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6. Projective Varieties I: Topology

In the last chapter we have studied (pre-)varieties, i. e. topological spaces that are locally isomorphic
to affine varieties. In particular, the ability to glue affine varieties together allowed us to construct
compact spaces (in the classical topology over the ground field C) as e. g. P1, whereas affine varieties
themselves are never compact unless they consist of only finitely many points (see Exercise 2.36 (b)).
Unfortunately, the description of a variety in terms of its affine patches and gluing isomorphisms is
quite inconvenient in practice, as we have seen already in some of the calculations in the last chapter.
It would therefore be desirable to have a global description of these spaces that does not refer to
gluing methods.

We can obtain a large class of such “compact” varieties admitting a global description by considering
zero loci of polynomials in projective instead of affine spaces, generalizing projective curves as in
[G2, Chapter 3] — recall that the idea of projective spaces is to add “points at infinity” to affine space
similarly to how we have obtained P1 from A1 in Example 5.5 (a). It turns out that the resulting class
of projective varieties is in fact very large — so large that it is actually not easy to construct a variety
that is not an open subset of a projective variety. We will certainly not see one in these notes.

Let us quickly review the construction of projective spaces from [G2, Chapter 3], and then transfer
the concept of varieties to this new setting. In this chapter we will construct these projective varieties
just as topological spaces, leaving their structure as ringed spaces to Chapter 7.

Definition 6.1 (Projective spaces). Let n ∈ N. We define projective n-space over K, denoted Pn
K or

simply Pn, to be the set of all 1-dimensional linear subspaces of the vector space Kn+1.

Notation 6.2 (Homogeneous coordinates). Obviously, a 1-dimensional linear subspace of Kn+1 is
uniquely determined by a non-zero vector in Kn+1, with two such vectors spanning the same linear
subspace if and only if they are scalar multiples of each other. In other words, we have

Pn = (Kn+1\{0})/∼
with the equivalence relation

(x0, . . . ,xn)∼ (y0, . . . ,yn) :⇔ xi = λyi for some λ ∈ K∗ and all i,

where K∗ = K\{0} is the multiplicative group of units of K. This is usually written as
Pn = (Kn+1\{0})/K∗, and the equivalence class of (x0, . . . ,xn) will be denoted by (x0 : · · · :xn) ∈ Pn

(the notations [x0 : · · · :xn] and [x0, . . . ,xn] are also common in the literature). So in the notation
(x0 : · · · :xn) for a point in Pn the numbers x0, . . . ,xn are not all zero, and they are defined only up to
a common scalar multiple. They are called the homogeneous coordinates of the point (the reason
for this name will become obvious in the course of this chapter). Note also that we will usually label
the homogeneous coordinates of Pn by x0, . . . ,xn instead of by x1, . . . ,xn+1. This choice is motivated
by the following relation between An and Pn.

Remark 6.3 (Affine coordinates). Consider the map

f : An→ Pn, (x1, . . . ,xn) 7→ (1:x1 : · · · :xn)

which sets x0 = 1 and makes the coordinates x1, . . . ,xn of An into homogeneous coordinates of Pn.
Taking into account that the homogeneous coordinates can be rescaled, it is obviously injective with
image U0 := {(x0 : · · · :xn) : x0 ̸= 0}. On this image the inverse of f is given by

f−1 : U0→ An, (x0 : · · · :xn) 7→
(x1

x0
, . . . ,

xn

x0

)
. (∗)

With this embedding, we can thus think of An as a subset U0 of Pn. We call it the affine part of Pn;
the coordinates

( x1
x0
, . . . , xn

x0

)
of a point (x0 : · · · :xn) ∈U0 ⊂ Pn are called its affine coordinates.
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The remaining points of Pn (where x0 = 0) are of the form (0:x1 : · · · :xn) and can be viewed as
points at infinity, since by (∗) they would have infinite affine coordinates. By forgetting their first
coordinate (which is zero anyway) they form a set that is naturally bijective to Pn−1. We can thus
write

Pn = An∪Pn−1,

where An is the affine part and Pn−1 parametrizes the points at infinity. Usually, it is more helpful to
think of the points in projective space Pn in this way rather than as 1-dimensional linear subspaces
as in Definition 6.1. After having given Pn the structure of a variety we will see in Proposition 7.2
and Exercise 7.3 (b) that in this decomposition An and Pn−1 are open and closed subvarieties of Pn,
respectively.

Remark 6.4 (Pn
C is compact in the classical topology). In the case K =C one can give Pn

C a standard
(quotient) topology by declaring a subset U ⊂ Pn to be open if its inverse image under the quotient
map π : Cn+1\{0}→ Pn is open in the standard topology. Then Pn

C is compact: Let

S = {(x0, . . . ,xn) ∈ Cn+1 : |x0|2 + · · ·+ |xn|2 = 1}
be the unit sphere in Cn+1. This is a compact space as it is closed and bounded. Moreover, as every
point in Pn can be represented by a unit vector in S, the restricted map π|S : S→ Pn is surjective.
Hence Pn is compact as a continuous image of a compact set.

Remark 6.5 (Homogeneous polynomials). In complete analogy to affine varieties, we now want to
define projective varieties to be subsets of Pn that can be given as the zero locus of some polynomials
in the homogeneous coordinates. Note however that if f ∈ K[x0, . . . ,xn] is an arbitrary polynomial,
it does not make sense to write down a definition like

V ( f ) = {(x0 : · · · :xn) : f (x0, . . . ,xn) = 0} ⊂ Pn,

because the homogeneous coordinates are only defined up to a common scalar. For example, if
f = x2

1− x0 ∈ K[x0,x1] then f (1,1) = 0 and f (−1,−1) ̸= 0, although (1:1) = (−1: −1) in P1. To
get rid of this problem we have to require that f is homogeneous, i. e. that all of its monomials have
the same (total) degree d: In this case

f (λx0, . . . ,λxn) = λ
d f (x0, . . . ,xn) for all λ ∈ K∗,

and so in particular we see that

f (λx0, . . . ,λxn) = 0 ⇔ f (x0, . . . ,xn) = 0,

so that the zero locus of f is well-defined in Pn. So before we can start with our discussion of
projective varieties we have to set up some algebraic language to be able to talk about homogeneous
elements in a ring (or K-algebra).

Definition 6.6 (Graded rings and K-algebras).
(a) A graded ring is a ring R together with Abelian subgroups Rd ⊂ R for all d ∈ N, such that:

• We have R =
⊕

d∈N Rd , i. e. every f ∈ R has a unique decomposition f = ∑d∈N fd such
that fd ∈ Rd for all d ∈ N and only finitely many fd are non-zero.
• For all d,e ∈ N and f ∈ Rd , g ∈ Re we have f g ∈ Rd+e.

For f ∈ R\{0} the biggest number d ∈ N with fd ̸= 0 in the decomposition f = ∑d∈N fd
as above is called the degree deg f of f . The elements of Rd\{0} are said to be homoge-
neous (of degree d). We call f = ∑d∈N fd and R =

⊕
d∈N Rd as above the homogeneous

decomposition of f and R, respectively.
(b) If R is also a K-algebra in addition to (a), we say that it is a graded K-algebra if λ f ∈ Rd

for all λ ∈ K, d ∈ N, and f ∈ Rd .

Example 6.7. The polynomial ring R = K[x0, . . . ,xn] is obviously a graded K-algebra with

Rd =

{
∑

i0,...,in∈N
i0+···+in=d

ai0,...,in xi0
0 · · · · · x

in
n : ai0,...,in ∈ K for all i0, . . . , in

}
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for all d ∈ N. In the following we will always consider it with this grading.

Exercise 6.8. Let R ̸= 0 be a graded ring. Show that the multiplicative unit 1 ∈ R is homogeneous
of degree 0.

Of course, we will also need ideals in graded rings. Naively, one might expect that we should
consider ideals consisting only of homogeneous elements in this case. However, as an ideal has to
be closed under multiplication with arbitrary ring elements, it is virtually impossible that all of its
elements are homogeneous. Instead, the correct notion of homogeneous ideal is the following.

Definition 6.9 (Homogeneous ideals). An ideal in a graded ring is called homogeneous if it can be
generated by homogeneous elements.

Lemma 6.10 (Properties of homogeneous ideals). Let J,J1,J2 be ideals in a graded ring R.

(a) The ideal J is homogeneous if and only if for all f ∈ J with homogeneous decomposition
f = ∑d∈N fd we also have fd ∈ J for all d.

(b) If J1 and J2 are homogeneous then so are J1 + J2, J1J2, J1∩ J2, and
√

J1.

(c) If J is homogeneous then the quotient R/J is a graded ring with homogeneous decomposition
R/J =

⊕
d∈N Rd/(Rd ∩ J).

Proof.

(a) “⇒”: Let J = ⟨h(i) : i ∈ I ⟩ for homogeneous elements h(i) ∈ R for all i, and let f ∈ J. Then
f = ∑i∈I g(i) h(i) for some (not necessarily homogeneous) g(i) ∈ R, of which only finitely
many are non-zero. If we denote by g(i) = ∑e∈N g(i)e the homogeneous decompositions of
these elements, the degree-d part of f for d ∈ N is

fd = ∑
i∈I,e∈N

e+degh(i)=d

g(i)e h(i) ∈ J.

“⇐”: Under the given assumption, we claim that J = ⟨hd : h ∈ J,d ∈ N⟩, so that J is a
homogeneous ideal. In fact, the inclusion “⊂” follows since h = ∑d∈N hd for all h ∈ J, and
the inclusion “⊃” holds by our assumption.

(b) If J1 and J2 are generated by homogeneous elements, then clearly so are J1 + J2 (which is
generated by J1∪ J2) and J1J2. Moreover, J1 and J2 then satisfy the equivalent condition of
(a), and thus so does J1∩ J2.

It remains to be shown that
√

J1 is homogeneous. We will check the condition of (a) for any
f ∈
√

J1 by induction over the degree d of f . Writing f = f0 + · · ·+ fd in its homogeneous
decomposition, we get

f n = ( f0 + · · ·+ fd)
n = f n

d + (terms of lower degree) ∈ J1

for some n ∈ N, hence f n
d ∈ J1 by (a), and thus fd ∈

√
J1. But then f − fd = f0 + · · ·+ fd−1

lies in
√

J1 as well, and so by the induction hypothesis we also see that f0, . . . , fd−1 ∈
√

J1.

(c) It is clear that Rd/(Rd ∩ J)→ R/J, f 7→ f is an injective group homomorphism, so that we
can consider Rd/(Rd ∩ J) as a subgroup of R/J for all d.

Now let f ∈ R be arbitrary, with homogeneous decomposition f = ∑d∈N fd . Then we have
f = ∑d∈N fd with fd ∈ Rd/(Rd∩J), so f also has a homogeneous decomposition. Moreover,
this decomposition is unique: If ∑d∈N fd =∑d∈N gd are two such decompositions of the same
element in R/J then ∑d∈N( fd−gd) lies in J. Hence, by (a) we have fd−gd ∈ J for all d as
well, which means that fd = gd ∈ Rd/(Rd ∩ J). □

Example 6.11. The ideal J = ⟨x2 ⟩⊴K[x] is homogeneous as it is generated by the homogeneous
polynomial x2. It contains the non-homogeneous element f = (2+ x)x2 = 2x2 + x3. According to
Lemma 6.10 (a), its homogeneous parts f2 = 2x2 and f3 = x3 are also in J.
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With this preparation we can now define projective varieties in the same way as affine ones. For
simplicity, for a homogeneous polynomial f ∈ K[x0, . . . ,xn] and a point x = (x0 : · · · :xn) ∈ Pn we
will write the condition f (x0, . . . ,xn) = 0 (which is well-defined by Remark 6.5) also as f (x) = 0.

Definition 6.12 (Projective varieties and their ideals). Let n ∈ N.

(a) Let S⊂K[x0, . . . ,xn] be a set of homogeneous polynomials. Then the (projective) zero locus
of S is defined as

V (S) := {x ∈ Pn : f (x) = 0 for all f ∈ S} ⊂ Pn.

Subsets of Pn that are of this form are called projective varieties. For S = ( f1, . . . , fk) we
will write V (S) also as V ( f1, . . . , fk).

(b) For a homogeneous ideal J⊴K[x0, . . . ,xn] we set

V (J) := {x ∈ Pn : f (x) = 0 for all homogeneous f ∈ J} ⊂ Pn.

Clearly, if J is the ideal generated by a set S of homogeneous polynomials then V (J) =V (S).
(c) If X ⊂ Pn is any subset we define its ideal to be

I(X) := ⟨ f ∈ K[x0, . . . ,xn] homogeneous : f (x) = 0 for all x ∈ X ⟩ ⊴K[x0, . . . ,xn].

(Note that the homogeneous polynomials vanishing on X do not form an ideal yet, so that
we have to take the ideal generated by them.)

If we want to distinguish these projective constructions from the affine ones in Definitions 1.2 (b)
and 1.8 we will denote them by Vp(S) and Ip(X), and the affine ones by Va(S) and Ia(X), respectively.

Example 6.13.
(a) As in the affine case, the empty set /0 =Vp(1) and the whole space Pn =Vp(0) are projective

varieties.
(b) If f1, . . . , fr ∈ K[x0, . . . ,xn] are homogeneous linear polynomials then Vp( f1, . . . , fr) ⊂ Pn is

a projective variety. Projective varieties that are of this form are called linear subspaces of
Pn.

Exercise 6.14. Let a ∈ Pn be a point. Show that the one-point set {a} is a projective variety, and
compute explicit generators for the ideal Ip({a})⊴K[x0, . . . ,xn].

Example 6.15. Let f = x2
1−x2

2−x2
0 ∈C[x0,x1,x2]. The real part of the affine zero locus Va( f )⊂A3

of this homogeneous polynomial is the 2-dimensional cone shown in the picture below on the left.
According to Definition 6.12, its projective zero locus Vp( f ) ⊂ P2 is the set of all 1-dimensional
linear subspaces contained in this cone — but we have seen in Remark 6.3 already that we should
rather think of P2 as the affine plane A2 (embedded in A3 at x0 = 1) together with some points at
infinity. With this interpretation the real part of Vp( f ) consists of the hyperbola shown below on the
right (whose equation x2

1− x2
2− 1 = 0 can be obtained by setting x0 = 1 in f ), together with two

points a and b at infinity. In the 3-dimensional picture on the left, these two points correspond to
the two 1-dimensional linear subspaces parallel to the plane at x0 = 1, in the 2-dimensional picture
of the affine part in A2 on the right they can be thought of as points at infinity in the corresponding
directions. Note that, in the latter interpretation, “opposite” points at infinity are actually the same,
since they correspond to the same 1-dimensional linear subspace in C3.

a

b

b

a

x1

x2

Vp( f )

x0

1
a

a
b

Va( f )

Vp( f )
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We see in this example that the affine and projective zero locus of f carry essentially the same
geometric information — the difference is just whether we consider the cone as a set of individual
points, or as a union of 1-dimensional linear subspaces in A3. Let us now formalize and generalize
this correspondence.

09

Definition 6.16 (Cones). Let π : An+1\{0}→ Pn, (x0, . . . ,xn) 7→ (x0 : · · · :xn).

(a) An affine variety X ⊂An+1 is called a cone if 0 ∈ X , and λx ∈ X for all λ ∈ K and x ∈ X . In
other words, it consists of the origin together with a union of lines through 0.

(b) For a cone X ⊂ An+1 we call

P(X) := π(X\{0}) = {(x0 : · · · :xn) ∈ Pn : (x0, . . . ,xn) ∈ X} ⊂ Pn

the projectivization of X .

(c) For a projective variety X ⊂ Pn we call

C(X) := {0}∪π
−1(X) = {0}∪{(x0, . . . ,xn) : (x0 : · · · :xn) ∈ X} ⊂ An+1

the cone over X (note that this is obviously a cone in the sense of (a)).

Remark 6.17 (Cones and homogeneous ideals).
(a) If S ⊂ K[x0, . . . ,xn] is a set of non-constant homogeneous polynomials then Va(S) is a cone:

Clearly, we then have 0 ∈ Va(S). Moreover, let λ ∈ K and x ∈ Va(S). Then f (x) = 0 for all
f ∈ S, hence f (λx) = λ deg f f (x) = 0, and so λx ∈Va(S) as well.

(b) Conversely, the ideal I(X) of a cone X ⊂An+1 is homogeneous: Let f ∈ I(X) with homoge-
neous decomposition f = ∑d∈N fd . Then for all x ∈ X and λ ∈ K we have λx ∈ X since X is
a cone, and therefore

0 = f (λx) = ∑
d∈N

λ
d fd(x).

This means that we have the zero polynomial in λ , i. e. that fd(x) = 0 for all d, and thus
fd ∈ I(X). Hence I(X) is homogeneous by Lemma 6.10 (a).

Lemma 6.18 (Cones↔ projective varieties). There is a bijection

{cones in An+1} 1:1←→ {projective varieties in Pn}

X 7−→ P(X)

C(X) ←−7 X .

Proof. For a set S ⊂ K[x0, . . . ,xn] of non-constant homogeneous polynomials we have by construc-
tion

P(Va(S)) =Vp(S) and C(Vp(S)) =Va(S).

But Va(S) is really a cone by Remark 6.17 (a), every cone is of this form by Remark 6.17 (b) (namely
for a set S of homogeneous generators of its homogeneous ideal), and every projective variety is of
the form Vp(S). Hence we obtain the bijection as desired. □

In other words, the correspondence between cones and projective varieties works by passing from
the affine to the projective zero locus (and vice versa) of the same set of homogeneous polynomials,
as in Example 6.15. Note that in this way linear subspaces of An+1 correspond exactly to linear
subspaces of Pn in the sense of Example 6.13 (b).

Of course, we would also expect a projective version of the Nullstellensatz as in Proposition 1.10,
i. e. that Vp(Ip(X)) = X and Ip(Vp(J)) =

√
J for any projective variety X and any homogeneous ideal

J in K[x0, . . . ,xn]. This is almost true and can in fact be proved by reduction to the affine case —
there is one exception however: As the origin in An+1 does not correspond to a point in projective
space Pn, its ideal ⟨x0, . . . ,xn ⟩ has to be excluded from the correspondence between varieties and
ideals.
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Definition 6.19 (Irrelevant ideal). The (radical homogeneous) ideal

I0 := ⟨x0, . . . ,xn ⟩ ⊴K[x0, . . . ,xn]

is called the irrelevant ideal.

Proposition 6.20 (Projective Nullstellensatz).

(a) For any projective variety X ⊂ Pn we have Vp(Ip(X)) = X.

(b) For any homogeneous ideal J⊴K[x0, . . . ,xn] with
√

J ̸= I0 we have Ip(Vp(J)) =
√

J.

In particular, there is an inclusion-reversing bijection

{projective varieties in Pn} 1:1←→
{

homogeneous radical ideals in K[x0, . . . ,xn]

not equal to the irrelevant ideal

}
X 7−→ Ip(X)

Vp(J) ←−7 J.

Proof. The equality in (a), the inclusion “⊃” of (b), and the fact that the operations Vp( ·) and Ip( ·)
reverse inclusions are easy and follow in exactly the same way as in the affine case in Proposition
1.10.

For the remaining inclusion “⊂” of (b) let J be a homogeneous ideal in K[x0, . . . ,xn] with
√

J ̸= I0.
Then

Ip(Vp(J)) = ⟨ f ∈ K[x0, . . . ,xn] homogeneous : f (x) = 0 for all x ∈Vp(J)⟩
= ⟨ f ∈ K[x0, . . . ,xn] homogeneous : f (x) = 0 for all x ∈Va(J)\{0}⟩.

As the affine zero locus of polynomials is closed, we can rewrite this as

Ip(Vp(J)) = ⟨ f ∈ K[x0, . . . ,xn] homogeneous : f (x) = 0 for all x ∈Va(J)\{0}⟩.

But now Va(J) ̸= {0} as otherwise
√

J = Ia(Va(J)) = I0, which we excluded. So Va(J) is either
empty or (by Remark 6.17 (a)) a cone containing at least one line through the origin. In both cases
we obviously get Va(J)\{0}=Va(J), so that

Ip(Vp(J)) = ⟨ f ∈ K[x0, . . . ,xn] homogeneous : f (x) = 0 for all x ∈Va(J)⟩.
As the ideal of the cone Va(J) is homogeneous by Remark 6.17 (b) this can be rewritten as
Ip(Vp(J)) = Ia(Va(J)), which is equal to

√
J by the affine Nullstellensatz.

The additional bijection statement now follows from (a) and (b), together with the observation that
Ip(X) is always radical by (b), and never equal to I0 as otherwise we would obtain the contradiction
I0 = Ip(Vp(I0)) = Ip( /0) = K[x0, . . . ,xn]. □

Remark 6.21 (Properties of Vp( ·) and Ip( ·)). The operations Vp( ·) and Ip( ·) satisfy the same prop-
erties as their affine counterparts in Lemmas 1.4, 1.7, and 1.12. More precisely, in the same way as
in the affine case we obtain:

(a) For any two subsets S1,S2 ⊂ K[x0, . . . ,xn] consisting of homogeneous polynomials we have
Vp(S1)∪Vp(S2) = Vp(S1S2); for any family (Si) of subsets of K[x0, . . . ,xn] of homogeneous
polynomials we have

⋂
i Vp(Si) =Vp(

⋃
i Si).

(b) If J1,J2 ⊴K[x0, . . . ,xn] are homogeneous ideals then

Vp(J1)∪Vp(J2) =Vp(J1J2) =Vp(J1∩ J2) and Vp(J1)∩Vp(J2) =Vp(J1 + J2).

(c) For any two projective varieties X1,X2 in Pn we have Ip(X1∩X2) =
√

Ip(X1)+ Ip(X2) unless
the latter is the irrelevant ideal (which is only possible if X1 and X2 are disjoint, as e. g. for
X1 = {(0:1)}=Vp(x0) and X2 = {(1:0)}=Vp(x1) in P1).

Moreover, we have Ip(X1∪X2) = Ip(X1)∩ Ip(X2).

Next, and also as in the affine case, let us associate a coordinate ring to a projective variety, and
consider zero loci and ideals in a relative setting.
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Construction 6.22 (Relative version of Vp( ·) and Ip( ·)). Let Y ⊂ Pn be a projective variety. In
analogy to Definition 1.15 we call

S(Y ) := K[x0, . . . ,xn]/I(Y )

the homogeneous coordinate ring of Y . By Lemma 6.10 (c) this is a graded ring, so that it makes
sense to talk about homogeneous elements of S(Y ).

Note that, in contrast to the affine case, the elements of S(Y ) cannot be interpreted as functions on
Y , because a rescaling of the homogeneous coordinates would change their values. For example,
for the polynomial f = x0 ∈ K[x0,x1] = S(P1) we have f (1,1) = 1 and f (−1,−1) = −1 although
(1:1) = (−1: − 1) ∈ P1. However, the condition f (x) = 0 is still well-defined for a homogeneous
element f ∈ S(Y ) and a point x ∈ Y , and thus as in Definition 6.12 we can set

V (J) := {x ∈ Y : f (x) = 0 for all homogeneous f ∈ J} for a homogeneous ideal J⊴S(Y )

(and similarly for a set of homogeneous polynomials in S(Y )), and

I(X) := ⟨ f ∈ S(Y ) homogeneous : f (x) = 0 for all x ∈ X ⟩ for a subset X ⊂ Y .

As before, in case of possible confusion we will decorate V and I with the subscript Y and/or p to
denote the relative and projective situation, respectively. Subsets of Y that are of the form VY (J)
for a homogeneous ideal J ⊴ S(Y ) will be called projective subvarieties of Y ; these are obviously
exactly the projective varieties contained in Y .

As in the affine case, the Nullstellensatz and the properties of V ( ·) and I( ·) can again be transferred
to this relative setting in the obvious way.

Remark 6.23. A remark that is sometimes useful is that every projective subvariety X of a projective
variety Y ⊂Pn can be written as the zero locus of finitely many homogeneous polynomials in S(Y ) of
the same degree. This follows easily from the fact that Vp( f )=Vp(xd

0 f , . . . ,xd
n f ) for all homogeneous

f ∈ S(Y ) and every d ∈ N. However, it is not true that every homogeneous ideal in S(Y ) can be
generated by homogeneous elements of the same degree.

We can now proceed to define a topology on projective varieties. As in the affine setting, it follows by
(the relative version of) Remark 6.21 (a) that arbitrary intersections and finite unions of subvarieties
of a projective variety X are again subvarieties, and hence we can define the Zariski topology on X
in the same way as in the affine case:

Definition 6.24 (Zariski topology). The Zariski topology on a projective variety X is the topology
whose closed sets are exactly the projective subvarieties of X , i. e. the subsets of the form Vp(S) for
some set S⊂ S(X) of homogeneous elements.

Of course, from now on we will always use this topology for projective varieties and their subsets.
Note that, in the same way as in Remark 2.3, this is well-defined in the sense that the Zariski topology
on a projective variety X ⊂ Pn agrees with the subspace topology of X in Pn. Moreover, since we
want to consider An as a subset of Pn as in Remark 6.3 we should also check that the Zariski topology
on An is the same as the subspace topology of An in Pn. To do this, we need the following definition.

Construction 6.25 (Homogenization and dehomogenization).
(a) For a homogeneous polynomial f ∈ K[x0, . . . ,xn], the dehomogenization of f is defined to

be the polynomial f i := f (x0 = 1) ∈ K[x1, . . . ,xn] obtained from f by setting x0 = 1. In gen-
eral, it will be an inhomogeneous polynomial (hence the notation f i). Note that evaluation
at x0 = 1 is a ring homomorphism, i. e. we have

( f g)i = f igi and ( f +g)i = f i +gi

for all f ,g ∈ K[x0, . . . ,xn]. As it is surjective, we can also apply this construction directly to
ideals: For a homogeneous ideal J ⊴K[x0, . . . ,xn], the dehomogenization Ji := { f i : f ∈ J}
is again an ideal in K[x1, . . . ,xn].
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(b) For the opposite direction, let

f = ∑
i1,...,in∈N

ai1,...,in xi1
1 · · · · · x

in
n ∈ K[x1, . . . ,xn]

be a (non-zero) polynomial of degree d. We define its homogenization to be

f h := xd
0 f
(x1

x0
, . . . ,

xn

x0

)
= ∑

i1,...,in∈N
ai1,...,in xd−i1−···−in

0 xi1
1 · · · · · x

in
n ∈ K[x0, . . . ,xn];

obviously this is a homogeneous polynomial of degree d. For all f ,g ∈ K[x1, . . . ,xn] of
degrees d and e, respectively, we have

( f g)h = xd+e
0 f

(x1

x0
, . . . ,

xn

x0

)
·g
(x1

x0
, . . . ,

xn

x0

)
= f h ·gh,

but in contrast to (a) the polynomial ( f +g)h is clearly not equal to f h +gh in general — in
fact, f h + gh is usually not even homogeneous. So in order to apply this construction to an
ideal J⊴K[x1, . . . ,xn], we have to define the ideal Jh⊴K[x0, . . . ,xn] to be the ideal generated
by the homogenizations f h of all non-zero f ∈ J.

Example 6.26. For f = x2
1− x2

2− 1 ∈ K[x1,x2] we have f h = x2
1− x2

2− x2
0 ∈ K[x0,x1,x2], and then

back ( f h)i = x2
1− x2

2−1 = f .

Remark 6.27 (An as an open subset of Pn). Recall from Remark 6.3 that we want to identify the
subset U0 = {(x0 : · · · :xn) ∈ Pn : x0 ̸= 0} of Pn with An by the bijective map

F : An→U0, (x1, . . . ,xn) 7→ (1:x1 : · · · :xn).

Obviously, U0 is an open subset of Pn. Moreover, with the above identification the subspace topology
of U0 = An ⊂ Pn is the affine Zariski topology:

(a) If X =Vp(J)∩An is a closed set in the subspace topology (with J⊴K[x0, . . . ,xn] a homoge-
neous ideal) then X =Va(Ji) is also Zariski-closed.

(b) If X = Va(J) ⊂ An is Zariski-closed (with J ⊴K[x1, . . . ,xn]) then X = Vp(Jh)∩An is closed
in the subspace topology as well.

In other words we can say that the map F : An→U0 above is a homeomorphism. In fact, after having
given Pn the structure of a variety we will see in Proposition 7.2 that it is even an isomorphism of
varieties.

Having defined the Zariski topology on projective varieties (or more generally on subsets of Pn) we
can now immediately apply all topological concepts of Chapter 2 to this new situation. In particular,
the notions of connectedness, irreducibility, and dimension are well-defined for projective varieties
(and have the same geometric interpretation as in the affine case). Let us study some examples using
these concepts.

Remark 6.28 (Pn is irreducible of dimension n). Of course, by symmetry of the coordinates, it
follows from Remark 6.27 that all subsets Ui = {(x0 : · · · :xn) : xi ̸= 0} of Pn for i = 0, . . . ,n are
homeomorphic to An as well. As these subsets cover Pn and have non-empty intersections, we
conclude by Exercise 2.21 (b) that Pn is irreducible, and by Exercise 2.34 (a) that dimPn = n.

Exercise 6.29. Let L1,L2 ⊂ P3 be two disjoint lines (i. e. 1-dimensional linear subspaces in the sense
of Example 6.13 (b)), and let a ∈ P3\(L1 ∪L2). Show that there is a unique line L ⊂ P3 through a
that intersects both L1 and L2.

Is the corresponding statement for lines and points in A3 true as well?

Exercise 6.30.
(a) Prove that a graded ring R is an integral domain if and only if for all homogeneous elements

f ,g ∈ R with f g = 0 we have f = 0 or g = 0.
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(b) Show that a projective variety X is irreducible if and only if its homogeneous coordinate ring
S(X) is an integral domain.

Exercise 6.31. In this exercise we want to show that an intersection of projective varieties is never
empty unless one would expect it to be empty for dimensional reasons — so e. g. the phenomenon
of parallel non-intersecting lines in the plane does not occur in projective space.

So let X ,Y ⊂ Pn be non-empty projective varieties. Show:

(a) The dimension of the cone C(X)⊂ An+1 is dimX +1.

(b) If dimX +dimY ≥ n then X ∩Y ̸= /0.

We have just seen in Remark 6.27 (b) that for an affine variety X =V (J)⊂ An the homogenization
Jh gives an ideal such that the closed set Vp(Jh)⊂ Pn restricts to X on An ⊂ Pn. In fact, we will now
show that Vp(Jh) is even the smallest closed set in Pn containing X , i. e. the closure X of X in Pn.
As this will be a “compact” space in the sense of Remarks 6.3 and 6.4 we can think of this closure
X as being obtained by compactifying X by some “points at infinity”. For example, if we start with
the affine hyperbola X =Va(x2

1− x2
2−1)⊂ A2 in the picture below on the left, its closure

X =Vp
(
(x2

1− x2
2−1)h)=Vp(x2

1− x2
2− x2

0)⊂ P2

adds the two points a and b at infinity as in Example 6.15. In coordinates, as A2 ⊂ P2 is given by
the inequality x0 ̸= 0, these added points at infinity are the points of X with x0 = 0, i. e.

X ∩Vp(x0) =Vp(x2
1− x2

2,x0) = {a,b} with a = (0:1 :1) and b = (0:1 : −1).

x1

x2

X

a

b

b

a

x1

x2

X
at infinity

add points

Proposition 6.32 (Computation of the projective closure). Let J⊴K[x1, . . . ,xn] be an ideal. Consider
its affine zero locus X =Va(J)⊂ An, and its closure X in Pn.

(a) We have X =Vp(Jh).

(b) If J = ⟨ f ⟩ is a non-zero principal ideal then X =Vp( f h).
10

Proof.

(a) Clearly, the set Vp(Jh) is closed and contains X . In order to show that Vp(Jh) is the smallest
closed set containing X let Y ⊃ X be any closed set; we have to prove that Y ⊃ Vp(Jh). As
Y is closed we have Y = Vp(J′) for some homogeneous ideal J′. Now any homogeneous
element of J′ can be written as xd

0 f h for some d ∈ N and f ∈ K[x1, . . . ,xn] (in fact, every
homogeneous polynomial can be written in this way), and for this element we have

xd
0 f h is zero on X ⊂ Pn (X is a subset of Y )

⇒ f is zero on X ⊂ An (x0 ̸= 0 on X ⊂ An)

⇒ f ∈ Ia(X) = Ia(Va(J)) =
√

J (Proposition 1.10)

⇒ f m ∈ J for some m ∈ N

⇒ ( f h)m = ( f m)h ∈ Jh for some m ∈ N (Construction 6.25 (b))

⇒ f h ∈
√

Jh

⇒ xd
0 f h ∈

√
Jh.
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We therefore conclude that J′ ⊂
√

Jh, and so Y =Vp(J′)⊃Vp(
√

Jh) =Vp(Jh) as desired.

(b) As ⟨ f ⟩= { f g : g ∈ K[x1, . . . ,xn]}, we have

X =Vp(( f g)h : g ∈ K[x1, . . . ,xn]) =Vp( f h gh : g ∈ K[x1, . . . ,xn]) =Vp( f h)

by (a) and Construction 6.25 (b). □

Remark 6.33 (Ideal of hypersurfaces in Pn). Let X be a hypersurface in Pn, and assume without
loss of generality that it does not contain the set of points at infinity Vp(x0) as a component. Then
Y := X ∩An is an affine hypersurface whose closure is again X . By Remark 2.38 we know that its
ideal I(Y ) is principal, generated by a polynomial g ∈ K[x1, . . . ,xn].

If we now set f = gh ∈K[x0, . . . ,xn] then Vp( f ) =Y = X by Proposition 6.32 (b). Moreover, as g has
no repeated factors the same is true for f , and hence we even have I(X) = ⟨ f ⟩. In other words, just
as in the affine case the ideal of any projective hypersurface is principal, and thus we can transfer
our definition of degree to the projective case:

Definition 6.34 (Degree of a projective hypersurface). Let X be a hypersurface in Pn, with ideal
I(X) = ⟨ f ⟩ as in Remark 6.33. As in the affine case in Definition 2.39, the degree of f is then also
called the degree of X , again denoted degX . We also use the terms linear, quadric, or cubic for
projective hypersurfaces of degrees 1, 2, or 3, respectively.

Example 6.35. In contrast to Proposition 6.32 (b), for general ideals it usually does not suffice to
only homogenize a set of generators. As an example, consider the ideal J = ⟨x1,x2−x2

1 ⟩⊴K[x1,x2]

with affine zero locus X = Va(J) = {0} ⊂ A2. This one-point set is also closed in P2, and thus
X = {(1:0 :0)} is just the corresponding point in homogeneous coordinates. But if we homogenize
the two given generators of J we obtain the homogeneous ideal ⟨x1,x0x2− x2

1 ⟩ with projective zero
locus {(1:0 :0),(0:0 :1)}⊋ X .

For those of you who know some computer algebra: One can show however that it suffices to
homogenize a Gröbner basis of J. This makes the problem of finding X computationally feasible
since in contrast to Proposition 6.32 (a) we only have to homogenize finitely many polynomials.

Exercise 6.36. Sketch the set of real points of the complex affine curve X =V (x3
1−x1x2

2 +1)⊂A2
C

and compute the points at infinity of its projective closure X ⊂ P2
C.


