no points of absolute value less than 1 except the origin, i. e. no
points in the open disc U1(0) with radius 1 and center point 0. Likewise, because of the
R-periodicity of I, the ideal also does not contain any points in the open unit discs around
the other corners of the rectangle, except these corner points themselves. In other words, the
shaded area in picture (a) below cannot contain any points of I except the corner points.
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√
5 i

1
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5 i
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Re
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Im
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1
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√

5 i

(a) (b) (c)

(b) Now consider the open disc U 1
2
( 1

2

√
5 i), whose intersection with our rectangle is the left dark

half-circle in picture (b) above. Again, it cannot contain any points of I except its center: as
I is an R-module, any non-center point a ∈ I in this disc would lead to a non-center point
2a ∈ I in the disc U1(

√
5 i), which we excluded already in (a). But in fact the center point

1
2

√
5 i cannot lie in I either, since then we would have

√
5 i · 1

2

√
5 i+3 ·1 =

1
2
∈ I

as well, in contradiction to (a). In the same way we see that the open disc U 1
2
(1+ 1

2

√
5 i)

does not contain any points of I either. Hence the complete shaded area in picture (b) is
excluded now for points of I.

(c) Finally, consider the open disc U 1
2
( 1

2 +
1
2

√
5 i), shown in picture (c) above in dark color. For

the same reason as in (b), no point in this disc except the center can lie in I. As our discs
now cover the complete rectangle, this means that the only point in our rectangle except the
corners that can be in I is 1

2 +
1
2

√
5 i. This leads to exactly two possibilities for I:

either I = R = I0 or I =
(

1,
1
2
+

1
2

√
5 i
)
=

1
2

I1.

In fact, we know already that this last case 1
2 I1 is an invertible ideal of R, so that this time

(in contrast to (b) above) it does not lead to a contradiction if the center point of the disc lies
in I.

Altogether, we thus conclude that |PicR| = 2, i. e. PicR ∼= Z/2Z, with the class of I0 being neutral
and I1 being the unique other element. We have indeed also checked already that I1 is its own inverse
in PicR, since by Example 13.8

I1 · I1 = (2)
is principal, and hence the neutral element in PicR.

Example 13.29 (A non-trivial Picard group in geometry). Consider again the complex plane cubic
curve X = V (y2− x(x− 1)(x− λ )) ⊂ A2

C for some λ ∈ C\{0,1} as in Example 13.12. We have
already seen that its coordinate ring R = A(X) is a Dedekind domain. Let us now study its ideal
class group PicR.

Note that there is an obvious map

ϕ : X → PicR, a 7→ I(a)

that assigns to each point of X the class of its maximal ideal in PicR = DivR/PrinR. The surprising
fact is that this map ϕ is injective with its image equal to PicR\{(1)}, i. e. to PicR without its neutral
element. We can therefore make it bijective by adding a “point at infinity” to X that is mapped to
the missing point (1) of PicR. This is particularly interesting as we then have a bijection between
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two completely different algebraic structures: X is a variety (but a priori not a group) and PicR is a
group (but a priori not a variety). So we can use the bijection ϕ to make the cubic curve X ∪{∞}
into a group, and the group PicR into a variety.

We cannot prove this statement or study its consequences here since
this would require methods that we have not covered in this course
— this is usually done in the “Algebraic Geometry” class. However,
we can use our definition of the Picard group and the map ϕ above
to describe the group structure on the curve X ∪{∞} explicitly. To
do this, consider two points on the curve with maximal ideals P1
and P2, as shown in the picture on the right. Draw the line through
these two points; it will intersect X in one more point Q since the
cubic equation y2 = x(x−1)(x−λ ) together with a linear equation
in x and y will have three solutions. By Example 13.12, this means
algebraically that there is a linear polynomial l ∈ R (whose zero
locus is this line) such that (l) = P1 ·P2 ·Q.

X

P2

P1

Q

P

l
l′

Next, draw the vertical line through Q. By the symmetry of X , it will intersect X in one more point
P. Similarly to the above, it follows that there is a linear polynomial l′ such that (l′) = Q ·P. But in
the Picard group PicR this means that

P1 ·P2 ·Q = (l) = (l′) = Q ·P
(note that (l) and (l′) both define the neutral element in PicR), and thus that P1 ·P2 = P. Hence
the above geometric construction of P from P1 and P2 describes the group structure on X ∪ {∞}
mentioned above.

Note that it is quite obvious without much theory behind it that this geometric two-line construction
can be used to associate to any two points on X (corresponding to P1 and P2 above) a third point on
X (corresponding to P). The surprising statement here (which is very hard to prove without using
Picard groups) is that this gives rise to a group structure on X ∪{∞}; in particular that this operation
is associative. The neutral element is the additional point ∞ (corresponding to the class of principal
ideals in PicR), and the inverse of a point in X is the other intersection point of the vertical line
through this point with X (so that e. g. in the above picture we have P−1 = Q).
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