
66 Andreas Gathmann

8. Grassmannians

After having introduced (projective) varieties — the main objects of study in algebraic geometry
— let us now take a break in our discussion of the general theory to construct an interesting and
useful class of examples of projective varieties. The idea behind this construction is simple: since
the definition of projective spaces as the sets of 1-dimensional linear subspaces of Kn turned out to
be a very useful concept, let us now generalize this and consider instead the sets of k-dimensional
linear subspaces of Kn for an arbitrary k = 0, . . . ,n.

Definition 8.1 (Grassmannians). Let n ∈ N>0, and let k ∈ N with 0≤ k ≤ n. We denote by G(k,n)
the set of all k-dimensional linear subspaces of Kn. It is called the Grassmannian of k-planes in Kn.

Remark 8.2. By Example 6.12 (b) and Exercise 6.32 (a), the correspondence of Remark 6.17 shows
that k-dimensional linear subspaces of Kn are in natural one-to-one correspondence with (k− 1)-
dimensional linear subspaces of Pn−1. We can therefore consider G(k,n) alternatively as the set
of such projective linear subspaces. As the dimensions k and n are reduced by 1 in this way, our
Grassmannian G(k,n) of Definition 8.1 is sometimes written in the literature as G(k− 1,n− 1)
instead.

Of course, as in the case of projective spaces our goal must again be to make the Grassmannian
G(k,n) into a variety — in fact, we will see that it is even a projective variety in a natural way. For
this we need the algebraic concept of alternating tensor products, a kind of multilinear product on
Kn generalizing the well-known cross producta1

a2
a3

×
b1

b2
b3

=

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1


on K3 whose coordinates are all the 2×2 minors of the matrix(

a1 a2 a3
b1 b2 b3

)
.

If you have seen ordinary tensor products in commutative algebra already [G5, Chapter 5], you
probably know that the best way to introduce these products is by a universal property similar to
the one for products of varieties in Definition 5.16. Although the same is true for our alternating
tensor products, we will follow a faster and more basic approach here, whose main disadvantage is
that it is not coordinate-free. Of course, if you happen to know the “better” definition of alternating
tensor products using their universal property already, you can use this definition as well and skip
the following construction.

Construction 8.3 (Alternating tensor products). Let (e1, . . . ,en) denote the standard basis of Kn. For
k ∈ N we define ΛkKn to be a K-vector space of dimension

(n
k

)
with basis vectors formally written

as
ei1 ∧ ei2 ∧·· ·∧ eik (∗)

for all multi-indices (i1, . . . , ik) of natural numbers with 1≤ i1 < i2 < · · ·< ik ≤ n. Note that the set
of these strictly increasing multi-indices is in natural bijection with the set of all k-element subsets
{i1, . . . , ik} of {1, . . . ,n}, so that there are in fact exactly

(n
k

)
of these basis vectors. In particular,

ΛkKn is the zero vector space if k > n.

We extend the notation (∗) to arbitrary (i. e. not strictly increasing) multi-indices (i1, . . . , ik) with
1≤ i1, . . . , ik ≤ n by setting ei1 ∧·· ·∧ eik := 0 if any two of the i1, . . . , ik coincide, and

ei1 ∧·· ·∧ eik := signσ · eiσ(1) ∧·· ·∧ eiσ(k)
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if all i1, . . . , ik are distinct, and σ is the unique permutation of {1, . . . ,k} such that iσ(1) < · · ·< iσ(k).
We can then extend this notation multilinearly to a product (Kn)k→ ΛkKn: for v1, . . . ,vk ∈ Kn with
basis expansions v j = ∑

n
i=1 a j,i ei for some a j,i ∈ K we define

v1∧·· ·∧ vk := ∑
i1,...,ik

a1,i1 · · ·ak,ik · ei1 ∧·· ·∧ eik ∈ Λ
kKn.

More generally, we obtain bilinear and associative products ΛkKn×ΛlKn → Λk+lKn by a bilinear
extension of

(ei1 ∧·· ·∧ eik)∧ (e j1 ∧·· ·∧ e jl ) := ei1 ∧·· ·∧ eik ∧ e j1 ∧·· ·∧ e jl .

The vector space ΛkKn is usually called the k-fold alternating or antisymmetric tensor product of
Kn, the elements of ΛkKn are referred to as alternating or antisymmetric tensors.

Example 8.4.
(a) By definition we have Λ0 = K and Λ1Kn = Kn; a basis of Λ1Kn is again (e1, . . . ,en). We also

have ΛnKn ∼= K, with single basis vector e1∧·· ·∧ en.

(b) As in (a), Λ2K2 is isomorphic to K with basis vector e1 ∧ e2. For two arbitrary vectors
v = a1e1 +a2e2 and w = b1e1 +b2e2 of K2 their alternating tensor product is

v∧w = a1b1 e1∧ e1 +a1b2 e1∧ e2 +a2b1 e2∧ e1 +a2b2 e2∧ e2

= (a1b2−a2b1)e1∧ e2,

so under the isomorphism Λ2K2 ∼= K it is just the determinant of the coefficient matrix of v
and w.

(c) Similarly, for v = a1e1 +a2e2 +a3e3 and w = b1e1 +b2e2 +b3e3 in K3 we have

v∧w = (a1b2−b2a1)e1∧e2+(a1b3−b3a1)e1∧e3+(a2b3−a3b2)e2∧e3 ∈Λ
2K3 ∼= K3,

so (up to a simple change of basis) v∧w is just the cross product v×w considered in the
introduction to this chapter.

As we will see now, it is in fact a general phenomenon that the coordinates of alternating tensor
products can be interpreted as determinants.

Remark 8.5 (Alternating tensor products and determinants). Let 0≤ k ≤ n, and let v1, . . . ,vk ∈ Kn

with basis expansions v j = ∑i a j,iei for j = 1, . . . ,k. For a strictly increasing multi-index ( j1, . . . , jk)
let us determine the coefficient of the basis vector e j1 ∧ ·· · ∧ e jk in the tensor product v1 ∧ ·· · ∧ vk.
As in Construction 8.3 we have

v1∧·· ·∧ vk = ∑
i1,...,ik

a1,i1 · · ·ak,ik · ei1 ∧·· ·∧ eik .

Note that the indices i1, . . . , ik in the products ei1 ∧·· ·∧eik in the terms of this sum are not necessarily
in strictly ascending order. So to figure out the coefficient of e j1 ∧·· ·∧e jk in v1∧·· ·∧vk we have to
sort the indices in each sum first; the resulting coefficient is then

∑signσ ·a1, jσ(1) · · ·ak, jσ(k)
,

where the sum is taken over all permutations σ . By definition this is exactly the determinant of the
maximal quadratic submatrix of the coefficient matrix (ai, j)i, j obtained by taking only the columns
j1, . . . , jk. In other words, the coordinates of v1∧·· ·∧vk are just all the maximal minors of the matrix
whose rows are v1, . . . ,vk. So the alternating tensor product can be viewed as a convenient way to
encode all these minors in a single object.

As a consequence, alternating tensor products can be used to encode the linear dependence and linear
spans of vectors in a very elegant way.

Lemma 8.6. Let v1, . . . ,vk ∈ Kn for some k ≤ n. Then v1 ∧ ·· · ∧ vk = 0 if and only if v1, . . . ,vk are
linearly dependent.
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Proof. By Remark 8.5, we have v1∧·· ·∧vk = 0 if and only if all maximal minors of the matrix with
rows v1, . . . ,vk are zero. But this is the case if and only if this matrix does not have full rank [G2,
Exercise 18.25], i. e. if and only if v1, . . . ,vk are linearly dependent. �

Remark 8.7.
(a) By construction, the alternating tensor product is antisymmetric in the sense that for all

v1, . . . ,vk ∈ Kn and all permutations σ we have

v1∧·· ·∧ vk = signσ · vσ(1)∧·· ·∧ vσ(k).

Moreover, Lemma 8.6 tells us that v1∧·· ·∧ vk = 0 if two of the vectors v1, . . . ,vk coincide.
(b) We have constructed the alternating tensor product using a fixed basis e1, . . . ,en of Kn. How-

ever, if v1, . . . ,vn is an arbitrary basis of Kn it is easy to see that the alternating tensors
vi1 ∧ ·· · ∧ vik for strictly increasing multi-indices (i1, . . . , ik) form a basis of ΛkKn as well:
there are

(n
k

)
of these vectors, and they generate ΛkKn since every standard unit vector ei is

a linear combination of v1, . . . ,vn, and hence every k-fold alternating product ei1 ∧·· ·∧eik is
a linear combination of k-fold alternating products of v1, . . . ,vn — which can be expressed
by (a) in terms of such products with strictly increasing indices.

Lemma 8.8. Let v1, . . . ,vk ∈Kn and w1, . . . ,wk ∈Kn both be linearly independent. Then v1∧·· ·∧vk
and w1∧·· ·∧wk are linearly dependent in ΛkKn if and only if Lin(v1, . . . ,vk) = Lin(w1, . . . ,wk).

Proof. As we have assumed both v1, . . . ,vk and w1, . . . ,wk to be linearly independent, we know by
Lemma 8.6 that v1∧·· ·∧ vk and w1∧·· ·∧wk are both non-zero.

“⇒” Assume that Lin(v1, . . . ,vk) 6= Lin(w1, . . . ,wk), so without loss of generality that w1 /∈
Lin(v1, . . . ,vk). Then w1,v1, . . . ,vk are linearly independent, and thus w1∧ v1∧ ·· ·∧ vk 6= 0
by Lemma 8.6. But by assumption we know that v1 ∧ ·· · ∧ vk = λ w1 ∧ ·· · ∧wk for some
λ ∈ K, and hence

0 6= w1∧ v1∧·· ·∧ vk = λ w1∧w1∧·· ·∧wk

in contradiction to Remark 8.7 (a).
“⇐” If v1, . . . ,vk and w1, . . . ,wk span the same subspace of Kn then the basis w1, . . . ,wk of this

subspace can be obtained from v1, . . . ,vk by a finite sequence of basis exchange operations
vi → vi + λ v j and vi → λ vi for λ ∈ K and i 6= j. But both these operations change the
alternating product of the vectors at most by a multiplicative scalar, since

v1∧·· ·∧ vi−1∧ (vi +λ v j)∧ vi+1∧·· ·∧ vn = v1∧·· ·∧ vi∧·· ·∧ vn

and v1∧·· ·∧ (λ vi)∧·· ·∧ vn = λ v1∧·· ·∧ vn

by multilinearity and Remark 8.7 (a). �

We can now use our results to realize the Grassmannian G(k,n) as a subset of a projective space.

Construction 8.9 (Plücker embedding). Let 0≤ k ≤ n, and consider the map f : G(k,n)→ P(
n
k)−1

given by sending a linear subspace Lin(v1, . . . ,vk) ∈ G(k,n) to the class of v1 ∧ ·· · ∧ vk ∈ ΛkKn ∼=
K(n

k) in P(
n
k)−1. Note that this is well-defined: v1∧·· ·∧vk is non-zero by Lemma 8.6, and represent-

ing the same subspace by a different basis does not change the resulting point in P(
n
k)−1 by the part

“⇐” of Lemma 8.8. Moreover, the map f is injective by the part “⇒” of Lemma 8.8. We call it the
Plücker embedding of G(k,n); for a k-dimensional linear subspace L ∈ G(k,n) the (homogeneous)
coordinates of f (L) in P(

n
k)−1 are the Plücker coordinates of L. By Remark 8.5, they are just all the

maximal minors of the matrix whose rows are v1, . . . ,vk.

In the following, we will always consider G(k,n) as a subset of P(
n
k)−1 using this Plücker embedding.

Example 8.10.
(a) The Plücker embedding of G(1,n) simply maps a linear subspace Lin(a1e1 + · · ·+anen) to

the point (a1 : · · · :an) ∈ P(
n
1)−1 = Pn−1. Hence G(1,n) = Pn−1 as expected.
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(b) Consider the 2-dimensional subspace L = Lin(e1 + e2,e1 + e3) ∈ G(2,3) of K3. As

(e1 + e2)∧ (e1 + e3) =−e1∧ e2 + e1∧ e3 + e2∧ e3,

the coefficients (−1:1 :1) of this vector are the Plücker coordinates of L in P(
3
2)−1 = P2.

Alternatively, these are the three maximal minors of the matrix(
1 1 0
1 0 1

)
whose rows are the given spanning vectors e1 + e2 and e1 + e3 of L. Note that a change of
these spanning vectors will just perform row operations on this matrix, which changes the
maximal minors at most by a common constant factor. This shows again in this example that
the homogeneous Plücker coordinates of L are well-defined.

13
So far we have embedded the Grassmannian G(k,n) into a projective space, but we still have to see
that it is a closed subset, i. e. a projective variety. So by Construction 8.9 we have to find suitable
equations describing the alternating tensors in ΛkKn that can be written as a so-called pure tensor, i. e.
as v1∧·· ·∧ vk for some v1, . . . ,vk ∈ Kn — and not just as a linear combination of such expressions.
The key lemma to achieve this is the following.

Lemma 8.11. For a fixed non-zero ω ∈ ΛkKn with k < n consider the K-linear map

f : Kn→ Λ
k+1Kn, v 7→ v∧ω.

Then rk f ≥ n− k, with equality holding if and only if ω = v1∧·· ·∧ vk for some v1, . . . ,vk ∈ Kn.

Example 8.12. Let k = 2 and n = 4.

(a) For ω = e1∧ e2 the map f of Lemma 8.11 is given by

f (a1e1 +a2e2 +a3e3 +a4e4) = (a1e1 +a2e2 +a3e3 +a4e4)∧ e1∧ e2

= a3e1∧ e2∧ e3 +a4e1∧ e2∧ e4,

for a1,a2,a3,a4 ∈ K, and thus has rank rk f = 2 = n− k in accordance with the statement of
the lemma.

(b) For ω = e1∧ e2 + e3∧ e4 we get

f (a1e1 +a2e2 +a3e3 +a4e4)

= (a1e1 +a2e2 +a3e3 +a4e4)∧ (e1∧ e2 + e3∧ e4)

= a1e1∧ e3∧ e4 +a2e2∧ e3∧ e4 +a3e1∧ e2∧ e3 +a4e1∧ e2∧ e4

instead, so that rk f = 4. Hence Lemma 8.11 tells us that there is no way to write ω as a pure
tensor v1∧ v2 for some vectors v1,v2 ∈ K4.

Proof of Lemma 8.11. Let v1, . . . ,vr be a basis of ker f (with r = n− rk f ), and extend it to a basis
v1, . . . ,vn of Kn. By Remark 8.7 (b) the alternating tensors vi1 ∧ ·· · ∧ vik with 1 ≤ i1 < · · · < ik ≤ n
then form a basis of ΛkKn, and so we can write

ω = ∑
i1<···<ik

ai1,...,ik vi1 ∧·· ·∧ vik

for suitable coefficients ai1,...,ik ∈ K. Now for i = 1, . . . ,r we know that vi ∈ ker f , and thus

0 = vi∧ω = ∑
i1<···<ik

ai1,...,ik vi∧ vi1 ∧·· ·∧ vik . (∗)

Note that vi ∧ vi1 ∧ ·· · ∧ vik = 0 if i ∈ {i1, . . . , ik}, and in the other cases these products are (up to
sign) different basis vectors of Λk+1Kn. So the equation (∗) tells us that we must have ai1,...,ik = 0
whenever i /∈ {i1, . . . , ik}. As this holds for all i = 1, . . . ,r we conclude that the coefficient ai1,...,ik = 0
can only be non-zero if {1, . . . ,r} ⊂ {i1, . . . , ik}.
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But at least one of these coefficients has to be non-zero since ω 6= 0 by assumption. This obviously
requires that r ≤ k, i. e. that rk f = n− r ≥ n− k. Moreover, if we have equality then only the
coefficient a1,...,k can be non-zero, which means that ω is a scalar multiple of v1∧·· ·∧ vk.

Conversely, if ω = w1 ∧ ·· · ∧wk for some (necessarily linearly independent) w1, . . . ,wk ∈ Kn then
w1, . . . ,wk ∈ ker f . Hence in this case dimker f ≥ k, i. e. rk f ≤ n− k, and together with the above
result rk f ≥ n− k we have equality. �

Corollary 8.13 (G(k,n) as a projective variety). With the Plücker embedding of Construction 8.9,
the Grassmannian G(k,n) is a closed subset of P(

n
k)−1. In particular, it is a projective variety.

Proof. As G(n,n) is just a single point (and hence clearly a variety) we may assume that k < n.
Then by construction a point ω ∈ P(

n
k)−1 lies in G(k,n) if and only if it is the class of a pure tensor

v1 ∧ ·· · ∧ vk. Lemma 8.11 shows that this is the case if and only if the rank of the linear map
f : Kn→ Λk+1Kn, v 7→ v∧ω is n− k. As we also know that the rank of this map is always at least
n− k, this condition can be checked by the vanishing of all (n− k+ 1)× (n− k+ 1) minors of the
matrix corresponding to f [G2, Exercise 18.25]. But these minors are polynomials in the entries of
this matrix, and thus in the coordinates of ω . Hence we see that the condition for ω to be in G(k,n)
is closed. �

Example 8.14. By the proof of Corollary 8.13, the Grassmannian G(2,4) is given by the vanishing
of all sixteen 3× 3 minors of a 4× 4 matrix corresponding to a linear map K4→ Λ3K4, i. e. it is a
subset of P(

4
2)−1 = P5 given by 16 cubic equations.

As you might expect, this is by no means the simplest set of equations describing G(2,4) — in fact,
we will see in Exercise 8.19 (a) that a single quadratic equation suffices to cut out G(2,4) from P5.
Our proof of Corollary 8.13 is just the easiest way to show that G(k,n) is a variety; it is not suitable
in practice to find a nice description of G(k,n) as a zero locus of simple equations.

However, there is another useful description of the Grassmannian in terms of affine patches, as we
will see now. This will then also allow us to easily read off the dimension of G(k,n) — which would
be very hard to compute from its equations as in Corollary 8.13.

Construction 8.15 (Affine cover of the Grassmannian). Let U0 ⊂ G(k,n) ⊂ P(
n
k)−1 be the affine

open subset where the e1 ∧ ·· · ∧ ek-coordinate is non-zero. Then by Remark 8.5 a linear subspace
L = Lin(v1, . . . ,vk) ∈ G(k,n) is in U0 if and only if the k×n matrix A with rows v1, . . . ,vk is of the
form A = (B |C) for an invertible k× k matrix B and an arbitrary k× (n− k) matrix C. This in turn
is the case if and only if A is equivalent by row transformations, i. e. by a change of basis for L, to
a matrix of the form (Ek |D), where Ek denotes the k× k unit matrix and D ∈Mat(k× (n− k),K):
namely by multiplying A with B−1 from the left to obtain (Ek |D) with D = B−1C. Note that this is
in fact the only choice for D, so that we get a bijection

f : Ak(n−k) = Mat(k× (n− k),K) → U0,

D 7→ the linear subspace spanned by the rows of (Ek |D).

As the Plücker coordinates of this subspace, i. e. the maximal minors of (Ek |D), are clearly polyno-
mial functions in the entries of D, we see that f is a morphism. Conversely, the (i, j)-entry of D can
be reconstructed (up to sign) from f (D) as the maximal minor of (Ek |D) where we take all columns
of Ek except the i-th, together with the j-th column of D. Hence f−1 is a morphism as well, showing
that f is an isomorphism and thus U0 ∼= Ak(n−k) is an affine space (and not just an affine variety,
which is already clear from Proposition 7.2).

Of course, this argument holds in the same way for all other affine patches where one of the Plücker
coordinates is non-zero. Hence we conclude:

Corollary 8.16. G(k,n) is an irreducible variety of dimension k(n− k).
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Proof. We have just seen in Construction 8.15 that G(k,n) has an open cover by affine spaces
Ak(n−k). As any two of these patches have a non-empty intersection (it is in fact easy to write
down a k×n matrix such that any two given maximal minors are non-zero), the result follows from
Exercises 2.20 (b) and 2.33 (a). �

Remark 8.17. The argument of Construction 8.15 also shows an alternative description of the Grass-
mannian: it is the space of all full-rank k× n matrices modulo row transformations. As we know
that every such matrix is equivalent modulo row transformations to a unique matrix in reduced row
echelon form, we can also think of G(k,n) as the set of full-rank k×n matrices in such a form. For
example, in the case k = 1 and n = 2 (when G(1,2) = P1 by Example 8.10 (a)) the full-rank 1× 2
matrices in reduced row echelon form are

(1 ∗) corresponding to A1 ⊂ P1

and (0 1) corresponding to ∞ ∈ P1

as in the homogeneous coordinates of P1.

The affine cover of Construction 8.15 can also be used to show the following symmetry property of
the Grassmannians.

Proposition 8.18. For all 0≤ k ≤ n we have G(k,n)∼= G(n− k,n).

Proof. There is an obvious well-defined set-theoretic bijection f : G(k,n)→ G(n− k,n) that sends
a k-dimensional linear subspace L of Kn to its “orthogonal” complement

L⊥ = {x ∈ Kn : 〈x,y〉= 0 for all y ∈ L},
where 〈x,y〉= ∑

n
i=1 xiyi denotes the standard bilinear form. It remains to be shown that f (and analo-

gously f−1) is a morphism. By Lemma 4.6, we can do this on the affine coordinates of Construction
8.15. So let L ∈G(k,n) be described as the subspace spanned by the rows of a matrix (Ek |D), where
the entries of D ∈Mat(k× (n− k),K) are the affine coordinates of L. As

(Ek |D) ·
(
−D
En−k

)
= 0,

we see that L⊥ is the subspace spanned by the rows of (−DT |En−k). But the maximal minors of this
matrix, i. e. the Plücker coordinates of L⊥, are clearly polynomials in the entries of D, and thus we
conclude that f is a morphism. �

Exercise 8.19. Let G(2,4) ⊂ P5 be the Grassmannian of lines in P3 (or of 2-dimensional linear
subspaces of K4). We denote the homogeneous Plücker coordinates of G(2,4) in P5 by xi, j for
1≤ i < j ≤ 4. Show:

(a) G(2,4) =V (x1,2x3,4− x1,3x2,4 + x1,4x2,3).

(b) Let L ⊂ P3 be an arbitrary line. Show that the set of lines in P3 that intersect L, considered
as a subset of G(2,4)⊂ P5, is the zero locus of a homogeneous linear polynomial.

How many lines in P3 would you expect to intersect four general given lines?

Exercise 8.20. Show that the following sets are projective varieties:

(a) the incidence correspondence

{(L,a) ∈ G(k,n)×Pn−1 : L⊂ Pn−1 a (k−1)-dimensional linear subspace and a ∈ L};

(b) the join of two disjoint varieties X ,Y ⊂ Pn, i. e. the union in Pn of all lines intersecting both
X and Y .


