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9. Birational Maps and Blowing Up

In the course of this class we have already seen many examples of varieties that are “almost the
same” in the sense that they contain isomorphic dense open subsets (although the varieties are not
isomorphic themselves). Let us quickly recall some of them.

Example 9.1 (Irreducible varieties with isomorphic non-empty open subsets).
(a) The affine space An and the projective space Pn have the common open subset An by Propo-

sition 7.2. Consequently, Pm×Pn and Pm+n have the common open subset Am×An =Am+n

— but they are not isomorphic by Exercise 7.4.

(b) Similarly, the affine space Ak(n−k) and the Grassmannian G(k,n) have the common open
subset Ak(n−k) by Construction 8.15.

(c) The affine line A1 and the curve X = V (x2
1− x3

2) ⊂ A2 of Example 4.9 have the isomorphic
open subsets A1\{0} resp. X\{0}— in fact, the morphism f given there is an isomorphism
after removing the origin from both the source and the target curve.

We now want to study this situation in more detail and present a very general construction — the
so-called blow-ups — that gives rise to many examples of this type. But first of all we have to set
up some notation to deal with morphisms that are defined on dense open subsets. For simplicity,
we will do this only for the case of irreducible varieties, in which every non-empty open subset is
automatically dense by Remark 2.18.

Definition 9.2 (Rational maps). Let X and Y be irreducible varieties. A rational map f from X to
Y , written f : X 99KY , is a morphism f : U→Y (denoted by the same letter) from a non-empty open
subset U ⊂ X to Y . We say that two such rational maps f1 : U1→Y and f2 : U2→Y with U1,U2 ⊂ X
are the same if f1 = f2 on a non-empty open subset of U1∩U2.

Remark 9.3. Strictly speaking, Definition 9.2 means that a rational map f : X 99K Y is an equiva-
lence class of morphisms from non-empty open subsets of X to Y . Note that the given relation is in
fact an equivalence relation: reflexivity and symmetry are obvious, and if f1 : U1 → Y agrees with
f2 : U2→ Y on a non-empty open subset U1,2 and f2 with f3 : U3→ Y on a non-empty open subset
U2,3 then f1 and f3 agree on U1,2 ∩U1,3, which is again non-empty by Remark 2.18 (a) since X is
irreducible. For the sake of readability it is customary however not to indicate these equivalence
classes in the notation and to denote the rational map f : X 99K Y and the morphism f : U → Y by
the same letter.

If we now want to consider “rational maps with an inverse”, i. e. rational maps f : X 99KY such that
there is another rational map g : Y 99K X with g◦ f = idX and f ◦g = idY , we run into problems: if
e. g. f is a constant map and g is not defined at the point f (X) then there is no meaningful way to
compose it with f . So we need to impose a technical condition first to ensure that compositions are
well-defined:

Definition 9.4 (Birational maps). Again let X and Y be irreducible varieties.

(a) A rational map f : X 99KY is called dominant if its image contains a non-empty open subset
U of Y . In this case, if g : Y 99K Z is another rational map, defined on a non-empty open
subset V of Y , we can construct the composition g◦ f : X 99K Z as a rational map since we
have such a composition of ordinary morphisms on the non-empty open subset f−1(U ∩V ).

(b) A rational map f : X 99K Y is called birational if it is dominant, and if there is another
dominant rational map g : Y 99K X with g◦ f = idX and f ◦g = idY .

(c) We say that X and Y are birational if there is a birational map f : X 99K Y between them.
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Remark 9.5. By definition, two irreducible varieties are birational if and only if they contain iso-
morphic non-empty open subsets. In particular, Exercise 5.25 then implies that birational irreducible
varieties have the same dimension.

14

An important case of rational maps is when the target space is just the ground field, i. e. if we consider
regular functions on open subsets.

Construction 9.6 (Rational functions and function fields). Let X be an irreducible variety.

A rational map ϕ : X 99K A1 = K is called a rational function on X . In other words, a rational
function on X is given by a regular function ϕ ∈ OX (U) on some non-empty open subset U ⊂ X ,
with two such regular functions defining the same rational function if and only if they agree on a
non-empty open subset. The set of all rational functions on X will be denoted K(X).

Note that K(X) is a field: for ϕ1 ∈ OX (U1) and ϕ2 ∈ OX (U2) we can define ϕ1 + ϕ2 and ϕ1 ϕ2
on U1 ∩U2 6= /0, the additive inverse −ϕ1 on U1, and for ϕ1 6= 0 the multiplicative inverse ϕ

−1
1 on

U1\V (ϕ1). We call K(X) the function field of X .

Remark 9.7. If U ⊂ X is a non-empty open subset of an irreducible variety X then K(U)∼= K(X):
an isomorphism is given by

K(U) → K(X)

ϕ ∈ OU (V ) 7→ ϕ ∈ OX (V )
with inverse

K(X) → K(U)

ϕ ∈ OX (V ) 7→ ϕ|V∩U ∈ OU (V ∩U).

In particular, birational irreducible varieties have isomorphic function fields.

Exercise 9.8. Let X be an irreducible affine variety. Show:

(a) The function field K(X) is isomorphic to the so-called quotient field of the coordinate ring
A(X), i. e. to the localization of the integral domain A(X) at the multiplicatively closed subset
A(X)\{0}.

(b) Every local ring OX ,a for a ∈ X is naturally a subring of K(X).

Exercise 9.9. Let X ⊂ Pn be a quadric, i. e. an irreducible variety which is the zero locus of an
irreducible homogeneous polynomial of degree 2. Show that X is birational, but in general not
isomorphic, to the projective space Pn−1.

The main goal of this chapter is now to describe and study a general procedure to modify an irre-
ducible variety to a birational one. In its original form, this construction depends on given polyno-
mial functions f1, . . . , fr on an affine variety X — but we will see in Construction 9.17 that it can
also be performed with a given ideal in A(X) or subvariety of X instead, and that it can be glued in
order to work on arbitrary varieties.

Construction 9.10 (Blowing up). Let X ⊂An be an affine variety. For some r ∈N>0 let f1, . . . , fr ∈
A(X) be polynomial functions on X , and set U = X\V ( f1, . . . , fr). As f1, . . . , fr then do not vanish
simultaneously at any point of U , we obtain a well-defined morphism

f : U → Pr−1, x 7→ ( f1(x) : . . . : fr(x)).

We consider its graph
Γ f = {(x, f (x)) : x ∈U} ⊂U×Pr−1

which is isomorphic to U (with inverse morphism the projection to the first factor). Note that Γ f is
closed in U×Pr−1 by Proposition 5.21 (a), but in general not closed in X×Pr−1. The closure of Γ f

in X ×Pr−1 then contains Γ f as a dense open subset. It is called the blow-up of X at f1, . . . , fr; we
will usually denote it by X̃ . Note that there is a natural projection morphism π : X̃ → X to the first
factor. Sometimes we will also say that this morphism π is the blow-up of X at f1, . . . , fr.

Before we give examples of blow-ups let us introduce some more notation and easy general results
that will help us to deal with them.



74 Andreas Gathmann

Remark 9.11 (Exceptional sets). In construction 9.10, the graph Γ f is isomorphic to U , with π|Γ f :
Γ f →U being an isomorphism. By abuse of notation, one often uses this isomorphism to identify
Γ f with U , so that U becomes an open subset of X̃ . Its complement X̃\U = π−1(V ( f1, . . . , fr)), on
which π is usually not an isomorphism, is called the exceptional set of the blow-up.

If X is irreducible and f1, . . . , fr do not vanish simultaneously on all of X , then U = X\V ( f1, . . . , fr)
is a non-empty and hence dense open subset of X . So its closure in the blow-up, which is all of X̃ by
definition, is also irreducible. We therefore conclude that X and X̃ are birational in this case, with
common dense open subset U .

Remark 9.12 (Strict transforms and blow-ups of subvarieties). In the notation of Construction 9.10,
let Y be a closed subvariety of X . Then we can blow up Y at f1, . . . , fr as well. By construction, the
resulting space Ỹ ⊂Y ×Pr−1 ⊂ X×Pr−1 is then also a closed subvariety of X̃ , in fact it is the closure
of Y ∩U in X̃ (using the isomorphism Γ f ∼= U of Remark 9.11 to identify Y ∩U with a subset of
X̃). If we consider Ỹ as a subset of X̃ in this way it is often called the strict transform of Y in the
blow-up of X .

In particular, if X = X1∪·· ·∪Xm is the irreducible decomposition of X then X̃i ⊂ X̃ for i = 1, . . . ,m.
Moreover, since taking closures commutes with finite unions it is immediate from Construction 9.10
that

X̃ = X̃1∪·· ·∪ X̃m,

i. e. that for blowing up X we just blow up its irreducible components individually. For many pur-
poses it therefore suffices to consider blow-ups of irreducible varieties.

Example 9.13 (Trivial cases of blow-ups). Let r = 1 in the notation of Construction 9.10, i. e.
consider the case when we blow up X at only one function f1. Then X̃ ⊂ X ×P0 ∼= X , and Γ f ∼=U .
So X̃ is just the closure of U in X under this isomorphism. If we assume for simplicity that X is
irreducible we therefore obtain the following two cases:

(a) If f1 6= 0 then U = X\V ( f1) is a non-empty open subset of X , and hence X̃ = X by Remark
2.18 (b).

(b) If f1 = 0 then U = /0, and hence also X̃ = /0.

So in order to obtain interesting examples of blow-ups we will have to consider cases with r ≥ 2.

In order to understand blow-ups better, one of our main tasks has to be to find an explicit description
of them that does not refer to taking closures. The following inclusion is a first step in this direction.

Lemma 9.14. The blow-up X̃ of an affine variety X at f1, . . . , fr ∈ A(X) satisfies

X̃ ⊂ {(x,y) ∈ X×Pr−1 : yi f j(x) = y j fi(x) for all i, j = 1, . . . ,r}.

Proof. Let U = X\V ( f1, . . . , fr). Then any point (x,y) ∈U ×Pr−1 on the graph Γ f of the function
f : U→Pr−1, x 7→ ( f1(x) : · · · : fr(x)) satisfies (y1 : · · · :yr) = ( f1(x) : · · · : fr(x)), and hence yi f j(x) =
y j fi(x) for all i, j = 1, . . . ,r. As these equations then also have to hold on the closure X̃ of Γ f , the
lemma follows. �

Example 9.15 (Blow-up of An at the coordinate functions). Our first non-trivial (and in fact the most
important) case of a blow-up is that of the affine space An at the coordinate functions x1, . . . ,xn. This
blow-up Ãn is then isomorphic to An on the open subset U = An\V (x1, . . . ,xn) = An\{0}, and by
Lemma 9.14 we have

Ãn ⊂ {(x,y) ∈ An×Pn−1 : yix j = y jxi for all i, j = 1, . . . ,n}=: Y. (1)

We claim that this inclusion is in fact an equality. To see this, let us consider the open subset
U1 = {(x,y) ∈ Y : y1 6= 0} with affine coordinates x1, . . . ,xn,y2, . . . ,yn in which we set y1 = 1. Note
that for given x1,y2, . . . ,yn the equations (1) for Y then say exactly that x j = x1y j for j = 2, . . . ,n.
Hence there is an isomorphism

An→U1 ⊂ An×Pn−1, (x1,y2, . . . ,yn) 7→ ((x1,x1y2, . . . ,x1yn),(1:y2 : . . . :yn)). (2)
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Of course, the same holds for the open subsets Ui of Y where yi 6= 0 for i = 2, . . . ,n. Hence Y can
be covered by n-dimensional affine spaces. By Exercises 2.20 (b) and 2.33 (a) this means that Y is
irreducible of dimension n. But as Y contains the closed subvariety Ãn which is also irreducible of
dimension n by Remarks 9.5 and 9.11, we conclude that we must already have Y = Ãn.

In fact, both the description (1) of Ãn (with equality, as we have just seen) and the affine coordinates
of (2) are very useful in practice for explicit computations on this blow-up.

Let us now also study the blow-up (i. e. projection) morphism π : Ãn → An of Construction 9.10.
We know already that this map is an isomorphism on U = An\{0}. In contrast, the exceptional set
π−1(0) is given by setting x1, . . . ,xn to 0 in the description (1) above. As all defining equations
xiy j = x jyi become trivial in this case, we simply get

π
−1(0) = {(0,y) ∈ An×Pn−1} ∼= Pn−1.

In other words, passing from An to Ãn leaves all points except 0 unchanged, whereas the origin is
replaced by a projective space Pn−1. This is the geometric reason why this construction is called
blowing up — in fact, we will slightly extend our terminology in Construction 9.17 (a) so that we
can then call the example above the blow-up of An at the origin, instead of at the functions x1, . . . ,xn.

Because of this behavior of the inverse images of π one might be tempted to think of Ãn as An with
a projective space Pn−1 attached at the origin, as in the picture below on the left. This is not correct
however, as one can see already from the fact that this space would not be irreducible, whereas Ãn is.
To get the true geometric picture for An let us consider the strict transform of a line L⊂ An through
the origin, i. e. the blow-up L̃ of L at x1, . . . ,xn contained in Ãn. We will give a general recipe to
compute such strict transforms in Exercise 9.22, but in the case at hand this can also be done without
much theory: by construction, over the complement of the origin every point (x,y) ∈ L̃ ⊂ L×Pn−1

must have y being equal to the projective point corresponding to L ⊂ Kn. Hence the same holds on
the closure L̃, and thus the strict transform L̃ meets the exceptional set π−1(0)∼= Pn−1 above exactly
in the point corresponding to L. In other words, the exceptional set parametrizes the directions in
An at 0; two lines through the origin with distinct directions will become separated after the blow-
up. The following picture on the right illustrates this in the case of the plane: we can imagine the
blow-up Ã2 as a helix winding around the central line π−1(0) ∼= P1 (in fact, it winds around this
exceptional set once, so that one should think of the top of the helix as being glued to the bottom).

0
A2

A2

Wrong picture

π

0
A2

π−1(0)

Correct picture

π

P1

Ã2

L

L̃

exceptional set

As already mentioned, the geometric interpretation of Example 9.15 suggests that we can think of
this construction as the blow-up of An at the origin instead of at the functions x1, . . . ,xn. To justify
this notation let us now show that the blow-up construction does not actually depend on the chosen
functions, but only on the ideal generated by them.
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Lemma 9.16. The blow-up of an affine variety X at f1, . . . , fr ∈ A(X) depends
only on the ideal ( f1, . . . , fr)EA(X).

More precisely, if f ′1, . . . , f ′s ∈ A(X) with ( f1, . . . , fr) = ( f ′1, . . . , f ′s)EA(X), and
π : X̃ → X and π ′ : X̃ ′ → X are the corresponding blow-ups, there is an iso-
morphism F : X̃ → X̃ ′ with π ′ ◦F = π . In other words, we get a commutative
diagram as in the picture on the right.

X̃ X̃ ′

π ′

X

π

F

Proof. By assumption we have relations

fi =
s

∑
j=1

gi, j f ′j for all i = 1, . . . ,r and f ′j =
r

∑
k=1

h j,k fk for all j = 1, . . . ,s

in A(X) for suitable gi, j,h j,k ∈ A(X). We claim that then

F : X̃ → X̃ ′, (x,y) 7→ (x,y′) :=
(

x,
( r

∑
k=1

h1,k(x)yk : · · · :
r

∑
k=1

hs,k(x)yk

))
is an isomorphism between X̃ ⊂ X×Pr−1 and X̃ ′ ⊂ X×Ps−1 as required. This is easy to check:

• The homogeneous coordinates of y′ are not simultaneously 0: note that by construction
we have the relation (y1 : · · · :yr) = ( f1 : · · · : fr) on U = X\V ( f1, . . . , fr) ⊂ X̃ ⊂ X ×Pr−1,
i. e. these two vectors are linearly dependent (and non-zero) at each point in this set.
Hence the linear relations fi = ∑ j,k gi, jh j,k fk in f1, . . . , fr imply the corresponding relations
yi = ∑ j,k gi, jh j,kyk in y1, . . . ,yr on this set, and thus also on its closure X̃ . So if we had
y′j = ∑k h j,kyk = 0 for all j then we would also have yi = ∑ j gi, jy′j = 0 for all i, which is a
contradiction.

• The image of F lies in X̃ ′: by construction we have

F(x,y) =
(

x,
( r

∑
k=1

h1,k(x) fk(x) : · · · :
r

∑
k=1

hs,k(x) fk(x)
))

=
(
x,( f ′1(x) : · · · : f ′s(x))

)
∈ X̃ ′

on the open subset U , and hence also on its closure X̃ .

• F is an isomorphism: by symmetry the same construction as above can also be done in the
other direction and gives us an inverse morphism F−1.

• It is obvious that π ′ ◦F = π . �
15

Construction 9.17 (Generalizations of the blow-up construction).

(a) Let X be an affine variety. For an ideal IEA(X) we define the blow-up of X at I to be the
blow-up of X at any set of generators of I — which is well-defined up to isomorphisms by
Lemma 9.16. If Y ⊂ X is a closed subvariety the blow-up of X at I(Y )EA(X) will also be
called the blow-up of X at Y . So in this language we can say that Example 9.15 describes
the blow-up of An at the origin.

(b) Now let X be an arbitrary variety, and let Y ⊂ X be a closed subvariety. For an affine open
cover {Ui : i ∈ I} of X , let Ũi be the blow-up of Ui at the closed subvariety Ui∩Y . It is then
easy to check that these blow-ups Ũi can be glued together to a variety X̃ . We will call it
again the blow-up of X at Y .

In the following, we will probably only need this in the case of the blow-up of a point, where
the construction is even easier as it is local around the blown-up point: let X be a variety,
and let a ∈ X be a point. Choose an affine open neighborhood U ⊂ X of a, and let Ũ be the
blow-up of U at a. Then we obtain X̃ by gluing X\{a} to Ũ along the common open subset
U\{a}.
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(c) With our current techniques the gluing procedure of (b) only works for blow-ups at subva-
rieties — for the general construction of blowing up ideals we would need a way to patch
ideals. This is in fact possible and leads to the notion of a sheaf of ideals, but we will not do
this in this class.

Note however that blow-ups of a projective variety X can be defined in essentially the same
way as for affine varieties: if f1, . . . , fr ∈ S(X) are homogeneous of the same degree the
blow-up of X at f1, . . . , fr is defined as the closure of the graph

Γ = {(x,( f1(x) : · · · : fr(x)) : x ∈U} ⊂U×Pr−1

(for U = X\V ( f1, . . . , fr)) in X×Pr−1; by the Segre embedding as in Remark 7.14 it is again
a projective variety.

Exercise 9.18. Let Ã3 be the blow-up of A3 at the line V (x1,x2) ∼= A1. Show that its exceptional
set is isomorphic to A1×P1. When do the strict transforms of two lines in A3 through V (x1,x2)
intersect in the blow-up? What is therefore the geometric meaning of the points in the exceptional
set (corresponding to Example 9.15 in which the points of the exceptional set correspond to the
directions through the blown-up point)?

Exercise 9.19. Let X ⊂ An be an affine variety, and let Y1,Y2 ( X be irreducible, closed subsets,
no-one contained in the other. Moreover, let X̃ be the blow-up of X at the ideal I(Y1)+ I(Y2).

Show that the strict transforms of Y1 and Y2 in X̃ are disjoint.

One of the main applications of blow-ups is the local study of varieties. We have seen already in
Example 9.15 that the exceptional set of the blow-up of An at the origin parametrizes the directions
of lines at this point. It should therefore not come as a surprise that the exceptional set of the blow-up
of a general variety X at a point a ∈ X parametrizes the tangent directions of X at a.

Construction 9.20 (Tangent cones). Let a be a point on a variety X . Consider the blow-up π :
X̃ → X of X at a; its exceptional set π−1(a) is a projective variety (e. g. by choosing an affine
open neighborhood U ⊂ An of a = (a1, . . . ,an) in X and blowing up U at x1− a1, . . . ,xn− an; the
exceptional set is then contained in the projective space {a}×Pn−1 ⊂U×Pn−1).

The cone over this exceptional set π−1(a) (as in Definition 6.15 (c)) is called the tangent cone CaX
of X at a. Note that it is well-defined up to isomorphisms by Lemma 9.16. In the special case (of an
affine patch) when X ⊂ An and a ∈ X is the origin, we will also consider CaX ⊂C(Pn−1) = An as a
closed subvariety of the same ambient affine space as for X by blowing up at x1, . . . ,xn.

Example 9.21. Consider the three complex affine curves X1,X2,X3 ⊂ A2
C with real parts as in the

picture below.

x2

x1

x2

x1

x2

x1

X1 =V (x2 + x2
1) X2 =V (x2

2− x2
1− x3

1) X3 =V (x2
2− x3

1)

X1

X2

X3

Note that by Remark 9.12 the blow-ups X̃i of these curves at the origin (for i = 1,2,3) are contained
as strict transforms in the blow-up Ã2 of the affine plane at the origin as in Example 9.15. They can
thus be obtained geometrically as in the following picture by lifting the curves Xi\{0} by the map
π : Ã2 → A2 and taking the closure in Ã2. The additional points in these closures (drawn as dots
in the picture below) are the exceptional sets of the blow-ups. By definition, the tangent cones C0Xi
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then consist of the lines corresponding to these points, as shown in gray below. They can be thought
of as the cones, i. e. unions of lines, that approximate Xi best around the origin.

ππ π

X̃1

X1

C0X1 C0X2 C0X3

X3X2

A2

X̃2

A2 A2

Ã2 Ã2 Ã2

X̃3

Let us now study how these tangent cones can be computed rigorously. For example, for a point
((x1,x2),(y1 :y2)) ∈ X̃2 ⊂ Ã2 ⊂ A2×P1 we have x2

2− x2
1− x3

1 = 0 (as the equation of the curve)
and y1x2 − y2x1 = 0 by Lemma 9.14. The latter means that the vectors (x1,x2) and (y1,y2) are
linearly dependent, i. e. that y1 = λ x1 and y2 = λ x2 away from the origin for some non-zero λ ∈ K.
Multiplying the equation of the curve with λ 2 thus yields

λ
2 (x2

2− x2
1− x3

1) = 0 ⇒ y2
2− y2

1− y2
1x1 = 0

on X̃2\π−1(0), and thus also on its closure X̃2. On π−1(0), i. e. if x1 = x2 = 0, this implies

y2
2− y2

1 = 0 ⇒ (y2− y1)(y2 + y1) = 0,

so that the exceptional set consists of the two points with (y1 :y2) ∈ P1 equal to (1:1) or (1: − 1).
Consequently, the tangent cone C0X2 is the cone in A2 with the same equation

(x2− x1)(x2 + x1) = 0,

i. e. the union of the two diagonals in A2 as in the picture above.

Note that the effect of this computation was exactly to pick out the terms of minimal degree of the
defining equation x2

2− x2
1− x3

1 = 0 — in this case of degree 2 — to obtain the equation x2
2− x2

1 = 0
of the tangent cone at the origin. This obviously yields a homogeneous polynomial (so that its affine
zero locus is a cone), and it fits well with the intuitive idea that for small values of x1 and x2 the
higher powers of the coordinates are much smaller, so that we get a good approximation for the
curve around the origin when we neglect them.

In fact, the following exercise (which is similar in style to proposition 6.33) shows that taking the
terms of smallest degree of the defining equations is the general way to compute tangent cones
explicitly after the coordinates have been shifted so that the point under consideration is the origin.

Exercise 9.22 (Computation of tangent cones). Let IEK[x1, . . . ,xn] be an ideal, and assume that the
corresponding affine variety X = V (I) ⊂ An contains the origin. Consider the blow-up X̃ ⊂ Ãn ⊂
An×Pn−1 at x1, . . . ,xn, and denote the homogeneous coordinates of Pn−1 by y1, . . . ,yn.

(a) By Example 9.15 we know that Ãn can be covered by affine spaces, with one coordinate
patch being

An→ Ãn ⊂ An×Pn−1,

(x1,y2, . . . ,yn) 7→ ((x1,x1y2, . . . ,x1yn),(1:y2 : · · · :yn)).



9. Birational Maps and Blowing Up 79

Prove that on this coordinate patch the blow-up X̃ is given as the zero locus of the polyno-
mials

f (x1,x1y2, . . . ,x1yn)

xmin deg f
1

for all non-zero f ∈ I, where min deg f denotes the smallest degree of a monomial in f .

(b) Prove that the exceptional hypersurface of X̃ is

Vp( f in : f ∈ I) ⊂ {0}×Pn−1,

where f in is the initial term of f , i. e. the sum of all monomials in f of smallest degree.
Consequently, the tangent cone of X at the origin is

C0X =Va( f in : f ∈ I) ⊂ An.

(c) If I = ( f ) is a principal ideal prove that C0X =Va( f in). However, for a general ideal I show
that C0X is in general not the zero locus of the initial terms of a set of generators for I.

In Example 9.15 above, blowing up the n-dimensional variety An at (x1, . . . ,xn) has replaced the
origin by a variety Pn−1 of codimension 1 in Ãn. We will now see that this is in fact a general
phenomenon.

Proposition 9.23 (Dimension of the exceptional set). Let π : X̃ → X be the blow-up of an irre-
ducible affine variety X at f1, . . . , fr ∈ A(X). Then every irreducible component of the exceptional
set π−1(V ( f1, . . . , fr)) has codimension 1 in X̃ . It is therefore often called the exceptional hypersur-
face of the blow-up.

Proof. It is enough to prove the statement on the affine open subsets Ui ⊂ X̃ ⊂ X ×Pr−1 for i =
1, . . . ,r where the i-th projective coordinate yi is non-zero, since these open subsets cover X̃ . But note
that for a ∈Ui the condition fi(a) = 0 implies f j(a) = 0 for all j by Lemma 9.14. So the exceptional
set is given by one equation fi = 0 on Ui. Moreover, if Ui is non-empty then this polynomial fi
is not identically zero on Ui: otherwise Ui, and thus also its closure X̃ , would be contained in the
exceptional set — which is a contradiction since this implies U = /0 and thus X̃ = /0. The statement
of the lemma thus follows from Proposition 2.25 (c). �

Corollary 9.24 (Dimension of tangent cones). Let a be a point on a variety X. Then the dimension
dimCaX of the tangent cone of X at a is the local dimension codimX{a} of X at a.

Proof. Note that both dimCaX and codimX{a} are local around the point a. By passing to an open
neighborhood of a we can therefore assume that every irreducible component of X meets a, and that
X ⊂ An is affine. We may also assume that X is not just the one-point set {a}, since otherwise the
statement of the corollary is trivial.

Now let X = X1∪·· ·∪Xm be the irreducible decomposition of X . Note that X 6= {a} implies that all
of these components have dimension at least 1. By Proposition 9.23 every irreducible component of
the exceptional set of the blow-up X̃i of Xi at a has dimension dimXi− 1, and so by Exercise 6.32
(a) every irreducible component of the tangent cone CaXi has dimension dimXi. As the maximum of
these dimensions is just the local dimension codimX{a} (see Exercise 5.11 (b)) it therefore suffices
to show that all these exceptional sets (and hence also the tangent cones) are non-empty.

Assume the contrary, i. e. that the exceptional set of X̃i is empty for some i. Extending this to the
projective closure Pn of An we obtain an irreducible variety Xi ⊂ Pn containing a whose blow-up
X̃i in P̃n has an empty exceptional set. This means that π

(
X̃i

)
= Xi\{a}, where π : P̃n→ Pn is the

blow-up map. As X̃i is a projective (and hence complete) variety by Construction 9.17 (c) this is a
contradiction to Corollary 7.24 since Xi\{a} is not closed (recall that Xi has dimension at least 1, so
that Xi\{a} 6= /0). �
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Exercise 9.25. Let X = V (x2
2− x2

1− x3
1) ⊂ A2. Show that X is not isomorphic to A1, but that the

blow-up of X at the origin is.

Can you interpret this result geometrically?

Exercise 9.26.
(a) Show that the blow-up of A2 at the ideal (x2

1,x1x2,x2
2) is isomorphic to the blow-up of A2 at

the ideal (x1,x2).

(b) Let X be an affine variety, and let IEA(X) be an ideal. Is it true in general that the blow-up
of X at I is isomorphic to the blow-up of X at

√
I?

We will now discuss another important application of blow-ups that follows more or less directly
from the definitions: they can be used to extend morphisms defined only on an open subset of a
variety.

Remark 9.27 (Blowing up to extend morphisms). Let X ⊂An be an affine variety, and let f1, . . . , fr
be polynomial functions on X . Note that the morphism f : x 7→ ( f1(x) : · · · : fr(x)) to Pr−1 is only
well-defined on the open subset U = X\V ( f1, . . . , fr) of X . In general, we can not expect that this
morphism can be extended to a morphism on all of X . But we can always extend it “after blowing up
the ideal ( f1, . . . , fr) of the indeterminacy locus”: there is an extension f̃ : X̃→ Pr−1 of f (that agrees
with f on U), namely just the projection from X̃ ⊂ X ×Pr−1 to the second factor Pr−1. So blowing
up is a way to extend morphisms to bigger sets on which they would otherwise be ill-defined. Let us
consider a concrete example of this idea in the next lemma and the following remark.

Lemma 9.28. P1×P1 blown up in one point is isomorphic to P2 blown up in two points.

Proof. We know from Example 7.12 that P1×P1 is isomorphic to the quadric surface

X = {(x0 :x1 :x2 :x3) : x0x3 = x1x2} ⊂ P3.

Let X̃ be blow-up of X at a = (0:0 :0 :1) ∈ X , which can be realized as in Construction 9.17 (c) as
the blow-up X̃ ⊂ P3×P2 of X at x0,x1,x2.

On the other hand, let b = (0:1 :0),c = (0:0 :1) ∈ P2, and let P̃2 ⊂ P2×P3 be the blow-up of P2

at y2
0,y0y1,y0y2,y1y2. Note that these polynomials do not generate the ideal I({b,c}) = (y0,y1y2),

but this does not matter: the blow-up is a local construction, so let us check that we are locally just
blowing up b, and similarly c. There is an open affine neighborhood around b given by y1 6= 0,
where we can set y1 = 1, and on this neighborhood the given functions y2

0,y0,y0y2,y2 generate the

ideal (y0,y2) of b. So P̃2 is actually the blow-up of P2 at b and c.

Now we claim that an isomorphism is given by

f : X̃ 7→ P̃2, ((x0 :x1 :x2 :x3),(y0 :y1 :y2)) 7→ ((y0 :y1 :y2),(x0 :x1 :x2 :x3)).

In fact, this is easy to prove: obviously, f is an isomorphism from P3×P2 to P2×P3, so we only have
to show that f maps X̃ to P̃2, and that f−1 maps P̃2 to X̃ . Note that it suffices to check this on a dense
open subset. But this is easy: on the complement of the exceptional set in X̃ we have x0x3 = x1x2
and (y0 :y1 :y2) = (x0 :x1 :x2), so on the (smaller) complement of V (x0) we get the correct equations

(x0 :x1 :x2 :x3) = (x2
0 :x0x1 :x0x2 :x0x3) = (x2

0 :x0x1 :x0x2 :x1x2) = (y2
0 :y0y1 :y0y2 :y1y2)

for the image point under f to lie in P̃2. Conversely, on the complement of the exceptional set in P̃2

we have (x0 :x1 :x2 :x3) = (y2
0 :y0y1 :y0y2 :y1y2), so we conclude that x0x3 = x1x2 and (y0 :y1 :y2) =

(x0 :x1 :x2) where y0 6= 0. �
16

Remark 9.29. The proof of Lemma 9.28 is short and elegant, but not very insightful. So let us try
to understand geometrically what is going on. As in the proof above, we think of P1×P1 as the
quadric surface

X = {(x0 :x1 :x2 :x3) : x0x3 = x1x2} ⊂ P3.
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Let us project X from a = (0:0 :0 :1) ∈ X to Vp(x3)∼= P2. The corresponding morphism f is shown
in the picture below; as in Example 7.6 (b) it is given by f (x0 :x1 :x2 :x3) = (x0 :x1 :x2) and well-
defined away from a.

P2

x

b c

a

f (x)

X ∼= P1×P1

Recall that, in the corresponding case of the projection of a quadric curve in Example 7.6 (c), the
morphism f could be extended to the point a. This is now no longer the case for our quadric surface
X : to construct f (a) we would have to take the limit of the points f (x) for x approaching a, i. e.
consider lines through a and x for x→ a. These lines will then become tangent lines to X at a —
but X , being two-dimensional, has a one-parameter family of such tangent lines. This is why f (a) is
ill-defined. But we also see from this discussion that blowing up a on X , i. e. replacing it by the set of
all tangent lines through a, will exactly resolve this indeterminacy. Hence f becomes a well-defined
morphism from X̃ to Vp(x3)∼= P2.

Let us now check if there is an inverse morphism. By construction, it is easy to see what it would
have to look like: the points of X\{a} mapped to a point y ∈Vp(x3) are exactly those on the line ay
through a and y. In general, this line intersects X in two points, one of which is a. So there is then
exactly one point on X which maps to y, leading to an inverse morphism f−1. This reasoning is only
false if the whole line ay lies in X . Then this whole line would be mapped to y, so that we cannot
have an inverse f−1 there. But of course we expect again that this problem can be taken care of by
blowing up y in P2, so that it is replaced by a P1 that can then be mapped bijectively to ay.

There are obviously two such lines ab and ac, given by b = (0:1 :0) and c = (0:0 :1). If you think
of X as P1×P1 again, these lines are precisely the “horizontal” and “vertical” lines passing through
a where the coordinate in one of the two factors is constant. So we would expect that f can be made
into an isomorphism after blowing up b and c, which is exactly what we have shown in Lemma 9.28.

Exercise 9.30 (Cremona transformation). Let a = (1:0 :0), b = (0:1 :0), and c = (0:0 :1) be the
three coordinate points of P2, and let U = P2\{a,b,c}. Consider the morphism

f : U → P2, (x0 :x1 :x2) 7→ (x1x2 :x0x2 :x0x1).

(a) Show that there is no morphism P2→ P2 extending f .

(b) Let P̃2 be the blow-up of P2 at {a,b,c}. Show that f can be extended to an isomorphism
f̃ : P̃2→ P̃2. This isomorphism is called the Cremona transformation.


