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8. Grassmannians

After having introduced affine and projective varieties, let us now take a break in our discussion of
the general theory to construct an interesting and useful class of examples. The idea behind this
construction is simple: Since the definition of projective spaces as the sets of 1-dimensional linear
subspaces of Kn turned out to be a very useful concept, let us now generalize this and consider
instead the sets of k-dimensional linear subspaces of Kn for an arbitrary k = 0, . . . ,n.

Definition 8.1 (Grassmannians). Let n ∈ N>0, and let k ∈ N with 0≤ k ≤ n. We denote by G(k,n)
the set of all k-dimensional linear subspaces of Kn. It is called the Grassmannian of k-planes in Kn.

Remark 8.2. By Example 6.13 (b) and Exercise 6.31 (a), Lemma 6.18 shows that k-dimensional
linear subspaces of Kn for k > 0 are in natural bijection with (k−1)-dimensional linear subspaces of
Pn−1. We can therefore consider G(k,n) alternatively as the set of such projective linear subspaces.
As the dimensions k and n are reduced by 1 in this way, our Grassmannian G(k,n) of Definition 8.1
is sometimes written in the literature as G(k−1,n−1) instead.

Of course, as in the case of projective spaces our goal must again be to make the Grassmannian
G(k,n) into a variety. In fact, we will see that it is even a projective variety in a natural way. For this
we need the algebraic concept of alternating tensor products, a slight variant of the ordinary tensor
products well-known from commutative algebra [G3, Chapter 5]. Let us briefly introduce them now.

Definition 8.3 (Alternating linear maps). Let V be a vector space over K, and let k ∈ N. A (k-fold)
multilinear map f : V k→W to another vector space W is called alternating if f (v1, . . . ,vk) = 0 for
all v1, . . . ,vk ∈V such that vi = v j for some i ̸= j.

Remark 8.4. Let f : V k→W be an alternating multilinear map, and let v1, . . . ,vk ∈V . Plugging in
vi + v j as the i-th and j-th argument for f we obtain by multilinearity

f (. . . ,vi + v j, . . . ,vi + v j, . . .) = f (. . . ,vi, . . . ,vi, . . .)+ f (. . . ,v j, . . . ,v j, . . .)

+ f (. . . ,vi, . . . ,v j, . . .)+ f (. . . ,v j, . . . ,vi, . . .).

But the three terms in the first row are 0 by Definition 8.3, and hence we obtain

f (. . . ,v j, . . . ,vi, . . .) =− f (. . . ,vi, . . . ,v j, . . .),

i. e. exchanging two arguments of f multiplies the result by −1. For any permutation σ ∈ Sk of the
arguments (which is a composition of such exchanges) we therefore obtain

f (vσ(1), . . . ,vσ(k)) = signσ · f (v1, . . . ,vk).

Example 8.5.
(a) The determinant det : Mat(n× n,K) = (Kn)n → K is an alternating n-fold multilinear map

to the ground field K.
(b) The cross product

f (v,w) = (a2b3−a3b2,a3b1−a1b3,a1b2−a2b1)

of two vectors v = (a1,a2,a3) and w = (b1,b2,b3) in K3 defines an alternating bilinear map
f : K3×K3→ K3.

Definition 8.6 (Alternating tensor products). Again let V be a vector space over K, and let k ∈ N.
A k-fold alternating tensor product of V is a vector space T together with
an alternating k-fold multilinear map τ : V k→ T satisfying the following uni-
versal property: For every k-fold alternating multilinear map f : V k →W to
another vector space W there is a unique linear map g : T →W with f = g◦τ ,
i. e. such that the diagram on the right commutes.

V k W

T

f

τ g
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Proposition 8.7 (Existence and uniqueness of alternating tensor products). For any vector space V
and any k ∈ N, there is a k-fold alternating tensor product τ : V k→ T as in Definition 8.6, and it is
unique up to unique isomorphism. We will write T as ΛkV and τ(v1, . . . ,vk) as v1 ∧ ·· · ∧ vk ∈ ΛkV
for all v1, . . . ,vk ∈V .

Proof. The proof both of the uniqueness and the existence is entirely analogous to the case of or-
dinary tensor products [G3, Propositions 5.4 and 5.5]. In fact, assuming the statement for ordinary
tensor products, for the existence part we could also take T = (V ⊗·· ·⊗V )/L, where L is the linear
subspace generated by all tensors v1⊗·· ·⊗ vk with v1, . . . ,vk ∈ V such that vi = v j for some i ̸= j,
which satisfies the required property by the universal property of the ordinary tensor product together
with Definition 8.3. □

Example 8.8. Assume that V is a finite-dimensional vector space with n := dimV , and let e1, . . . ,en
be a basis of V .

(a) In the same way as the tensors ei1 ⊗·· ·⊗ eik for all i1, . . . , ik ∈ {1, . . . ,n} form a basis of the
ordinary k-fold tensor product V ⊗ ·· ·⊗V [G3, Example 5.10 (a)], the alternating tensors
ei1 ∧·· ·∧eik for all strictly increasing indices i1 < · · ·< ik in {1, . . . ,n} form a basis of ΛkV .
In particular, we have dimΛkV =

(n
k

)
.

(b) Clearly, we have Λ0V ∼= K and Λ1V ∼= V . Moreover, by (a) we have dimΛnKn = 1; an
isomorphism ΛnKn ∼= K is given by the determinant as in Example 8.5 (a).

(c) For V = K3 and two vectors v = a1e1 + a2e2 + a3e3 and w = b1e1 + b2e2 + b3e3 in K3 we
have

v∧w = (a1b2−a2b1)e1∧ e2 +(a1b3−a3b1)e1∧ e3 +(a2b3−a3b2)e2∧ e3 ∈ Λ
2K3.

As e1∧ e2, e1∧ e3, and e2∧ e3 form a basis of Λ2K3 ∼= K3 by (a), we therefore see that (up
to a simple change of basis) v∧w is just the cross product of v and w as in Example 8.5 (b),
i. e. the cross product gives a concrete isomorphism Λ2K3 ∼= K3.

In this example, note that the coordinates of v∧w are just the three 2× 2 minors (i. e. the
determinants of all 2×2 submatrices) of the 2×3 matrix with rows v and w. This is in fact
a general phenomenon:

Remark 8.9 (Alternating tensor products and determinants). Let 0≤ k ≤ n, and let v1, . . . ,vk ∈ Kn

with basis expansions vi = ∑ j ai, je j for i = 1, . . . ,k with respect to the standard basis. For strictly
increasing indices i1 < · · · < ik let us determine the coefficient of the basis vector ei1 ∧ ·· · ∧ eik of
ΛkKn as in Example 8.8 (a) in the tensor product v1∧·· ·∧ vk. First of all, by multilinearity we have

v1∧·· ·∧ vk = ∑
j1,..., jk

a1, j1 · · ·ak, jk · e j1 ∧·· ·∧ e jk .

Note that the indices j1, . . . , jk in the products e j1 ∧ ·· · ∧ e jk in the terms of this sum are not neces-
sarily in strictly ascending order. So to figure out the coefficient of ei1 ∧ ·· · ∧ eik in v1 ∧ ·· · ∧ vk we
have to sort the indices in each sum first; the resulting coefficient is then by Remark 8.4

∑signσ ·a1,iσ(1) · · ·ak,iσ(k)
,

where the sum is taken over all permutations σ . By definition, this is exactly the determinant of the
maximal quadratic submatrix of the coefficient matrix (a j,i) j,i obtained by taking only the columns
i1, . . . , ik. In other words, the coordinates of v1 ∧ ·· · ∧ vk in the basis of Example 8.8 (a) are just all
the maximal minors of the matrix whose rows are v1, . . . ,vk. So the alternating tensor product can
be viewed as a convenient way to encode all these minors in a single object.

As a consequence, we will see now that alternating tensor products can be used to encode the linear
dependence and linear spans of vectors in a very elegant way.

Lemma 8.10. Let v1, . . . ,vk ∈ Kn for some k ≤ n. Then v1∧ ·· ·∧ vk = 0 if and only if v1, . . . ,vk are
linearly dependent.



64 Andreas Gathmann

Proof. By Remark 8.9, we have v1∧·· ·∧vk = 0 if and only if all maximal minors of the matrix with
rows v1, . . . ,vk are zero. But this is the case if and only if this matrix does not have full rank, i. e. if
and only if v1, . . . ,vk are linearly dependent. □

Lemma 8.11. Let v1, . . . ,vk ∈ Kn and w1, . . . ,wk ∈ Kn both be linearly independent. Then the alter-
nating tensor products v1 ∧ ·· · ∧ vk and w1 ∧ ·· · ∧wk are linearly dependent in ΛkKn if and only if
Lin(v1, . . . ,vk) = Lin(w1, . . . ,wk).

Proof. As we have assumed both v1, . . . ,vk and w1, . . . ,wk to be linearly independent, we know by
Lemma 8.10 that v1∧·· ·∧ vk and w1∧·· ·∧wk are both non-zero.

“⇒” Assume that v1∧·· ·∧ vk = λ w1∧·· ·∧wk for some λ ∈ K. Then we have

wi∧ v1∧·· ·∧ vk = λ wi∧w1∧·· ·∧wk = 0

for all i since the vector wi appears twice in this alternating product. Hence the vectors
wi,v1, . . . ,vk are linearly dependent by Lemma 8.10, which means that wi ∈ Lin(v1, . . . ,vk),
and thus Lin(w1, . . . ,wk)⊂ Lin(v1, . . . ,vk). The other inclusion then follows by symmetry.

“⇐” If v1, . . . ,vk and w1, . . . ,wk span the same subspace of Kn then the basis w1, . . . ,wk can be
obtained from v1, . . . ,vk by a finite sequence of basis transformations vi → vi + λ v j and
vi→ λ vi for λ ∈ K and i ̸= j. But as

v1∧·· ·∧ vi−1∧ (vi +λ v j)∧ vi+1∧·· ·∧ vn = v1∧·· ·∧ vi∧·· ·∧ vn

and v1∧·· ·∧ (λ vi)∧·· ·∧ vn = λ v1∧·· ·∧ vn,

these transformations change the alternating product at most by a multiplicative scalar. □

We can now use our results to realize the Grassmannian G(k,n) as a subset of a projective space.

Construction 8.12 (Plücker embedding). Let 0≤ k≤ n, and consider the map f : G(k,n)→ P(
n
k)−1

given by sending a linear subspace Lin(v1, . . . ,vk) ∈ G(k,n) to the class of the alternating tensor
v1∧·· ·∧ vk ∈ ΛkKn ∼= K(n

k) in P(
n
k)−1.

Note that this is well-defined: v1 ∧ ·· · ∧ vk is non-zero by Lemma 8.10, and representing the same
subspace by a different basis does not change the resulting point in P(

n
k)−1 by the part “⇐” of

Lemma 8.11. Moreover, the map f is injective by the part “⇒” of Lemma 8.11. We call it the
Plücker embedding of G(k,n); for a k-dimensional linear subspace L ∈ G(k,n) the (homogeneous)
coordinates of f (L) in P(

n
k)−1 are called the Plücker coordinates of L. By Remark 8.9, they are just

all the maximal minors of the matrix whose rows are v1, . . . ,vk.

In the following, we will always consider G(k,n) as a subset of P(
n
k)−1 using this Plücker embedding.

13

Example 8.13.
(a) The Plücker embedding of G(1,n) simply maps a linear subspace Lin(a1e1 + · · ·+anen) to

the point (a1 : · · · :an) ∈ P(
n
1)−1 = Pn−1. Hence G(1,n) = Pn−1 as expected.

(b) Consider the 2-dimensional subspace L = Lin(e1 + e2,e1 + e3) ∈ G(2,3) of K3. As

(e1 + e2)∧ (e1 + e3) =−e1∧ e2 + e1∧ e3 + e2∧ e3,

the coefficients (−1:1 :1) of this vector are the Plücker coordinates of L in P(
3
2)−1 = P2.

Alternatively, these are the three maximal minors of the matrix(
1 1 0
1 0 1

)
whose rows are the given spanning vectors e1 + e2 and e1 + e3 of L. Note that a change of
these spanning vectors will just perform row operations on this matrix, which changes the
maximal minors at most by a common constant factor. This shows again in this example that
the homogeneous Plücker coordinates of L are well-defined.
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So far we have embedded the Grassmannian G(k,n) into a projective space, but we still have to see
that it is a closed subset, i. e. a projective variety. By Construction 8.12, G(k,n) consists exactly of
the classes in P(

n
k)−1 of all non-zero alternating tensors in ΛkKn that can be written as so-called pure

tensors, i. e. as v1∧ ·· ·∧ vk for some v1, . . . ,vk ∈ Kn — and not just as a linear combination of such
expressions. Hence we have to find suitable equations describing these pure tensors in ΛkKn. The
key lemma to achieve this is the following.

Lemma 8.14. For a fixed non-zero ω ∈ ΛkKn with k < n consider the K-linear map

f : Kn→ Λ
k+1Kn, v 7→ v∧ω.

Then rk f ≥ n− k, with equality holding if and only if ω = v1∧·· ·∧ vk for some v1, . . . ,vk ∈ Kn.

Example 8.15. Let k = 2 and n = 4.

(a) For ω = e1∧ e2 the map f of Lemma 8.14 is given by

f (a1e1 +a2e2 +a3e3 +a4e4) = (a1e1 +a2e2 +a3e3 +a4e4)∧ e1∧ e2

= a3e1∧ e2∧ e3 +a4e1∧ e2∧ e4,

for a1,a2,a3,a4 ∈ K, and thus has rank rk f = 2 = n− k in accordance with the statement of
the lemma.

(b) For ω = e1∧ e2 + e3∧ e4 we get

f (a1e1 +a2e2 +a3e3 +a4e4)

= (a1e1 +a2e2 +a3e3 +a4e4)∧ (e1∧ e2 + e3∧ e4)

= a1e1∧ e3∧ e4 +a2e2∧ e3∧ e4 +a3e1∧ e2∧ e3 +a4e1∧ e2∧ e4

instead, so that rk f = 4. Hence Lemma 8.14 tells us that there is no way to write ω as a pure
tensor v1∧ v2 for some vectors v1,v2 ∈ K4.

Proof of Lemma 8.14. Let v1, . . . ,vr be a basis of Ker f (with r = n− rk f ), and extend it to a basis
v1, . . . ,vn of Kn. By Example 8.8 (a) the alternating tensors vi1 ∧·· ·∧vik with i1 < · · ·< ik then form
a basis of ΛkKn, and so we can write

ω = ∑
i1<···<ik

ai1,...,ik vi1 ∧·· ·∧ vik

for suitable coefficients ai1,...,ik ∈ K. Now for i = 1, . . . ,r we know that vi ∈ Ker f , and thus

0 = vi∧ω = ∑
i1<···<ik

ai1,...,ik vi∧ vi1 ∧·· ·∧ vik . (∗)

Note that vi ∧ vi1 ∧ ·· · ∧ vik = 0 if i ∈ {i1, . . . , ik}, and in the other cases these products are (up to
sign) different basis vectors of Λk+1Kn. So the equation (∗) tells us that we must have ai1,...,ik = 0
whenever i /∈ {i1, . . . , ik}. As this holds for all i = 1, . . . ,r we conclude that the coefficient ai1,...,ik = 0
can only be non-zero if {1, . . . ,r} ⊂ {i1, . . . , ik}.
But at least one of these coefficients has to be non-zero since ω ̸= 0 by assumption. This obviously
requires that r ≤ k, i. e. that rk f = n− r ≥ n− k. Moreover, if we have equality then only the
coefficient a1,...,k can be non-zero, which means that ω is a scalar multiple of v1∧·· ·∧ vk.

Conversely, if ω = w1 ∧ ·· · ∧wk for some (necessarily linearly independent) w1, . . . ,wk ∈ Kn then
w1, . . . ,wk ∈ Ker f . Hence in this case dimKer f ≥ k, i. e. rk f ≤ n− k, and together with the above
result rk f ≥ n− k we have equality. □

Corollary 8.16 (G(k,n) as a projective variety). With the Plücker embedding of Construction 8.12,
the Grassmannian G(k,n) is a closed subset of P(

n
k)−1. In particular, it is a projective variety.

Proof. As G(n,n) is just a single point (and hence clearly a variety) we may assume that k < n.
Then by construction a point ω ∈ P(

n
k)−1 lies in G(k,n) if and only if it is the class of a pure tensor

v1 ∧ ·· · ∧ vk. Lemma 8.14 shows that this is the case if and only if the rank of the linear map
f : Kn→ Λk+1Kn, v 7→ v∧ω is n− k. As we also know that the rank of this map is always at least
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n− k, this condition can be checked by the vanishing of all (n− k+ 1)× (n− k+ 1) minors of the
matrix corresponding to f . But these minors are polynomials in the entries of this matrix, and thus
in the coordinates of ω . Hence we see that the condition for ω to be in G(k,n) is closed. □

Example 8.17. By the proof of Corollary 8.16, the Grassmannian G(2,4) is given by the vanishing
of all sixteen 3× 3 minors of a 4× 4 matrix corresponding to a linear map K4→ Λ3K4, i. e. it is a
subset of P(

4
2)−1 = P5 given by 16 cubic equations.

As you might expect, this is by no means the simplest set of equations describing G(2,4) — in fact,
we will see in Exercise 8.22 (a) that a single quadratic equation suffices to cut out G(2,4) from P5.
Our proof of Corollary 8.16 is just the easiest way to show that G(k,n) is a variety; it is not suitable
in practice to find a nice description of G(k,n) as a zero locus of simple equations.

However, there is another useful description of the Grassmannian in terms of affine patches, as we
will see now. This will then also allow us to easily read off the dimension of G(k,n) — which would
be very hard to compute from its equations as in Corollary 8.16.

Construction 8.18 (Affine cover of the Grassmannian). Let U0 ⊂ G(k,n) ⊂ P(
n
k)−1 be the affine

open subset where the e1 ∧ ·· · ∧ ek-coordinate is non-zero. Then by Remark 8.9 a linear subspace
L ∈ G(k,n) is in U0 if and only if it is the row span of a k× n matrix of the form (A |B) for an
invertible k× k matrix A and an arbitrary k× (n− k) matrix B. Multiplying such a matrix by A−1

from the left, which does not change its row span, yields that U0 is the image of the map

f : Ak(n−k) = Mat(k× (n− k),K) → U0,

C 7→ the row span of (Ek |C),

where C = A−1B in the notation above. It is clear that different matrices C lead to different row spans
of (Ek |C), so f is bijective. Moreover, as the maximal minors of (Ek |C) are polynomial functions in
the entries of C, we see that f is a morphism. Conversely, the (i, j)-entry of C can be reconstructed
from f (C) up to sign as the maximal minor of (Ek |C) where we take all columns of Ek except the
i-th, together with the j-th column of C. Hence f−1 is a morphism as well, showing that f is in fact
an isomorphism.

In other words, we have seen that U0 ∼= Ak(n−k) is an affine space (and not just an affine variety,
which is already clear from Proposition 7.2). As the same arguments also holds for all other affine
patches where one of the Plücker coordinates is non-zero, we conclude that G(k,n) can be covered
by such affine spaces. In particular, it follows:

Corollary 8.19. G(k,n) is an irreducible variety of dimension k(n− k).

Proof. We have just seen in Construction 8.18 that G(k,n) has an open cover by affine spaces
Ak(n−k). As any two of these patches have a non-empty intersection (it is in fact easy to write
down a k×n matrix such that any two given maximal minors are non-zero), the result follows from
Exercises 2.21 (b) and 2.34 (a). □

Remark 8.20. The argument of Construction 8.18 also shows an alternative description of the Grass-
mannian: It is the space of all full-rank k× n matrices modulo row transformations. As we know
that every such matrix is equivalent modulo row transformations to a unique matrix in reduced row
echelon form, we can also think of G(k,n) as the set of full-rank k×n matrices in such a form. For
example, in the case k = 1 and n = 2 (when G(1,2) = P1 by Example 8.13 (a)) the full-rank 1× 2
matrices in reduced row echelon form are

(1 ∗) corresponding to A1 ⊂ P1

and (0 1) corresponding to ∞ ∈ P1

as in the homogeneous coordinates of P1.

The affine cover of Construction 8.18 can also be used to show the following symmetry property of
the Grassmannians.
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Proposition 8.21. For all 0≤ k ≤ n we have G(k,n)∼= G(n− k,n).

Proof. There is an obvious well-defined set-theoretic bijection f : G(k,n)→ G(n− k,n) that sends
a k-dimensional linear subspace L of Kn to its “orthogonal” complement

L⊥ = {x ∈ Kn : ⟨x,y⟩= 0 for all y ∈ L},
where ⟨x,y⟩= ∑

n
i=1 xiyi denotes the standard bilinear form. It remains to be shown that f (and analo-

gously f−1) is a morphism. By Lemma 4.6, we can do this on the affine coordinates of Construction
8.18. So let L ∈G(k,n) be described as the subspace spanned by the rows of a matrix (Ek |C), where
the entries of C ∈Mat(k× (n− k),K) are the affine coordinates of L. As

(Ek |C) ·
(
−C

En−k

)
= 0,

we see that L⊥ is the subspace spanned by the rows of (−CT |En−k). But the maximal minors of this
matrix, i. e. the Plücker coordinates of L⊥, are clearly polynomials in the entries of C, and thus we
conclude that f is a morphism. □

Exercise 8.22. Let G(2,4) ⊂ P5 be the Grassmannian of lines in P3 (or of 2-dimensional linear
subspaces of K4). We denote the homogeneous Plücker coordinates of G(2,4) in P5 by xi, j for
1≤ i < j ≤ 4. Show:

(a) G(2,4) =V (x1,2x3,4− x1,3x2,4 + x1,4x2,3).

(b) Let L ⊂ P3 be an arbitrary line. Show that the set of lines in P3 that intersect L, considered
as a subset of G(2,4)⊂ P5, is the zero locus of a homogeneous linear polynomial.

How many lines in P3 would you expect to intersect four general given lines?

Exercise 8.23. Show that the following sets are projective varieties:

(a) the incidence correspondence

{(L,a) ∈ G(k,n)×Pn−1 : L⊂ Pn−1 a (k−1)-dimensional linear subspace and a ∈ L};

(b) the join of two disjoint varieties X ,Y ⊂ Pn, i. e. the union in Pn of all lines intersecting both
X and Y .


