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1. Ideals

From the “Algebraic Structures” class you already know the basic constructions and properties con-
cerning ideals and their quotient rings [G1, Chapter 8]. For our purposes however we have to study
ideals in much more detail — so this will be our goal for this and the next chapter. Let us start with
some general constructions to obtain new ideals from old ones. The ideal generated by a subset M
of a ring [G1, Definition 8.5] will be written as (M).

Construction 1.1 (Operations on ideals). Let I and J be ideals in a ring R.

(a) The sum of the two given ideals is defined as usual by

I + J := {a+b : a ∈ I and b ∈ J}.
It is easy to check that this is an ideal — in fact, it is just the ideal generated by I∪ J.

(b) It is also obvious that the intersection I∩ J is again an ideal of R.

(c) We define the product of I and J as the ideal generated by all products of elements of I and
J, i. e.

I · J := ({ab : a ∈ I and b ∈ J}).
Note that just the set of products of elements of I and J would in general not be an ideal: if
we take R = R[x,y] and I = J = (x,y), then obviously x2 and y2 are products of an element
of I with an element of J, but their sum x2 + y2 is not.

(d) The quotient of I by J is defined to be

I :J := {a ∈ R : aJ ⊂ I}.
Again, it is easy to see that this is an ideal.

(e) We call √
I := {a ∈ R : an ∈ I for some n ∈ N}

the radical of I. Let us check that this an ideal of R:

• We have 0 ∈
√

I, since 0 ∈ I.

• If a,b ∈
√

I, i. e. an ∈ I and bm ∈ I for some n,m ∈ N, then

(a+b)n+m =
n+m

∑
k=0

(
n+m

k

)
ak bn+m−k

is again an element of I, since in each summand we must have that the power of a is at
least n (in which case ak ∈ I) or the power of b is at least m (in which case bn+m−k ∈ I).
Hence a+b ∈

√
I.

• If r ∈ R and a ∈
√

I, i. e. an ∈ I for some n ∈ N, then (ra)n = rn an ∈ I, and hence
ra ∈

√
I.

Note that we certainly have
√

I ⊃ I. We call I a radical ideal if
√

I = I, i. e. if for all a ∈ R
and n ∈ N with an ∈ I it follows that a ∈ I. This is a natural definition since the radical

√
I

of an arbitrary ideal I is in fact a radical ideal in this sense: if an ∈
√

I for some n, so anm ∈ I
for some m, then this obviously implies a ∈

√
I. 01

Whether an ideal I is radical can also easily be seen from its quotient ring R/I as follows.

Definition 1.2 (Nilradical, nilpotent elements, and reduced rings). Let R be a ring. The ideal√
(0) = {a ∈ R : an = 0 for some n ∈ N}

is called the nilradical of R; its elements are called nilpotent. If R has no nilpotent elements except
0, i. e. if the zero ideal is radical, then R is called reduced.
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Lemma 1.3. An ideal I ⊴R is radical if and only if R/I is reduced.

Proof. By Construction 1.1 (e), the ideal I is radical if and only if for all a ∈ R and n ∈N with an ∈ I
it follows that a ∈ I. Passing to the quotient ring R/I, this is obviously equivalent to saying that
a n = 0 implies a = 0, i. e. that R/I has no nilpotent elements except 0. □

Example 1.4 (Operations on ideals in principal ideal domains). Recall that a principal ideal do-
main (or short: PID ) is an integral domain in which every ideal is principal, i. e. can be generated
by one element [G1, Definition 10.11]. The most prominent examples of such rings are probably
Euclidean domains, i. e. integral domains admitting a division with remainder [G1, Definition 10.17
and Proposition 10.22], such as Z or K[x] for a field K [G1, Example 10.18 and Proposition 10.19].

We know that any principal ideal domain R admits a unique prime factorization of its elements [G1,
Proposition 11.9] — a concept that we will discuss in more detail in Chapter 8. As a consequence,
all operations of Construction 1.1 can then be computed easily: if I and J are not the zero ideal we
can write I = (a) and J = (b) for a= pa1

1 · · · · · pan
n and b= pb1

1 · · · · · pbn
n with distinct prime elements

p1, . . . , pn and a1, . . . ,an,b1, . . . ,bn ∈ N. Then we obtain:

(a) I+J = (pc1
1 · · · · · pcn

n ) with ci =min(ai,bi) for i= 1, . . . ,n: another (principal) ideal contains
I (resp. J) if and only if it is of the form (pc1

1 · · · · · pcn
n ) with ci ≤ ai (resp. ci ≤ bi) for all i,

so the smallest ideal I + J containing I and J is obtained for ci = min(ai,bi);

(b) I∩ J = (pc1
1 · · · · · pcn

n ) with ci = max(ai,bi);

(c) I · J = (ab) = (pc1
1 · · · · · pcn

n ) with ci = ai +bi;

(d) I :J = (pc1
1 · · · · · pcn

n ) with ci = max(ai−bi,0);

(e)
√

I = (pc1
1 · · · · · pcn

n ) with ci = min(ai,1).

In particular, we have I + J = (1) = R if and only if a and b have no common prime factor, i. e. if a
and b are coprime. We use this observation to define the notion of coprime ideals in general rings:

Definition 1.5 (Coprime ideals). Two ideals I and J in a ring R are called coprime if I + J = R.

Example 1.6 (Operations on ideals in polynomial rings with SINGULAR). In more general rings,
the explicit computation of the operations of Construction 1.1 is quite complicated and requires
advanced algorithmic methods that you can learn about in the “Computer Algebra” class. We will
not need this here, but if you want to compute some examples in polynomial rings you can use
e. g. the computer algebra system SINGULAR [S]. For example, for the ideals I = (x2y,xy3) and
J = (x+ y) in Q[x,y] the following SINGULAR code computes that I : J = (x2y,xy2) and

√
I · J =√

I∩ J = (x2y+ xy2), and checks that y3 ∈ I + J:

> LIB "primdec.lib"; // library needed for the radical
> ring R=0,(x,y),dp; // set up polynomial ring Q[x,y]
> ideal I=x2y,xy3; // means I=(x^2*y,x*y^3)
> ideal J=x+y;
> quotient(I,J); // compute (generators of) I:J
_[1]=xy2
_[2]=x2y
> radical(I*J); // compute radical of I*J
_[1]=x2y+xy2
> radical(intersect(I,J)); // compute radical of intersection
_[1]=x2y+xy2
> reduce(y3,std(I+J)); // gives 0 if and only if y^3 in I+J
0

In this example it turned out that
√

I · J =
√

I∩ J. In fact, this is not a coincidence — the following
lemma and exercise show that the product and the intersection of ideals are very closely related.

Lemma 1.7 (Product and intersection of ideals). For any two ideals I and J in a ring R we have
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(a) I · J ⊂ I∩ J;

(b)
√

I · J =
√

I∩ J =
√

I∩
√

J.

Proof.

(a) It suffices to check that all generators of I ·J lie in I∩J. But for a ∈ I and b ∈ J it is obvious
that ab ∈ I∩ J, so the result follows.

(b) We show a circular inclusion, with
√

I · J ⊂
√

I∩ J following from (a).

If a ∈
√

I∩ J then an ∈ I∩ J for some n ∈ N, so an ∈ I and an ∈ J, and hence a ∈
√

I∩
√

J.
Finally, if a ∈

√
I∩
√

J then am ∈ I and an ∈ J for some m,n ∈ N, therefore am+n ∈ I · J and
thus a ∈

√
I · J. □

Exercise 1.8. Let I1, . . . , In be pairwise coprime ideals in a ring R. Prove that I1 · · · · ·In = I1∩·· ·∩In.

Exercise 1.9. Show that the ideal (x1, . . . ,xn)⊴K[x1, . . . ,xn] cannot be generated by fewer than n
elements. Hence in particular, the polynomial ring K[x1, . . . ,xn] is not a principal ideal domain for
n≥ 2.

We will see however in Remark 8.6 that these polynomial rings still admit unique prime factoriza-
tions of its elements, so that the results of Example 1.4 continue to hold for principal ideals in these
rings.

Remark 1.10 (Ideals of subvarieties = radical ideals). Radical ideals play an important role in
geometry: if Y is a subvariety of a variety X and f ∈ A(X) with f n ∈ I(Y ), then ( f (x))n = 0 for
all x ∈ Y — but this obviously implies f (x) = 0 for all x ∈ Y , and hence f ∈ I(Y ). So ideals of
subvarieties are always radical.

In fact, if the ground field K is algebraically closed, i. e. if every non-constant polynomial over K
has a zero (as e. g. for K = C), we will see in Corollary 10.14 that it is exactly the radical ideals in
A(X) that are ideals of subvarieties. So in this case there is a one-to-one correspondence

{subvarieties of X} 1:1←→ {radical ideals in A(X)}

Y 7−→ I(Y )
V (I) ←−7 I.

In other words, we have V (I(Y )) = Y for every subvariety Y of X (which we have already seen in
Lemma 0.9 (c)), and I(V (I)) = I for every radical ideal I⊴A(X). In order to simplify our geometric
interpretations we will therefore usually assume from now on in our geometric examples that the
ground field is algebraically closed and the above one-to-one correspondence holds. Note that this
will not lead to circular reasoning as we will never use these geometric examples to prove anything.

Exercise 1.11.
(a) Give a rigorous proof of the one-to-one correspondence of Remark 1.10 in the case of the

ambient variety A1
C, i. e. between subvarieties of A1

C and radical ideals in A(A1
C) = C[x].

(b) Show that this one-to-one correspondence does not hold in the case of the ground field R,
i. e. between subvarieties of A1

R and radical ideals in A(A1
R) = R[x].

Remark 1.12 (Geometric interpretation of operations on ideals). Let X be a variety over an alge-
braically closed field, and let A(X) be its coordinate ring. Assuming the one-to-one correspondence
of Remark 1.10 between subvarieties of X and radical ideals in A(X) we can now give a geometric
interpretation of the operations of Construction 1.1:

(a) As I + J is the ideal generated by I∪ J, we have for any two (radical) ideals I,J⊴A(X)

V (I + J) = {x ∈ X : f (x) = 0 for all f ∈ I∪ J}
= {x ∈ X : f (x) = 0 for all f ∈ I}∩{x ∈ X : f (x) = 0 for all f ∈ J}
=V (I)∩V (J).
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So the intersection of subvarieties corresponds to the sum of ideals. (Note however that the
sum of two radical ideals may not be radical, so strictly speaking the algebraic operation
corresponding to the intersection of subvarieties is taking the sum of the ideals and then its
radical.)

Moreover, as the whole space X and the empty set /0 obviously correspond to the zero ideal
(0) resp. the whole ring (1) = A(X), the condition I + J = A(X) that I and J are coprime
translates into the intersection of V (I) and V (J) being empty.

(b) For any two subvarieties Y,Z of X

I(Y ∪Z) = { f ∈ A(X) : f (x) = 0 for all x ∈ Y ∪Z}
= { f ∈ A(X) : f (x) = 0 for all x ∈ Y}∩{ f ∈ A(X) : f (x) = 0 for all x ∈ Z}
= I(Y )∩ I(Z),

and thus the union of subvarieties corresponds to the intersection of ideals. As the product
of ideals has the same radical as the intersection by Lemma 1.7 (b), the union of subvarieties
also corresponds to taking the product of the ideals (and then its radical).

(c) Again for two subvarieties Y,Z of X we have

I(Y\Z) = { f ∈ A(X) : f (x) = 0 for all x ∈ Y\Z}
= { f ∈ A(X) : f (x) ·g(x) = 0 for all x ∈ Y and g ∈ I(Z)}
= { f ∈ A(X) : f · I(Z)⊂ I(Y )}
= I(Y ) : I(Z),

so taking the set-theoretic difference Y\Z corresponds to quotient ideals. (Strictly speaking,
the difference Y\Z is in general not a variety, so the exact geometric operation corresponding
to quotient ideals is taking the smallest subvariety containing Y\Z.)

Summarizing, we obtain the following translation between geometric and algebraic terms:

SUBVARIETIES ←→ IDEALS
full space (0)
empty set (1)
intersection sum
union product / intersection
difference quotient
disjoint subvarieties coprime ideals

Exercise 1.13. Show that the equation of ideals

(x3− x2,x2y− x2,xy− y,y2− y) = (x2,y)∩ (x−1,y−1)

holds in the polynomial ring C[x,y]. Is this a radical ideal? What is its zero locus in A2
C?

As an example that links the concepts introduced so far, let us now consider the Chinese Remainder
Theorem that you already know for the integers [G1, Proposition 11.22] and generalize it to arbitrary
rings.

Proposition 1.14 (Chinese Remainder Theorem). Let I1, . . . , In be ideals in a ring R, and consider
the ring homomorphism

ϕ : R→ R/I1×·· ·×R/In, a 7→ (a, . . . ,a).

(a) ϕ is injective if and only if I1∩·· ·∩ In = (0).

(b) ϕ is surjective if and only if I1, . . . , In are pairwise coprime.
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Proof.

(a) This follows immediately from kerϕ = I1∩·· ·∩ In.

(b) “⇒” If ϕ is surjective then (1,0, . . . ,0) ∈ imϕ . In particular, there is an element a ∈ R
with a = 1 mod I1 and a = 0 mod I2. But then 1 = (1− a)+ a ∈ I1 + I2, and hence
I1 + I2 = R. In the same way we see Ii + I j = R for all i ̸= j.

“⇐” Let Ii + I j = R for all i ̸= j. In particular, for i = 2, . . . ,n there are ai ∈ I1 and bi ∈
Ii with ai + bi = 1, so that bi = 1− ai = 1 mod I1 and bi = 0 mod Ii. If we then
set b := b2 · · · · · bn we get b = 1 mod I1 and b = 0 mod Ii for all i = 2, . . . ,n. So
(1,0, . . . ,0) = ϕ(b) ∈ imϕ . In the same way we see that the other unit generators are
in the image of ϕ , and hence ϕ is surjective. □

Example 1.15.
(a) Consider the case R = Z, and let a1, . . . ,an ∈ Z be pairwise coprime. Then the residue class

map
ϕ : Z→ Za1 ×·· ·×Zan , x 7→ (x, . . . ,x)

is surjective by Proposition 1.14 (b). Its kernel is (a1)∩·· ·∩(an) = (a) with a := a1 · · · · ·an
by Exercise 1.8, and so by the homomorphism theorem [G1, Proposition 8.12] we obtain an
isomorphism

Za→ Za1 ×·· ·×Zan , x 7→ (x, . . . ,x),

which is the well-known form of the Chinese Remainder Theorem for the integers [G1,
Proposition 11.22].

(b) Let X be a variety, and let Y1, . . . ,Yn be subvarieties of X . Recall from Remark 0.13 that for
i = 1, . . . ,n we have isomorphisms A(X)/I(Yi)∼= A(Yi) by restricting functions from X to Yi.
Using the translations from Remark 1.12, Proposition 1.14 therefore states that the combined
restriction map ϕ : A(X)→ A(Y1)×·· ·×A(Yn) to all given subvarieties is . . .

• injective if and only if the subvarieties Y1, . . . ,Yn cover all of X ;

• surjective if and only if the subvarieties Y1, . . . ,Yn are disjoint.

In particular, if X is the disjoint union of the subvarieties Y1, . . . ,Yn, then the Chinese Re-
mainder Theorem says that ϕ is an isomorphism, i. e. that giving a function on X is the same
as giving a function on each of the subvarieties — which seems obvious from geometry.

In our study of ideals, let us now consider their behavior under ring homomorphisms.

Definition 1.16 (Contraction and extension). Let ϕ : R→ R′ be a ring homomorphism.

(a) For any ideal I ⊴R′ the inverse image ϕ−1(I) is an ideal of R. We call it the inverse image
ideal or contraction of I by ϕ , sometimes denoted Ic if it is clear from the context which
morphism we consider.

(b) For I ⊴R the ideal generated by the image ϕ(I) is called the image ideal or extension of I
by ϕ . It is written as ϕ(I) ·R′, or Ie if the morphism is clear from the context.

Remark 1.17.
(a) Note that for the construction of the image ideal of an ideal I⊴R under a ring homomorphism

ϕ : R→ R′ we have to take the ideal generated by ϕ(I), since ϕ(I) itself is in general not yet
an ideal: take e. g. ϕ : Z→ Z[x] to be the inclusion and I = Z. But if ϕ is surjective then
ϕ(I) is already an ideal and thus Ie = ϕ(I):

• for b1,b2 ∈ ϕ(I) we have a1,a2 ∈ I with b1 = ϕ(a1) and b2 = ϕ(a2), and so b1 +b2 =
ϕ(a1 +a2) ∈ ϕ(I);

• for b ∈ ϕ(I) and s ∈ R′ we have a ∈ I and r ∈ R with ϕ(a) = b and ϕ(r) = s, and thus
sb = ϕ(ra) ∈ ϕ(I).
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(b) If R is a field and R′ ̸= {0} then any ring homomorphism ϕ : R→ R′ is injective: its kernel
is 0 since an element a ∈ R\{0} with ϕ(a) = 0 would lead to the contradiction

1 = ϕ(1) = ϕ(a−1 a) = ϕ(a−1) ·ϕ(a) = 0.

This is the origin of the names “contraction” and “extension”, since in this case these two
operations really make the ideal “smaller” and “bigger”, respectively.

Remark 1.18 (Geometric interpretation of contraction and extension). As in Construction 0.11, let
f : X → Y be a morphism of varieties, and let ϕ : A(Y )→ A(X), g 7→ g ◦ f be the associated map
between the coordinate rings.

(a) For any subvariety Z ⊂ X we have

I( f (Z)) = {g ∈ A(Y ) : g( f (x)) = 0 for all x ∈ Z}
= {g ∈ A(Y ) : ϕ(g) ∈ I(Z)}

= ϕ
−1(I(Z)),

so taking images of varieties corresponds to the contraction of ideals.

(b) For a subvariety Z ⊂ Y the zero locus of the extension I(Z)e by ϕ is

V (ϕ(I(Z))) = {x ∈ X : g( f (x)) = 0 for all g ∈ I(Z)}

= f−1({y ∈ Y : g(y) = 0 for all g ∈ I(Z)})

= f−1(V (I(Z)))

= f−1(Z)

by Lemma 0.9 (c). Hence, taking inverse images of subvarieties corresponds to the extension
of ideals.

So we can add the following two entries to our dictionary between geometry and algebra:

SUBVARIETIES ←→ IDEALS
image contraction
inverse image extension

Exercise 1.19. Let ϕ : R→ R′ a ring homomorphism. Prove:

(a) I ⊂ (Ie)c for all I ⊴R;

(b) I ⊃ (Ic)e for all I ⊴R′;

(c) (IJ)e = Ie Je for all I,J⊴R;

(d) (I∩ J)c = Ic∩ Jc for all I,J⊴R′.

Exercise 1.20. Let f : X →Y be a morphism of varieties, and let Z and W be subvarieties of X . The
geometric statements below are then obvious. Find and prove corresponding algebraic statements
for ideals in rings.

(a) f (Z∪W ) = f (Z)∪ f (W );

(b) f (Z∩W )⊂ f (Z)∩ f (W );

(c) f (Z\W )⊃ f (Z)\ f (W ).

An important application of contraction and extension is that it allows an easy explicit description
of ideals in quotient rings.
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Lemma 1.21 (Ideals in quotient rings). Let I be an ideal in a ring R. Then contraction and extension
by the quotient map ϕ : R→ R/I give a one-to-one correspondence

{ideals in R/I} 1:1←→ {ideals J in R with J ⊃ I}

J 7−→ Jc

Je ←−7 J.

Proof. As the quotient map ϕ is surjective, we know by Remark 1.17 (a) that contraction and ex-
tension are just the inverse image and image of an ideal, respectively. Moreover, it is clear that the
contraction of an ideal in R/I yields an ideal of R that contains I, and that the extension of an ideal
in R gives an ideal in R/I. So we just have to show that contraction and extension are inverse to each
other on the sets of ideals given in the lemma. But this is easy to check:

• For any ideal J⊴R/I we have (Jc)e = ϕ(ϕ−1(J)) = J since ϕ is surjective.

• For any ideal J⊴R with J ⊃ I we get

(Je)c = ϕ
−1(ϕ(J)) = {a ∈ R : ϕ(a) ∈ ϕ(J)}= J+ I = J. □

Exercise 1.22. Let I ⊂ J be ideals in a ring R. By Lemma 1.21, the extension J/I of J by the quotient
map R→ R/I is an ideal in R/I. Prove that

(R/I)/(J/I)∼= R/J.
02

At the end of this chapter, let us now consider ring homomorphisms from a slightly different point
of view that will also tell us which rings “come from geometry”, i. e. can be written as coordinate
rings of varieties.

Definition 1.23 (Algebras and algebra homomorphisms). Let R be a ring.

(a) An R-algebra is a ring R′ together with a ring homomorphism ϕR′ : R→ R′.

(b) Let R1 and R2 be R-algebras with corresponding ring homomorphisms ϕR1 : R→R1 and ϕR2 :
R→R2. A morphism or R-algebra homomorphism from R1 to R2 is a ring homomorphism
ϕ : R1→ R2 with ϕ ◦ϕR1 = ϕR2 .

It is often helpful to draw these maps in a diagram as shown on the
right. Then the condition ϕ ◦ϕR1 = ϕR2 just states that this diagram
commutes, i. e. that any two ways along the arrows in the diagram hav-
ing the same source and target — in this case the two ways to go from
R to R2 — will give the same map.

R

ϕR1 ϕR2

R1 R2
ϕ

(c) Let R′ be an R-algebra with corresponding ring homomorphism ϕR′ : R → R′. An R-
subalgebra of R′ is a subring R̃ of R′ containing the image of ϕ . Note that R̃ is then an
R-algebra using the ring homomorphism ϕR̃ : R→ R̃ given by ϕR′ with the target restricted
to R̃. Moreover, the inclusion R̃→ R′ is an R-algebra homomorphism in the sense of (b).

In most of our applications, the ring homomorphism ϕR′ : R→ R′ needed to define an R-algebra R′

will be clear from the context, and we will write the R-algebra simply as R′. In fact, in many cases it
will even be injective. In this case we usually consider R as a subring of R′, drop the homomorphism
ϕR′ in the notation completely, and say that R ⊂ R′ is a ring extension. We will consider these ring
extensions in detail in Chapter 9.

Remark 1.24. The ring homomorphism ϕR′ : R→ R′ associated to an R-algebra R′ can be used to
define a “scalar multiplication” of R on R′ by

R×R′→ R′, (a,c) 7→ a · c := ϕR′(a) · c.

Note that by setting c = 1 this scalar multiplication determines ϕR′ back. So one can also think of
an R-algebra as a ring together with a scalar multiplication with elements of R that has the expected
compatibility properties. In fact, one could also define R-algebras in this way.
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Example 1.25.
(a) Without doubt the most important example of an algebra over a ring R is the polynomial ring

R[x1, . . . ,xn], together with the obvious injective ring homomorphism R→ R[x1, . . . ,xn] that
embeds R into the polynomial ring as constant polynomials. In the same way, any quotient
R[x1, . . . ,xn]/I of the polynomial ring by an ideal I is an R-algebra as well.

(b) Let X ⊂ An
K be a variety over a field K. Then its coordinate ring A(X) = K[x1, . . . ,xn]/I(X)

is a K-algebra by (a), with K mapping to A(X) as the constant functions. Moreover, the ring
homomorphism A(Y )→ A(X) of Construction 0.11 corresponding to a morphism f : X→Y
to another variety Y is a K-algebra homomorphism, since composing a constant function with
f gives again a constant function. In fact, one can show that these are precisely the maps
between the coordinate rings coming from morphisms of varieties, i. e. that Construction
0.11 gives a one-to-one correspondence

{morphisms X → Y} 1:1←→ {K-algebra homomorphisms A(Y )→ A(X)}.
Definition 1.26 (Generated subalgebras). Let R′ be an R-algebra.

(a) For any subset M ⊂ R′ let

R[M] :=
⋂

T⊃M
R-subalgebra of R′

T

be the smallest R-subalgebra of R′ that contains M. We call it the R-subalgebra generated
by M. If M = {c1, . . . ,cn} is finite, we write R[M] = R[{c1, . . . ,cn}] also as R[c1, . . . ,cn].

(b) We say that R′ is a finitely generated R-algebra if there are finitely many c1, . . . ,cn with
R[c1, . . . ,cn] = R′.

Remark 1.27. Note that the square bracket notation in Definition 1.26 is ambiguous: R[x1, . . . ,xn]
can either mean the polynomial ring over R as in Definition 0.2 (if x1, . . . ,xn are formal variables),
or the subalgebra of an R-algebra R′ generated by x1, . . . ,xn (if x1, . . . ,xn are elements of R′). Unfor-
tunately, the usage of the notation R[x1, . . . ,xn] for both concepts is well-established in the literature,
so we will adopt it here as well. Its origin lies in the following lemma, which shows that the elements
of an R-subalgebra generated by a set M are just the polynomial expressions in elements of M with
coefficients in R.

Lemma 1.28 (Explicit description of R[M]). Let M be a subset of an R-algebra R′. Then

R[M] =

{
∑

i1,...,in∈N
ai1,...,in ci1

1 · · · · · c
in
n : ai1,...,in ∈ R, c1, . . . ,cn ∈M, only finitely many ai1,...,in ̸= 0

}
,

where multiplication in R′ with elements of R is defined as in Remark 1.24.

Proof. It is obvious that this set of polynomial expressions is an R-subalgebra of R′. Conversely,
every R-subalgebra of R′ containing M must also contain these polynomial expressions, so the result
follows. □

Example 1.29. In the field C of complex numbers the Z-algebra generated by the imaginary unit i
is

Z[i] = { f (i) : f ∈ Z[x]}= {a+bi : a,b ∈ Z} ⊂ C
by Lemma 1.28. (Note again the double use of the square bracket notation: Z[x] is the polynomial
ring over Z, whereas Z[i] is the Z-subalgebra of C generated by i.)

Lemma 1.30 (Finitely generated R-algebras). An algebra R′ over a ring R is finitely generated if
and only if R′ ∼= R[x1, . . . ,xn]/I for some n ∈ N and an ideal I in the polynomial ring R[x1, . . . ,xn].

Proof. Certainly, R[x1, . . . ,xn]/I is a finitely generated R-algebra since it is generated by the classes
of x1, . . . ,xn. Conversely, let R′ be an R-algebra generated by c1, . . . ,cn ∈ S. Then

ϕ : R[x1, . . . ,xn]→ R′, ∑
i1,...,in

ai1,...,in xi1
1 · · · · · x

in
n 7→ ∑

i1,...,in

ai1,...,in ci1
1 · · · · · c

in
n
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is a ring homomorphism, and its image is precisely R[c1, . . . ,cn] = R′ by Lemma 1.28. So by the
homomorphism theorem [G1, Proposition 8.12] ϕ induces a ring isomorphism R[x1, . . . ,xn]/kerϕ ∼=
R′, which by construction is also an R-algebra isomorphism. □

Remark 1.31 (Coordinate rings = reduced finitely generated K-algebras). Let K be an algebraically
closed field. Then by Remark 1.10 the coordinate rings of varieties over K are exactly the rings
of the form K[x1, . . . ,xn]/I for a radical ideal I ⊴K[x1, . . . ,xn], so by Lemma 1.3 and Lemma 1.30
precisely the reduced finitely generated K-algebras.


