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10. Noether Normalization and Hilbert’s Nullstellensatz

In the last chapter we have gained much understanding for integral and finite ring extensions. We
now want to prove an elementary but powerful theorem stating that every finitely generated algebra R
over a field K (so in particular every coordinate ring of a variety by Remark 1.31) is a finite extension
ring of a polynomial ring K[z1, . . . ,zr] — and hence of a very simple K-algebra that is easy to deal
with. Let us start by giving the geometric idea behind this so-called Noether Normalization theorem,
which is in fact very simple.

Example 10.1 (Idea of Noether Normalization). Let R =C[x1,x2]/(x1x2−1) be the coordinate ring
of the variety X =V (x1x2−1)⊂ A2

C as in Example 9.4 (b). We know already that R is not integral
(and hence not finite) over C[x1]; this is easily seen geometrically in the picture below on the left
since this map does not satisfy the Lying Over property for the origin as in Example 9.19.
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finite
y2

2− y2
1−1 = 0

R

C[x1]

not finite
x1x2−1 = 0

coordinate
change

x1 = y2 + y1

x2 = y2− y1

It is easy to change this however by a linear coordinate transformation: if we set e. g. x1 = y2+y1 and
x2 = y2−y1 then we can write R also as R =C[y1,y2]/(y2

2−y2
1−1), and this is now finite over C[y1]

by Proposition 9.5 since the polynomial y2
2− y2

1− 1 is monic in y2. Geometrically, the coordinate
transformation has tilted the space X as in the picture above on the right so that e. g. the Lying Over
property now obviously holds. Note that this is not special to the particular transformation that we
have chosen; in fact, “almost any” linear coordinate change would have worked to achieve this goal.

In terms of geometry, we are therefore looking for a change of coordinates so that a suitable coordi-
nate projection to some affine space Ar

K then corresponds to a finite ring extension of a polynomial
ring over K in r variables. Note that this number r can already be thought of as the “dimension” of
X (a concept that we will introduce in Chapter 11) as finite ring extensions correspond to surjective
geometric maps with finite fibers by Example 9.19, and thus should not change the dimension (we
will prove this in Lemma 11.8).

As we have seen above already, the strategy to achieve our goal is to find a suitable change of
coordinates so that the given relations among the variables become monic. The first thing we have
to do is therefore to prove that such a change of coordinates is always possible. It turns out that a
linear change of coordinates works in general only for infinite fields, whereas for arbitrary fields one
has to allow more general coordinate transformations.
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Lemma 10.2. Let f ∈ K[x1, . . . ,xn] be a non-zero polynomial over an infinite field K. Assume that
f is homogeneous, i. e. every monomial of f has the same degree (in the sense of Exercise 0.16).

Then there are a1, . . . ,an−1 ∈ K such that f (a1, . . . ,an−1,1) ̸= 0.

Proof. We will prove the lemma by induction on n. The case n = 1 is trivial, since a homogeneous
polynomial in one variable is just a constant multiple of a monomial.
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So assume now that n> 1, and write f as f =∑
d
i=0 fi xi

1 where the fi ∈K[x2, . . . ,xn] are homogeneous
of degree d− i. As f is non-zero, at least one fi has to be non-zero. By induction we can therefore
choose a2, . . . ,an−1 such that fi(a2, . . . ,an−1,1) ̸= 0 for this i. But then f ( · ,a2, . . . ,an−1,1) ∈ K[x1]
is a non-zero polynomial, so it has only finitely many zeroes. As K is infinite, we can therefore find
a1 ∈ K such that f (a1, . . . ,an−1,1) ̸= 0. □

Lemma 10.3. Let f ∈K[x1, . . . ,xn] be a non-zero polynomial over an infinite field K. Then there are
λ ∈ K and a1, . . . ,an−1 ∈ K such that

λ f (y1 +a1yn,y2 +a2yn, . . . ,yn−1 +an−1yn,yn) ∈ K[y1, . . . ,yn]

is monic in yn (i. e. as an element of R[yn] with R = K[y1, . . . ,yn−1]).

Proof. Let d be the degree of f in the sense of Exercise 0.16, and write f = ∑k1,...,kn ck1,...,knxk1
1 · · ·xkn

n
with ck1,...,kn ∈ K. Then the leading term of

λ f (y1 +a1yn,y2 +a2yn, . . . ,yn−1 +an−1yn,yn)

= λ ∑
k1,...,kn

ck1,...,kn(y1 +a1yn)
k1 · · ·(yn−1 +an−1yn)

kn−1ykn
n

in yn is obtained by always taking the second summand in the brackets and only keeping the degree-d
terms, i. e. it is equal to

λ ∑
k1,...,kn

k1+···+kn=d

ck1,...,kn ak1
1 · · ·a

kn−1
n−1 yk1+···+kn

n = λ fd(a1, . . . ,an−1,1)yd
n ,

where fd is the (homogeneous) degree-d part of f . Now pick a1, . . . ,an−1 by Lemma 10.2 such that
fd(a1, . . . ,an−1,1) ̸= 0, and set λ = fd(a1, . . . ,an−1,1)−1. □

Exercise 10.4. Let f ∈ K[x1, . . . ,xn] be a non-zero polynomial over an arbitrary field K. Prove that
there are λ ∈ K and a1, . . . ,an−1 ∈ N such that

λ f (y1 + ya1
n ,y2 + ya2

n , . . . ,yn−1 + yan−1
n ,yn) ∈ K[y1, . . . ,yn]

is monic in yn.

Proposition 10.5 (Noether Normalization). Let R be a finitely generated algebra over a field K,
with generators x1, . . . ,xn ∈R. Then there is an injective K-algebra homomorphism K[z1, . . . ,zr]→R
from a polynomial ring over K to R that makes R into a finite extension ring of K[z1, . . . ,zr].

Moreover, if K is an infinite field the images of z1, . . . ,zr in R can be chosen to be K-linear combina-
tions of x1, . . . ,xn.

Proof. We will prove the statement by induction on the number n of generators of R. The case n = 0
is trivial, as we can then choose r = 0 as well.

So assume now that n > 0. We have to distinguish two cases:

(a) There is no algebraic relation among the x1, . . . ,xn ∈ R, i. e. there is no non-zero polyno-
mial f over K such that f (x1, . . . ,xn) = 0 in R. Then we can choose r = n and the map
K[z1, . . . ,zn]→ R given by zi 7→ xi for all i, which is even an isomorphism in this case.

(b) There is a non-zero polynomial f over K such that f (x1, . . . ,xn) = 0 in R. Then we choose
λ and a1, . . . ,an−1 as in Lemma 10.3 (if K is infinite) or Exercise 10.4 (for any K) and set

y1 := x1−a1xn, . . . , yn−1 := xn−1−an−1xn, yn := xn

(so that x1 = y1 +a1yn, . . . , xn−1 = yn−1 +an−1yn, xn = yn)

or y1 := x1− xa1
n , . . . , yn−1 := xn−1− xan−1

n , yn := xn

(so that x1 = y1 + ya1
n , . . . , xn−1 = yn−1 + yan−1

n , xn = yn),
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respectively. Note that in both cases these relations show that the K-subalgebra K[y1, . . . ,yn]
of R generated by y1, . . . ,yn ∈ R is the same as that generated by x1, . . . ,xn, i. e. all of R.
Moreover, yn is integral over the K-subalgebra K[y1, . . . ,yn−1] of R, since

λ f (y1 +a1yn, . . . ,yn−1 +an−1yn,yn) or λ f (y1 + ya1
n , . . . ,yn−1 + yan−1

n ,yn),

respectively, is monic in yn and equal to λ f (x1, . . . ,xn) = 0. Hence R = K[y1, . . . ,yn] is finite
over K[y1, . . . ,yn−1] by Proposition 9.5. In addition, the subalgebra K[y1, . . . ,yn−1] of R is
finite over a polynomial ring K[z1, . . . ,zr] by the induction hypothesis, and thus R is finite
over K[z1, . . . ,zr] by Lemma 9.6 (a).

Moreover, if K is infinite we can always choose the coordinate transformation of Lemma
10.3, and thus y1, . . . ,yn (i. e. also the images of z1, . . . ,zr by induction) are linear combina-
tions of x1, . . . ,xn. □

Remark 10.6. Let R = A(X) be the coordinate ring of a variety X over a field K.

(a) In the Noether Normalization of Proposition 10.5, the (images of) z1, . . . ,zr in R are alge-
braically independent functions on X in the sense that there is no polynomial relation among
them with coefficients in K. On the other hand, every other element of R is algebraically
dependent on z1, . . . ,zr, i. e. it satisfies a (monic) polynomial relation with coefficients in
K[z1, . . . ,zr]. We can therefore think of r as the “number of parameters” needed to describe
X , i. e. as the “dimension” of X as already mentioned in Example 10.1. In fact, we will
see in Remark 11.10 that the number r in Proposition 10.5 is uniquely determined to be the
dimension of X in the sense of Chapter 11.

(b) As one would have guessed already from the geometric picture in Example 10.1, the proof
of Lemma 10.2 shows that most choices of linear coordinate transformations are suitable to
obtain a Noether normalization: in each application of this lemma, only finitely many values
of a1 ∈ K have to be avoided. Hence we can translate Proposition 10.5 into geometry by
saying that a sufficiently general projection to an r-dimensional linear subspace corresponds
to a finite ring extension, and hence to a surjective map with finite fibers (where r is the
dimension of X as in (a)).

Exercise 10.7. Find a Noether normalization of the C-algebra C[x,y,z]/(xy+z2,x2y−xy3+z4−1).

Exercise 10.8. Let R ⊂ R′ be an integral ring extension, and assume that R is a finitely generated
algebra over some field K. Moreover, let P1 ⊊ P3 be prime ideals in R and P′1 ⊊ P′3 be prime ideals in
R′ such that P′1∩R = P1 and P′3∩R = P3.

(a) Prove: If there is a prime ideal P2 in R with P1 ⊊ P2 ⊊ P3, then
there is also a prime ideal P′2 in R′ with P′1 ⊊ P′2 ⊊ P′3.

(b) Can we always find P′2 in (a) such that in addition P′2∩R = P2
holds?

R′:

R: ⊊ ⊊P2P1 P3

P′3P′1 P′2⊊ ⊊

As an important application of Noether Normalization we can now give rigorous proofs of some
statements in our dictionary between algebra and geometry, namely of the correspondence between
(maximal) ideals in the coordinate ring A(X) of a variety X over an algebraically closed field and
subvarieties (resp. points) of X . There are various related statements along these lines, and they are
all known in the literature by the German name Hilbert’s Nullstellensatz (“theorem of the zeroes”).

Let us start with the simplest instance of this family of propositions. Still very algebraic in nature,
it is the statement most closely related to Noether Normalization, from which the geometric results
will then follow easily.

Corollary 10.9 (Hilbert’s Nullstellensatz, version 1). Let K be a field, and let R be a finitely
generated K-algebra which is also a field.

Then K ⊂ R is a finite field extension. In particular, if in addition K is algebraically closed then
R = K.
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Proof. By Noether Normalization as in Proposition 10.5 we know that R is finite over a polynomial
ring K[z1, . . . ,zr], and thus also integral over K[z1, . . . ,zr] by Proposition 9.5. But R is a field, hence
K[z1, . . . ,zr] must be a field as well by Corollary 9.21 (a). This is only the case for r = 0, and so R is
finite over K.

In particular, if K is algebraically closed then there are no algebraic extension fields of K since all
zeroes of polynomials over K lie already in K. Hence by Proposition 9.5 there are no finite extensions
either in this case, and we must have R = K. □

Corollary 10.10 (Hilbert’s Nullstellensatz, version 2). Let K be an algebraically closed field. Then
all maximal ideals of the polynomial ring K[x1, . . . ,xn] are of the form

I(a) = (x1−a1, . . . ,xn−an)

for some a = (a1, . . . ,an) ∈ An
K .

Proof. Let P ⊴ K[x1, . . . ,xn] be a maximal ideal. Then K[x1, . . . ,xn]/P is a field by Lemma 2.3
(b), and in addition certainly a finitely generated K-algebra. Hence K[x1, . . . ,xn]/P = K by Corol-
lary 10.9, i. e. the natural map K → K[x1, . . . ,xn]/P, c 7→ c is an isomorphism. Choosing in-
verse images a1, . . . ,an of x1, . . . ,xn we get xi = ai for all i, and thus (x1− a1, . . . ,xn− an) ⊂ P.
But (x1 − a1, . . . ,xn − an) is a maximal ideal by Example 2.6 (c), and so we must already have
P = (x1−a1, . . . ,xn−an) = I(a). □

Remark 10.11 (Points of a variety correspond to maximal ideals). It is easy to extend Corollary
10.10 to a statement about an arbitrary variety X ⊂ An

K over an algebraically closed field K: if
R = A(X) is the coordinate ring of X we claim that there is a one-to-one correspondence

{points of X} 1:1←→ {maximal ideals in A(X)}

a 7−→ I(a)
V (I) ←−7 I.

In fact, the maximal ideals of A(X) = K[x1, . . . ,xn]/I(X) are in one-to-one correspondence with
maximal ideals I⊴K[x1, . . . ,xn] such that I ⊃ I(X) by Lemma 1.21 and Corollary 2.4. By Corollary
10.10 this is the same as ideals of the form I(a) = (x1−a1, . . . ,xn−an) containing I(X). But I(a)⊃
I(X) is equivalent to a ∈ X by Lemma 0.9 (a) and (c), so the result follows.

Remark 10.12 (Zeroes of ideals in K[x1, . . . ,xn]). Another common reformulation of Hilbert’s Null-
stellensatz is that every proper ideal I ⊴K[x1, . . . ,xn] in the polynomial ring over an algebraically
closed field K has a zero: by Corollary 2.17 we know that I is contained in a maximal ideal, which
must be of the form I(a) by Corollary 10.10. But I ⊂ I(a) implies a ∈ V (I) by Lemma 0.9 (a) and
(c), and hence V (I) ̸= /0.

Note that this statement is clearly false over fields that are not algebraically closed, as e. g. (x2 +1)
is a proper ideal in R[x] with empty zero locus in A1

R.
19

In order to extend the correspondence between points and maximal ideals to arbitrary subvarieties
we need another algebraic preliminary result first: recall that in any ring R the radical of an ideal I
equals the intersection of all prime ideals containing I by Lemma 2.21. We will show now that it is
in fact sufficient to intersect all maximal ideals containing I if R is a finitely generated algebra over
a field.

Corollary 10.13 (Hilbert’s Nullstellensatz, version 3). For every ideal I in a finitely generated
algebra R over a field K we have √

I =
⋂

P maximal
P⊃I

P.

Proof. The inclusion “⊂” follows immediately from Lemma 2.21, since every maximal ideal is
prime.
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For the opposite inclusion “⊃”, let f ∈ R with f /∈
√

I; we have to find a maximal ideal P ⊃ I with
f /∈ P. Consider the multiplicatively closed set S = { f n : n ∈ N}. As f /∈

√
I implies I ∩S = /0, we

get by Exercise 6.14 (a) a prime ideal P⊴R with P ⊃ I and P∩ S = /0, in particular with f /∈ P.
Moreover, we can assume by Exercise 6.14 (a) that S−1P is maximal. It only remains to show that P
is maximal.

To do this, consider the ring extension K→ R/P→ (R/P) f = R f /Pf , where the subscript f denotes
localization at S as in Example 6.5 (c). Note that the second map is in fact an inclusion since R/P is
an integral domain, and the stated equality holds by Corollary 6.22 (b). Moreover, R f /Pf is a field
since Pf is maximal, and finitely generated as a K-algebra (as generators we can choose the classes
of generators for R together with 1

f ). So K ⊂ R f /Pf is a finite field extension by Corollary 10.9,
and hence integral by Proposition 9.5. But then R/P ⊂ R f /Pf is integral as well, which means by
Corollary 9.21 (a) that R/P is a field since R f /Pf is. Hence P is maximal by Lemma 2.3 (b). □

Corollary 10.14 (Hilbert’s Nullstellensatz, version 4). Let X ⊂ An
K be a variety over an alge-

braically closed field K. Then for every ideal I ⊴A(X) we have I(V (I)) =
√

I.

In particular, there is a one-to-one correspondence

{subvarieties of X} 1:1←→ {radical ideals in A(X)}

Y 7−→ I(Y )
V (I) ←−7 I.

Proof. Let us first prove the equality I(V (I)) =
√

I.

“⊂”: Assume that f /∈
√

I. By Corollary 10.13 there is then a maximal ideal P⊴A(X) with P⊃ I
and f /∈ P. But by Remark 10.11 this maximal ideal has to be of the form I(a) = (x1−
a1, . . . ,xn−an) for some point a ∈ X . Now I(a)⊃ I implies a ∈V (I) by Lemma 0.9 (a) and
(c), and f /∈ I(a) means f (a) ̸= 0. Hence f /∈ I(V (I)).

“⊃”: Let f ∈
√

I, i. e. f n ∈ I for some n ∈ N. Then ( f (a))n = 0, and hence f (a) = 0, for all
a ∈V (I). This means that f ∈ I(V (I)).

The one-to-one correspondence now follows immediately from what we already know: the two maps
are well-defined since I(Y ) is always radical by Remark 1.10, and they are inverse to each other by
Lemma 0.9 (c) and the statement I(V (I)) =

√
I proven above. □


