Algebraic Geometry - Problem Set 6

due Thursday, December 9

- (1) Let $m, n \in \mathbb{N}_{>0}$. Prove:
 - (a) If $f: \mathbb{P}^n \to \mathbb{P}^m$ is a morphism and $X \subset \mathbb{P}^m$ a hypersurface then every irreducible component of $f^{-1}(X)$ has dimension at least n-1.
 - (b) If n > m then every morphism $f: \mathbb{P}^n \to \mathbb{P}^m$ is constant.
 - (c) $\mathbb{P}^n \times \mathbb{P}^m$ is not isomorphic to \mathbb{P}^{n+m} .
- (2) Let us say that n+2 points in \mathbb{P}^n are in general position if for any n+1 of them their representatives in K^{n+1} are linearly independent.
 - Now let a_1, \ldots, a_{n+2} and b_1, \ldots, b_{n+2} be two sets of points in \mathbb{P}^n in general position. Show that there is an isomorphism $f : \mathbb{P}^n \to \mathbb{P}^n$ with $f(a_i) = b_i$ for all $i = 1, \ldots, n+2$.
- (3) Show by example that the homogeneous coordinate ring of a projective variety is *not* invariant under isomorphisms, i.e. that there are isomorphic projective varieties X, Y such that the rings S(X) and S(Y) are not isomorphic.
- (4) A *conic* over a field of characteristic not equal to 2 is an irreducible curve in \mathbb{P}^2 of degree 2.
 - (a) Using the coefficients of quadratic polynomials, show that the set of all conics can be identified with an open subset U of \mathbb{P}^5 . (One says that U is a *moduli space* for conics.)
 - (b) Given a point $a \in \mathbb{P}^2$, show that the subset of U consisting of all conics passing through a is the zero locus of a linear equation in the homogeneous coordinates of $U \subset \mathbb{P}^5$.
 - (c) Given 5 points in \mathbb{P}^2 , no three of which lie on a line, show that there is a unique conic passing through all these points.