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7. Projective Varieties II: Ringed Spaces

After having defined projective varieties as topological spaces, we will now give them the structure
of ringed spaces to make them into varieties in the sense of Chapter 5. In other words, we have to
define a suitable notion of regular functions on (open subsets of) projective varieties.

Of course, as in the affine case in Definition 3.1 the general idea is that a regular function should
be a K-valued function that is locally a quotient of two polynomials. However, note that in contrast
to the affine situation the elements of the homogeneous coordinate ring S(X) of a projective variety
X are not well-defined functions on X : even if f ∈ S(X) is homogeneous of degree d we only have
f (λx) = λ d f (x) for all x ∈ X and λ ∈ K. So the only way to obtain well-defined functions is to
consider quotients of homogeneous polynomials of the same degree, so that the factor λ d cancels
out:

Definition 7.1 (Regular functions on projective varieties). Let U be an open subset of a projective
variety X . A regular function on U is a map ϕ : U → K with the following property: for every
a ∈U there are d ∈ N and f ,g ∈ S(X)d with f (x) 6= 0 and

ϕ(x) =
g(x)
f (x)

for all x in an open subset Ua with a ∈Ua ⊂U .

It is obvious that the sets OX (U) of regular functions on U are subrings of the K-algebras of all
functions from U to K, and — by the local nature of the definition — that they form a sheaf OX on
X .

With this definition, let us check first of all that the open subsets of a projective variety where one
of the coordinates is non-zero are affine varieties, so that projective varieties are prevarieties in the
sense of Definition 5.1.

Proposition 7.2 (Projective varieties are prevarieties). Let X ⊂ Pn be a projective variety. Then

Ui = {(x0 : · · · :xn) ∈ X : xi 6= 0} ⊂ X

is an affine variety for all i = 0, . . . ,n. In particular, X is a prevariety.

Proof. By symmetry it suffices to prove the statement for i = 0. Let X = Vp(h1, . . . ,hr) for some
homogeneous polynomials h1, . . . ,hr ∈ K[x0, . . . ,xn], and set g j(x1, . . . ,xn) = h j(1,x1, . . . ,xn) for all
j = 1, . . . ,r. If Y =Va(g1, . . . ,gr) we claim that

F : Y →U0, (x1, . . . ,xn) 7→ (1:x1 : · · · :xn)

is an isomorphism with inverse

F−1 : U0→ Y, (x0 : · · · :xn) 7→
(

x1

x0
, . . . ,

xn

x0

)
.

In fact, it is clear by construction that these two maps are well-defined and inverse to each
other. Moreover, similarly to Remark 6.28 they are continuous: the inverse image of a closed set
Vp( f1, . . . , fs)∩U0 under F is the closed set Va( f1(1, ·), . . . , fs(1, ·)), and the image of a closed set
Va( f1, . . . , fs)⊂ Y under F is the closed set Vp( f h

1 , . . . , f h
s )∩U0.

Finally, we have to check that F and F−1 pull back regular functions to regular functions: a regular
function on (an open subset of) U0 is by Definition 7.1 locally of the form p(x0,...,xn)

q(x0,...,xn)
(with nowhere

vanishing denominator) for two homogeneous polynomials p and q of the same degree. Then

F∗
p(x0, . . . ,xn)

q(x0, . . . ,xn)
=

p(1,x1, . . . ,xn)

q(1,x1, . . . ,xn)
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is a quotient of polynomials and thus a regular function on Y . Conversely, F−1 pulls back a quotient
p(x1,...,xn)
q(x1,...,xn)

of two polynomials to

(F−1)∗
p(x1, . . . ,xn)

q(x1, . . . ,xn)
=

p
( x1

x0
, . . . , xn

x0

)
q
( x1

x0
, . . . , xn

x0

) ,
which is a regular function on U0 since it can be rewritten as a quotient of two homogeneous poly-
nomials of the same degree (by multiplying both the numerator and the denominator by xm

0 for
m = max(deg p,degq)). Hence F is an isomorphism by Definition 4.3 (b), and so U0 is an affine
open subset of X .

In particular, as the open subsets Ui for i = 0, . . . ,n cover X we conclude that X is a prevariety. �

Exercise 7.3. Check that Definition 7.1 (together with Proposition 7.2) is compatible with our earlier
constructions in the following cases:

(a) The prevariety P1 is the same as the one introduced in Example 5.5 (a).

(b) If X ⊂ Pn is a projective variety then its structure sheaf as defined above is the same as the
closed subprevariety structure of X in Pn as in Construction 5.12 (b).

Exercise 7.4. Let m,n ∈ N>0. Use Exercise 6.32 to prove that Pm×Pn is not isomorphic to Pm+n.

We have already mentioned that the major advantage of (subprevarieties of) projective varieties is
that they have a global description with homogeneous coordinates that does not refer to gluing tech-
niques. In fact, the following proposition shows that many morphisms between projective varieties
can also be constructed without gluing.

Lemma 7.5 (Morphisms of projective varieties). Let X ⊂ Pn be a projective variety, and let
f0, . . . , fm ∈ S(X) be homogeneous elements of the same degree. Then on the open subset
U := X\V ( f0, . . . , fm) these elements define a morphism

f : U → Pm, x 7→ ( f0(x) : · · · : fm(x)).

Proof. First of all note that f is well-defined set-theoretically: by definition of U the image point
can never be (0: · · · :0); and if we rescale the homogeneous coordinates x0, . . . ,xn of x ∈U we get

( f0(λx0 : · · · :λxn) : · · · : fm(λx0 : · · · :λxn))

= (λ d f0(x0 : · · · :xn) : · · · :λ
d fm(x0 : · · · :xn))

= ( f0(x0 : · · · :xn) : · · · : fm(x0 : · · · :xn)),

where d is the common degree of the f0, . . . , fm. To check that f is a morphism we want to use
the gluing property of Lemma 4.6. So let {Vi : i = 0, . . . ,m} be the affine open cover of Pm with
Vi = {(y0 : · · · :ym) : yi 6= 0} for all i. Then the open subsets Ui := f−1(Vi) = {x ∈ X : fi(x) 6= 0}
cover U , and in the affine coordinates on Vi the map f |Ui is given by the quotients of polynomials
f j
fi

for j = 0, . . . ,m with j 6= i, which are regular functions on Ui by Definition 7.1. Hence f |Ui is a
morphism by Proposition 4.7, and so f is a morphism by Lemma 4.6. �

Example 7.6.

(a) Let A ∈GL(n+1,K) be an invertible matrix. Then f : Pn→ Pn, x 7→ Ax is a morphism with
inverse f−1 : Pn→ Pn, x 7→ A−1x, and hence an isomorphism. We will refer to these maps
as projective automorphisms of Pn. In fact, we will see in Proposition 13.4 that these are
the only isomorphisms of Pn.

(b) Let a = (1:0 : · · · :0) ∈ Pn and L =V (x0)∼= Pn−1. Then the map

f : Pn\{a}→ Pn−1, (x0 : · · · :xn) 7→ (x1 : · · · :xn)
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given by forgetting one of the homogeneous coordinates is a morphism by Lemma 7.5. It can
be interpreted geometrically as in the picture below on the left: for x=(x0 : · · · :xn)∈Pn\{a}
the unique line through a and x is clearly given parametrically by

{(s : t x1 : · · · : t xn) : (s : t) ∈ P1},
and its intersection point with L is just (0:x1 : · · · :xn), i. e. f (x) with the identification L ∼=
Pn−1. We call f the projection from a to the linear subspace L. Note however that the picture
below is only schematic and does not show a standard affine open subset Ui = {(x0 : · · · :xn) :
xi 6= 0}, since none of these subsets contains both a and (a non-empty open subset of) L.

Of course, the same construction works for any point a ∈ Pn and any linear subspace L
of dimension n− 1 not containing a — the corresponding morphism then differs from the
special one considered above by a projective automorphism as in (a).

a

L

(b)

a

L

X

(c)

x

f (x)

x

f (x)

(c) The projection morphism f : Pn\{a} → Pn−1 as in (b) cannot be extended to the point a.
The intuitive reason for this is that the line through a and x (and thus also the point f (x))
does not have a well-defined limit as x approaches a. This changes however if we restrict the
projection to a suitable projective variety: for X = V (x0x2− x2

1) as in the schematic picture
above on the right consider the map

f : X → P1, (x0 :x1 :x2) 7→

{
(x1 :x2) if (x0 :x1 :x2) 6= (1:0 :0),
(x0 :x1) if (x0 :x1 :x2) 6= (0:0 :1).

It is clearly well-defined since the equation x0x2−x2
1 = 0 implies (x1 :x2)= (x0 :x1) whenever

both these points in P1 are defined. Moreover, it extends the projection as in (b) to all of X
(which includes the point a), and it is a morphism since it is patched together from two
projections as above. Geometrically, the image f (a) is the intersection of the tangent to X at
a with the line L.

This geometric picture also tells us that f is bijective: for every point y ∈ L the restriction of
the polynomial x0x2− x2

1 defining X to the line through a and y has degree 2, and thus this
line intersects X in two points (counted with multiplicities), of which one is a. The other
point is then the unique inverse image f−1(y). In fact, it is easy to check that f is even an
isomorphism since its inverse is

f−1 : P1→ X , (y0 :y1) 7→ (y2
0 :y0y1 :y2

1),

which is a morphism by Lemma 7.5.

Note that the example of the morphism f above also shows that we cannot expect every
morphism between projective varieties to have a global description by homogeneous poly-
nomials as in Lemma 7.5.

(d) Now let X ⊂ P2 be any projective conic, i. e. the zero locus of a single irreducible homo-
geneous polynomial f ∈ K[x0,x1,x2] of degree 2. Assuming that charK 6= 2, we know by
Exercise 4.12 that the affine part X ∩A2 is isomorphic to Va(x2− x2

1) or Va(x1x2− 1) by a
linear transformation followed by a translation. Extending this map to a projective auto-
morphism of P2 as in (a), the projective conic X thus becomes isomorphic to Vp(x0x2− x2

1)

or Vp(x1x2− x2
0) by Proposition 6.33 (b). So by (c) we see that every projective conic is

isomorphic to P1.
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Exercise 7.7. Let us say that n+2 points in Pn are in general position if for any n+1 of them their
representatives in Kn+1 are linearly independent.

Now let a1, . . . ,an+2 and b1, . . . ,bn+2 be two sets of points in Pn in general position. Show that there
is an isomorphism f : Pn→ Pn with f (ai) = bi for all i = 1, . . . ,n+2.

Exercise 7.8. Show by example that the homogeneous coordinate ring of a projective variety is not
invariant under isomorphisms, i.e. that there are isomorphic projective varieties X ,Y such that the
rings S(X) and S(Y ) are not isomorphic.

Exercise 7.9. Let f : Pn→ Pm be a morphism. Prove:

(a) If X ⊂ Pm is the zero locus of a single homogeneous polynomial in K[x0, . . . ,xm] then every
irreducible component of f−1(X) has dimension at least n−1.

(b) If n > m then f must be constant.

Let us now verify that projective varieties are separated, i. e. that they are varieties and not just
prevarieties. In other words, we have to check that the diagonal ∆X of a projective variety X is
closed in the product X×X . By Lemma 5.20 (b) it suffices to show this for X = Pn.

For the proof of this statement it is useful to first find a good description of the product of projective
spaces — note that by Exercise 7.4 such products are not just again projective spaces. Of course, we
could just parametrize these products by two sets of homogeneous coordinates. It turns out however
that we can also use a single set of homogeneous coordinates and thus embed products of projective
spaces as a projective variety into a bigger projective space.

Construction 7.10 (Segre embedding). Consider Pm with homogeneous coordinates x0, . . . ,xm and
Pn with homogeneous coordinates y0, . . . ,yn. Set N = (m+1)(n+1)−1 and let PN be the projective
space with homogeneous coordinates labeled zi, j for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then there is an
obviously well-defined set-theoretic map

f : Pm×Pn→ PN

given by zi, j = xi y j for all i, j. It satisfies the following properties:
11

Proposition 7.11. Let f : Pm×Pn→ PN be the map of Construction 7.10. Then:

(a) The image X = f (Pm×Pn) is a projective variety given by

X =Vp(zi, j zk,l− zi,l zk, j : 0≤ i,k ≤ m,0≤ j, l ≤ n).

(b) The map f : Pm×Pn→ X is an isomorphism.

In particular, Pm×Pn ∼= X is a projective variety. The isomorphism f : Pm×Pn→ X ⊂ PN is called
the Segre embedding; the coordinates z0,0, . . . ,zm,n above will be referred to as Segre coordinates
on Pm×Pn.

Proof.

(a) It is obvious that the points of f (Pm×Pn) satisfy the given equations. Conversely, consider
a point z ∈ PN with homogeneous coordinates z0,0, . . . ,zm,n that satisfy the given equations.
At least one of these coordinates must be non-zero; we can assume without loss of generality
that it is z0,0. Let us pass to affine coordinates by setting z0,0 = 1. Then we have zi, j = zi,0z0, j
for all i = 0, . . . ,m and j = 0, . . . ,n. Hence by setting xi = zi,0 and y j = z0, j (in particular
x0 = y0 = 1) we obtain a point of Pm×Pn that is mapped to z by f .

(b) Continuing the above notation, let z ∈ X be a point with z0,0 = 1. If f (x,y) = z for some
(x,y) ∈ Pm×Pn, it follows that x0 6= 0 and y0 6= 0, so we can pass to affine coordinates here
as well and assume that x0 = 1 and y0 = 1. But then it follows that xi = zi,0 and y j = z0, j for
all i and j, i. e. f is injective and thus as a map onto its image also bijective.

The same calculation shows that f and f−1 are given (locally in affine coordinates) by poly-
nomial maps. Hence f is an isomorphism. �
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Example 7.12. According to Proposition 7.11, the product P1×P1 is (isomorphic to) the surface

X = {(z0,0 :z0,1 :z1,0 :z1,1) : z0,0 z1,1 = z1,0 z0,1} ⊂ P3

by the isomorphism

f : P1×P1→ X , ((x0 :x1),(y0 :y1)) 7→ (x0y0 :x0y1 :x1y0 :x1y1).

In particular, the “lines” {a}×P1 and P1×{a} in P1×P1 where the first or second factor is constant,
respectively, are mapped to lines in X ⊂ P3. The following schematic picture shows these two
families of lines on the surface X (whose set of real points is a hyperboloid).

f

X ⊂ P3P1×P1

Corollary 7.13. Every projective variety is a variety.

Proof. We have already seen in proposition 7.2 that every projective variety is a prevariety. So by
Lemma 5.20 (b) it only remains to be shown that Pn is separated, i. e. that the diagonal ∆Pn is closed
in Pn×Pn. We can describe this diagonal as

∆Pn = {((x0 : · · · :xn),(y0 : · · · :yn)) : xi y j− x j yi = 0 for all i, j},
because these equations mean exactly that the matrix(

x0 x1 · · · xn
y0 y1 · · · yn

)
has rank (at most) 1, i. e. that (x0 : · · · :xn) = (y0 : · · · :yn). In particular, it follows that ∆Pn is closed
as the zero locus of the homogeneous linear polynomials zi, j−z j,i in the Segre coordinates zi, j = xi y j
of Pn×Pn. �

Remark 7.14. If X ⊂Pm and Y ⊂Pn are projective varieties then X×Y is a closed subset of Pm×Pn.
As the latter is a projective variety by the Segre embedding we see that X ×Y is a projective variety
as well (namely a projective subvariety of Pm×Pn).

Exercise 7.15. Let X ⊂ P2 be a curve given as the zero locus of a homo-
geneous polynomial of degree 3. Moreover, let U ⊂ X×X be the set of all
(a,b) ∈ X ×X such that a 6= b and the unique line through a and b meets
X in exactly three distinct points. Of course, two of these points are then a
and b; we will denote the third one by ψ(a,b) ∈ X .

Show that U ⊂ X×X is open, and that ψ : U → X is a morphism. X

a
b

ψ(a,b)

Exercise 7.16.
(a) Prove that for every projective variety Y ⊂Pn of pure dimension n−1 there is a homogeneous

polynomial f such that I(Y ) = ( f ). You may use the commutative algebra fact that every
polynomial in K[x0, . . . ,xn] admits a unique decomposition into prime elements [G5, Remark
8.6].

(b) If X is a projective variety of dimension n, show by example that in general not every pro-
jective variety Y ⊂ X of dimension n−1 is of the form V ( f ) for a homogeneous polynomial
f ∈ S(X). (One possibility is to consider the Segre embedding X of P1×P1 in P3, and
Y = P1×{0} ⊂ P1×P1.)
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The most important property of projective varieties is that they are compact in the classical topology
if the ground field is C. We have seen this already for projective spaces in Remark 6.4, and it then
follows for projective varieties as well since they are closed subsets of them. However, Exercises
2.34 (c) and 5.11 (a) show unfortunately that every prevariety is compact in the Zariski topology, and
so in particular that compactness in the Zariski topology does not capture the same geometric idea
as in the classical case. We therefore need an alternative description of the intuitive compactness
property that works in our algebraic setting of the Zariski topology.

The key idea to achieve this is that compact sets should be mapped to compact sets again under
continuous maps. In our language, this means that images of morphisms between projective varieties
should be closed. This property (that we have already seen to be false for general varieties in Remark
5.15 (a)) is what we want to prove now. We start with a special case which contains all the hard work,
and from which the general case will then follow easily.

Definition 7.17 (Closed maps). A map f : X → Y between topological spaces is called closed if
f (A)⊂ Y is closed for every closed subset A⊂ X .

Proposition 7.18. The projection map π : Pn×Pm→ Pm is closed.

Proof. Let Z ⊂ Pn×Pm be a closed set. By Remark 6.20 we can write Z =V ( f1, . . . , fr) for homo-
geneous polynomials f1, . . . , fr of the same degree d in the Segre coordinates of Pn×Pm, i. e. for
bihomogeneous polynomials of degree d in both the coordinates x0, . . . ,xn of Pn and y0, . . . ,ym of
Pm. Now consider a fixed point a ∈ Pm; we will determine if it is contained in the image π(Z). To
do this, let gi = fi( · ,a) ∈ K[x0, . . . ,xn] for i = 1, . . . ,r. Then

a /∈ π(Z) ⇔ there is no x ∈ Pn with (x,a) ∈ Z

⇔ Vp(g1, . . . ,gr) = /0

⇔
√
(g1, . . . ,gr) = (1) or

√
(g1, . . . ,gr) = (x0, . . . ,xn) (Proposition 6.22)

⇔ there are ki ∈ N with xki
i ∈ (g1, . . . ,gr) for all i

⇔ K[x0, . . . ,xn]k ⊂ (g1, . . . ,gr) for some k ∈ N,

where as usual K[x0, . . . ,xn]k denotes the homogeneous degree-k part of the polynomial ring as in
Definition 6.6, and the direction “⇒” of the last equivalence follows by setting k = k0 + · · ·+ kn.
Of course, the last condition can only be satisfied if k ≥ d and is equivalent to K[x0, . . . ,xn]k =
(g1, . . . ,gr)k. As (g1, . . . ,gr) = {h1g1 + · · ·+ hrgr : h1, . . . ,hr ∈ K[x0, . . . ,xn]} this is the same as
saying that the K-linear map

Fk : (K[x0, . . . ,xn]k−d)
r→ K[x0, . . . ,xn]k, (h1, . . . ,hr) 7→ h1g1 + · · ·hrgr

is surjective, i. e. has rank dimK K[x0, . . . ,xn]k =
(n+k

k

)
for some k ≥ d. This in turn is the case if

and only if at least one of the minors of size
(n+k

k

)
of a matrix for some Fk is non-zero. But these

minors are polynomials in the coefficients of g and thus in the coordinates of a, and consequently
the non-vanishing of one of these minors is an open condition in the Zariski topology of Pm.

Hence the set of all a ∈ Pm with a /∈ π(Z) is open, which means that π(Z) is closed. �

Remark 7.19. Let us look at Proposition 7.18 from an algebraic point of view. We start with some
equations f1(x,y) = · · · = fr(x,y) = 0 in two sets of variables x = (x0, . . . ,xn) and y = (y0, . . . ,ym)
and ask for the image of their common zero locus under the projection map (x,y) 7→ x. The equations
satisfied on this image are precisely the equations in x alone that can be derived from the given ones
f1(x,y) = · · · = fr(x,y) = 0 in x and y. In other words, we want to eliminate the variables y from
the given system of equations. The statement of Proposition 7.18 is therefore sometimes called the
main theorem of elimination theory.

Corollary 7.20. The projection map π : Pn×Y → Y is closed for any variety Y .

Proof. Let us first show the statement for an affine variety Y ⊂ Am. Then we can regard Y as a
locally closed subvariety of Pm via the embedding Am ⊂ Pm. Now let Z ⊂ Pn×Y be closed, and let
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Z be its closure in Pn×Pm. If π : Pn×Pm→ Pm is the projection map then π(Z) is closed in Pm by
Proposition 7.18, and thus

π(Z) = π(Z∩ (Pn×Y )) = π(Z)∩Y

is closed in Y .

If Y is any variety we can cover it by affine open subsets. As the condition that a subset is closed
can be checked by restricting it to the elements of an open cover, the statement follows from the
corresponding one for the affine open patches that we have just shown. �

It is in fact this property of Corollary 7.20 that captures the classical idea of compactness. Let us
therefore give it a name:

Definition 7.21 (Complete varieties). A variety X is called complete if the projection map π : X ×
Y → Y is closed for any variety Y .

Example 7.22.

(a) Pn is complete by Corollary 7.20.

(b) Any closed subvariety X ′ of a complete variety X is complete: if Z ⊂ X ′×Y is closed then
Z is also closed in X ×Y , and hence its image under the second projection to Y is closed as
well. In particular, by (a) this means that every projective variety is complete.

(c) A1 is not complete: as in the picture below on the left, the image π(Z) of the closed subset
Z =V (x1x2−1)⊂ A1×A1 under the second projection is A1\{0}, which is not closed.

ππ

Z Z

A1A1×A1 A1 P1×A1

The geometric reason for this is that A1 is missing a point at infinity: if we replace A1 by P1

as in the picture on the right there is an additional point in the closure Z of Z ⊂ A1×A1 in
P1×A1; the image of this point under π fills the gap and makes π(Z) a closed set. Intuitively,
one can think of the name “complete” as coming from the geometric idea that it contains all
the “points at infinity” that are missing in affine varieties.

Remark 7.23. There are complete varieties that are not projective, but this is actually quite hard to
show — we will certainly not meet such an example in this course. So for practical purposes you
can usually assume that the terms “projective variety” and “complete variety” are synonymous.

In any case, complete varieties now have the property that we were aiming for:

Corollary 7.24. Let f : X → Y be a morphism of varieties. If X is complete then its image f (X) is
closed in Y .

Proof. By Proposition 5.21 (a) the graph Γ f ⊂ X ×Y is closed. But then f (X) = π(Γ f ) for the
projection map π : X×Y → Y , which is closed again since X is complete. �

Let us conclude this chapter with two applications of this property.

Corollary 7.25. Let X be a connected complete variety. Then OX (X) = K, i. e. every global regular
function on X is constant.
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Proof. A global regular function ϕ ∈ OX (X) determines a morphism ϕ : X → A1. By extension of
the target we can consider this as a morphism ϕ : X→ P1 =A1∪{∞} whose image ϕ(X)⊂ P1 does
not contain the point ∞. But ϕ(X) is also closed by Corollary 7.24 since X is complete, and hence
it must be a finite set since these are the only closed proper subsets of P1. Moreover, Exercise 2.21
(b) implies that ϕ(X) is connected since X is. Altogether this means that ϕ(X) is a single point, i. e.
that ϕ is constant. �

Remark 7.26. Corollary 7.25 is another instance of a result that has a counterpart in complex anal-
ysis: it can be shown that every holomorphic function on a connected compact complex manifold is
constant.

12

Construction 7.27 (Veronese embedding). Choose n,d ∈ N>0, and let f0, . . . , fN ∈ K[x0, . . . ,xn]

for N =
(n+d

n

)
− 1 be the set of all monomials of degree d in the variables x0, . . . ,xn, in any order.

Consider the map
F : Pn→ PN , x 7→ ( f0(x) : · · · : fN(x)).

By Lemma 7.5 this is a morphism (note that the monomials xd
0 , . . . ,x

d
n , which cannot be simultane-

ously zero, are among the f0, . . . , fN). So by Corollary 7.24 the image X = F(Pn) is a projective
variety.

We claim that F : Pn→ X is an isomorphism. All we have to do to prove this is to find an inverse
morphism. This is not hard: we can do this on an affine open cover, so let us e. g. consider the open
subset where x0 6= 0, i. e. xd

0 6= 0. On this set we can pass to affine coordinates and set x0 = 1. The

inverse morphism is then given by xi =
xixd−1

0
xd

0
for i = 1, . . . ,n, which is a quotient of two degree-d

monomials.

The morphism F is therefore an isomorphism and thus realizes Pn as a subvariety X of PN . It
is usually called the degree-d Veronese embedding; the coordinates on PN are called Veronese
coordinates of Pn ∼= X . Of course, this embedding can also be restricted to any projective variety
Y ⊂ Pn and then gives an isomorphism by degree-d polynomials between Y and a projective variety
in PN .

The importance of the Veronese embedding lies in the fact that degree-d polynomials in the coordi-
nates of Pn are translated into linear polynomials in the Veronese coordinates. An example where
this is useful will be given in Corollary 7.30.

Example 7.28.
(a) For d = 1 the Veronese embedding of Pn is just the identity Pn→ Pn.

(b) For n = 1 the degree-d Veronese embedding of P1 in Pd is

F : P1→ Pd , (x0 :x1) 7→ (xd
0 :xd−1

0 x1 : · · · :x0xd−1
1 :xd

1).

In the d = 2 case we have already seen in Example 7.6 (c) that this is an isomorphism.

Exercise 7.29. Let F : Pn→ PN be the degree-d Veronese embedding as in Construction 7.27, with
N =

(n+d
n

)
− 1. By applying Corollary 7.24 we have seen already that the image X = F(Pn) is a

projective variety. Find explicit equations describing X , i. e. generators for a homogeneous ideal I
such that X =V (I).

Corollary 7.30. Let X ⊂ Pn be a projective variety, and let f ∈ S(X) be a non-zero homogeneous
element. Then X\V ( f ) is an affine variety.

Proof. If f = x0 this is just Proposition 7.2. For a general linear polynomial f the statement follows
from this after a projective automorphism as in Example 7.6 (a) that takes f to x0, and if f is of
degree d > 1 we can reduce the claim to the linear case by first applying the degree-d Veronese
embedding of Construction 7.27. �

Exercise 7.31. Recall from Example 7.6 (d) that a conic in P2 over a field of characteristic not equal
to 2 is the zero locus of an irreducible homogeneous polynomial of degree 2 in K[x0,x1,x2].
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(a) Considering the coefficients of such polynomials, show that the set of all conics in P2 can be
identified with an open subset U of the projective space P5.

(b) Let a ∈ P2. Show that the subset of U consisting of all conics passing through a is the zero
locus of a linear equation in the homogeneous coordinates of U ⊂ P5.

(c) Given 5 points in P2, no three of which lie on a line, show that there is a unique conic in P5

passing through all these points.

Exercise 7.32. Let X ⊂ P3 be the degree-3 Veronese embedding of P1, i. e. the image of the mor-
phism

P1→ P3, (x0 :x1) 7→ (y0 :y1 :y2 :y3) = (x3
0 :x2

0x1 :x0x2
1 :x3

1).

Moreover, let a = (0:0 :1 :0) ∈ P3 and L =V (y2)⊂ P3, and consider the projection f from a to L as
in Example 7.6 (b).

(a) Show that f is a morphism.

(b) Determine an equation of the curve f (X) in L∼= P2.

(c) Is f : X → f (X) an isomorphism onto its image?


