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5. Varieties

In this chapter we will now finally introduce the main objects of study in this class, the so-called
varieties. As already announced in Example 4.18 they will be spaces that are not necessarily affine
varieties themselves, but that can be covered by affine varieties. This idea is completely analogous
to the definition of manifolds: recall that to construct them one first considers open subsets of Rn

that are supposed to form the patches of your space, and then defines a manifold to be a topological
space that looks locally like these patches. In our algebraic case we can say that the affine varieties
form the basic patches of the spaces that we want to consider, and that general varieties are then
spaces that look locally like affine varieties.
One of the main motivations for this generalization is that in the classical topology affine varieties
over C are never bounded, and hence never compact, unless they are a finite set (see Exercise 2.34
(c)). As compact spaces are usually better-behaved than non-compact ones, it is therefore desirable
to have a method to compactify an affine variety by “adding some points at infinity”. Technically, this
can be achieved by gluing it to other affine varieties that contain the points at infinity. The complete
space can then obviously be covered by affine varieties. We will see this explicitly in Examples 5.5
(a) and 5.6, and much more generally when we construct projective varieties in Chapters 6 and 7.
So let us start by defining spaces that can be covered by affine varieties. They are called prevarieties
since we will want to impose another condition on them later in Definition 5.19, which will then
make them into varieties.

Definition 5.1 (Prevarieties). A prevariety is a ringed space X that has a finite open cover by affine
varieties. Morphisms of prevarieties are simply morphisms as ringed spaces. In accordance with
Definition 3.1, the elements of OX (U) for an open subset U ⊂ X will be called regular functions
on U .

Remark 5.2. Note that the open cover in Definition 5.1 is not part of the data needed to specify a
prevariety — it is just required that such a cover exists. Any open subset of a prevariety that is an
affine variety is called an affine open set.

Example 5.3. Of course, any affine variety is a prevariety. More generally, every open subset of an
affine variety is a prevariety: it has a finite open cover by distinguished open subsets by Remark 3.9
(b), and these are affine open sets by Proposition 4.17.

The basic way to construct new prevarieties is to glue them together from previously known patches.
For simplicity, let us start with the case when we only have two spaces to glue.

Construction 5.4 (Gluing two prevarieties). Let X1,X2 be two prevarieties (e. g. affine varieties),
and let U1,2 ⊂ X1 and U2,1 ⊂ X2 be non-empty open subsets. Moreover, let f : U1,2 →U2,1 be an
isomorphism. Then we can define a prevariety X obtained by gluing X1 and X2 along f , as shown in
the picture below:

glue
U1,2 U2,1

f

X1 X2 X

• As a set, the space X is just the disjoint union X1∪X2 modulo the equivalence relation given
by a ∼ f (a) and f (a) ∼ a for all a ∈U1,2 (in addition to a ∼ a for all a ∈ X1 ∪X2). Note
that there are then natural embeddings i1 : X1 → X and i2 : X2 → X that map a point to its
equivalence class in X1∪X2.
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• As a topological space, we call a subset U ⊂ X open if i−1
1 (U) ⊂ X1 and i−1

2 (U) ⊂ X2 are
open. In topology, this is usually called the quotient topology of the two maps i1 and i2.

• As a ringed space, we define the structure sheaf OX by

OX (U) = {ϕ : U → K : i∗1ϕ ∈ OX1(i
−1
1 (U)) and i∗2ϕ ∈ OX2(i

−1
2 (U))}

for all open subsets U ⊂ X , where i∗1 and i∗2 denote the pull-backs of Definition 4.3 (a).
Intuitively, this means that a function on the glued space is regular if it is regular when
restricted to both patches. It is obvious that this defines a sheaf on X .

With this construction it is checked immediately that the images of i1 and i2 are open subsets of X
that are isomorphic to X1 and X2. We will often drop the inclusion maps from the notation and say
that X1 and X2 are open subsets of X . Since X1 and X2 can be covered by affine open subsets, the
same is true for X , and thus X is a prevariety.

Example 5.5. As the simplest example of the above gluing construction, let X1 = X2 = A1 and
U1,2 = U2,1 = A1\{0} in the notation of Construction 5.4. We consider two different choices of
gluing isomorphism f : U1,2→U2,1:

(a) Let f : U1,2→U2,1, x 7→ 1
x . By construction, the affine line X1 = A1 is an open subset of X .

Its complement X\X1 = X2\U2,1 is a single point that corresponds to 0 in X2 and therefore
to “∞ = 1

0 ” in the coordinate of X1. Hence we can think of the glued space X as A1∪{∞},
and thus as a “compactification” of the affine line. We denote it by P1; it is a special case of
the projective spaces that we will introduce in Chapter 6 (see Exercise 7.3 (a)).
In the case K = C the resulting space X is just the Riemann sphere C∪ {∞}. Its subset
of real points is shown in the picture below (with the dotted arrows indicating the gluing
isomorphism), it is homeomorphic to a circle.
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As an example of gluing morphisms as in Lemma 4.6, the morphisms

X1→ X2 ⊂ P1, x 7→ x and X2→ X1 ⊂ P1, x 7→ x

(that correspond to a reflection across the horizontal axis in the picture above) glue together
to a single morphism P1→ P1 that can be thought of as x 7→ 1

x in the interpretation of P1 as
A1∪{∞}.

(b) Let f : U1,2 → U2,1 be the identity map. Then the space X obtained by gluing X1 and X2
along f is shown in the picture below, it is “an affine line with two zero points”.

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3
X1

X2

glue

X
0

0

Obviously this is a somewhat weird space. Speaking in analytic terms in the case K = C, a
sequence of points tending to zero would have two possible limits in X , namely the two zero
points. Also, as in (a) the two morphisms

X1→ X2 ⊂ X , x 7→ x and X2→ X1 ⊂ X , x 7→ x
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glue again to a morphism g : X → X ; this time it exchanges the two zero points and thus
leads to the set {x ∈ X : g(x) = x} = A1\{0} not being closed in X , although it is given by
an equality of continuous maps.

Usually we want to exclude such spaces from the objects we consider. In Definition 5.19 we
will therefore impose an additional condition on our prevarieties that ensures that the above
phenomena do not occur (see e. g. Proposition 5.21 (b)).

Example 5.6. Consider again the complex affine curve

X = {(x1,x2) ∈ A2
C : x2

2 = (x1−1)(x1−2) · · ·(x1−2n)}

of Example 0.1. We have already seen in the introduction that X can (and should) be “compactified”
by adding two points at infinity, corresponding to the limit x1→ ∞ and the two possible values for
x2. Let us now construct this compactified space rigorously as a prevariety.

To be able to add a limit point “x1 = ∞” to our space, let us make a coordinate change x̃1 =
1
x1

(where
x1 6= 0), so that the equation of the curve becomes

x2
2x̃2n

1 = (1− x̃1)(1−2x̃1) · · ·(1−2nx̃1).

If we make an additional coordinate change x̃2 = x2x̃n
1, this becomes

x̃2
2 = (1− x̃1)(1−2x̃1) · · ·(1−2nx̃1).

In these coordinates we can now add our two points at infinity, as they correspond to x̃1 = 0 (and
therefore x̃2 =±1).

Hence the “compactified curve” of Example 0.1 can be constructed as the prevariety obtained by
gluing the two affine varieties

X1 = {(x1,x2) ∈ A2
C : x2

2 = (x1−1)(x1−2) · · ·(x1−2n)}= X

and X2 = {(x̃1, x̃2) ∈ A2
C : x̃2

2 = (1− x̃1)(1−2x̃1) · · ·(1−2nx̃1)}

along the isomorphism

f : U1,2→U2,1, (x1,x2) 7→ (x̃1, x̃2) =

(
1
x1
,

x2

xn
1

)
with inverse

f−1 : U2,1→U1,2, (x̃1, x̃2) 7→ (x1,x2) =

(
1
x̃1
,

x̃2

x̃n
1

)
,

where U1,2 = {(x1,x2) : x1 6= 0} ⊂ X1 and U2,1 = {(x̃1, x̃2) : x̃1 6= 0} ⊂ X2.

Let us now turn to the general construction to glue more than two spaces together. In principle this
works in the same way as in Construction 5.4; we just have an additional technical compatibility
condition on the gluing isomorphisms.

Construction 5.7 (General gluing construction). For a finite index set I let Xi be a prevariety for all
i ∈ I. Moreover, as in the picture below suppose that for all i, j ∈ I with i 6= j we are given open
subsets Ui, j ⊂ Xi and isomorphisms fi, j : Ui, j→U j,i such that for all distinct i, j,k ∈ I we have

(a) f j,i = f−1
i, j ;

(b) Ui, j ∩ f−1
i, j (U j,k)⊂Ui,k, and f j,k ◦ fi, j = fi,k on Ui, j ∩ f−1

i, j (U j,k).
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In analogy to Construction 5.4 we can then define a set X by taking the disjoint union of all Xi for
i ∈ I, modulo the equivalence relation a∼ fi, j(a) for all a ∈Ui, j ⊂ Xi (in addition to a∼ a for all a).
In fact, the conditions (a) and (b) above ensure precisely that this relation is symmetric and transitive,
respectively. It is obvious that we can now make X into a prevariety by defining its topology and
structure sheaf in the same way as in Construction 5.4. We call it the prevariety obtained by gluing
the Xi along the isomorphisms fi, j.

Exercise 5.8. Show:

(a) Every morphism f : A1\{0}→ P1 can be extended to a morphism A1→ P1.

(b) Not every morphism f : A2\{0}→ P1 can be extended to a morphism A2→ P1.

(c) Every morphism f : P1→ A1 is constant.

Exercise 5.9.
(a) Show that every isomorphism f : P1→ P1 is of the form f (x) = ax+b

cx+d for some a,b,c,d ∈ K,
where x is an affine coordinate on A1 ⊂ P1.

(b) Given three distinct points a1,a2,a3 ∈ P1 and three distinct points b1,b2,b3 ∈ P1, show that
there is a unique isomorphism f : P1→ P1 such that f (ai) = bi for i = 1,2,3.

Exercise 5.10. If X and Y are affine varieties we have seen in Proposition 3.10 and Corollary 4.8
that there is a one-to-one correspondence

{morphisms X → Y}←→ {K-algebra homomorphisms OY (Y )→ OX (X)}
f 7−→ f ∗.

Does this statement still hold

(a) if X is an arbitrary prevariety (but Y is still affine);

(b) if Y is an arbitrary prevariety (but X is still affine)?
07

We have just seen how we can construct prevarieties by gluing affine varieties. For the rest of the
chapter let us now study some of their basic properties. Of course, all topological concepts (like
connectedness, irreducibility, and dimension) carry over immediately to the case of prevarieties.
The irreducible decomposition of Proposition 2.15 is also applicable since a prevariety is always
Noetherian:

Exercise 5.11. Prove:

(a) Any prevariety is a Noetherian topological space.

(b) If X = X1∪·· ·∪Xm is the irreducible decomposition of a prevariety X , then the local dimen-
sion codimX{a} of X at any point a ∈ X is

codimX{a}= max{dimXi : a ∈ Xi}.
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(c) The statement of (a) would be false if we had defined a prevariety to be a ringed space that
has an arbitrary (not necessarily finite) open cover by affine varieties.

As for properties of prevarieties involving the structure as ringed spaces, we should first of all figure
out to what extent their subsets, images and inverse images under morphisms, and products are again
prevarieties.

Construction 5.12 (Open and closed subprevarieties). Let X be a prevariety.

(a) Let U ⊂ X be an open subset. Then U is again a prevariety (as usual with the structure
sheaf OU = OX |U as in Definition 4.1 (c)): as X can be covered by affine varieties, U can
be covered by open subsets of affine varieties, which themselves can be covered by affine
varieties by Example 5.3.

We call U (with this structure as a prevariety) an open subprevariety of X .

(b) The situation is more complicated for a closed subset Y ⊂ X : as an open subset U of Y is in
general not open in X we cannot define a structure sheaf on Y by simply setting OY (U) to be
OX (U). Instead, we define OY (U) to be the K-algebra of functions U → K that are locally
restrictions of functions on X , or formally

OY (U) := {ϕ : U → K : for all a ∈U there are an open neighborhood V of a in X

and ψ ∈ OX (V ) with ϕ = ψ on U ∩V}.
By the local nature of this definition it is obvious that OY is a sheaf, thus making Y into a
ringed space. In fact, we will check in Exercise 5.13 that Y is a prevariety in this way. We
call it a closed subprevariety of X .

(c) If U is an open and Y a closed subset of X , then U ∩Y is open in Y and closed in U , and
thus we can give it the structure of a prevariety by combining (a) with (b) — in fact, one
can check that it does not matter whether we consider it to be an open subprevariety of
Y or a closed subprevariety of U . Intersections of open and closed subprevarieties (with
this structure of a ringed space) are called locally closed subprevarieties. For example,
{(x1,x2) ∈ A2 : x1 = 0,x2 6= 0} is a locally closed subprevariety of A2.

The reason why we consider all these seemingly special cases is that for a
general subset of X there is no way to make it into a prevariety in a natural
way. Even worse, the notions of open and closed subprevarieties do not mix
very well: whereas a finite union of open (resp. closed) subprevarieties is
of course again an open (resp. closed) subprevariety, the same statement is
not true if we try to combine open with closed spaces: in X = A2 the union
of the open subprevariety U = A1× (A1\{0}) and the closed subprevari-
ety Y = {0} as in the picture on the right does not have a natural structure
as a subprevariety of A2 (since it does not look like an affine variety in a
neighborhood of the origin).

U ∪Y

Exercise 5.13. Let Y be a closed subset of a prevariety X , considered as a ringed space with the
structure sheaf of Construction 5.12 (b). Prove for every affine open subset U ⊂ X that the ringed
space U∩Y (considered as an open subset of the ringed space Y as in Definition 4.1 (c)) is isomorphic
to the affine variety U ∩Y (considered as an affine subvariety of the affine variety U).

In particular, this shows that Construction 5.12 (b) makes Y into a prevariety, and that this prevariety
is isomorphic to the affine variety Y if X is itself affine (and thus Y an affine subvariety of X).

Remark 5.14 (Properties of closed subprevarieties). By Construction 5.12 (b), a regular function on
(an open subset of) a closed subprevariety Y of a prevariety X is locally the restriction of a regular
function on X . Hence:

(a) The inclusion map Y → X is a morphism (it is clearly continuous, and regular functions on
X are by construction still regular when restricted to Y ).
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(b) If f : Z→ X is a morphism from a prevariety Z such that f (Z)⊂ Y then we can also regard
f as a morphism from Z to Y (the pull-back of a regular function on Y by f is locally also a
pull-back of a regular function on X , and hence regular as f : Z→ X is a morphism).

Remark 5.15 (Images and inverse images of subprevarieties). Let f : X → Y be a morphism of
prevarieties.

(a) The image of an open or closed subprevariety of X under f is not necessarily an open or
closed subprevariety of Y . For example, for the affine variety X = V (x2x3− 1)∪{0} ⊂ A3

and the projection morphism f : X → A2 onto the first two coordinates the image f (X) is
exactly the space A1× (A1\{0})∪{0} of Construction 5.12 which is neither an open nor a
closed subprevariety of A2.

As a substitute, one can often consider the graph of f instead of its image, see Proposition
5.21 (a).

(b) By continuity, the inverse image of an open (resp. closed) subprevariety of Y under f is
clearly again an open (resp. closed) subprevariety of X .

As for the product X ×Y of two prevarieties X and Y , the natural idea to construct this space as
a prevariety would be to choose finite affine open covers {Ui : i ∈ I} and {Vj : j ∈ J} of X and Y ,
respectively, and then glue the affine product varieties Ui×Vj using Construction 5.7. If we did this
directly however, we would still have to prove that the resulting space does not depend on the chosen
affine covers. The best way out of this trouble is to define the product prevariety by a universal
property analogous to Proposition 4.10. This will then ensure the uniqueness of the product, so that
it suffices to prove its existence by gluing affine patches.

Definition 5.16 (Products of prevarieties). Let X and Y be prevarieties. A
product of X and Y is a prevariety P together with morphisms πX : P→ X
and πY : P→ Y satisfying the following universal property: for any two
morphisms fX : Z→ X and fY : Z→Y from another prevariety Z there is a
unique morphism f : Z→ P such that πX ◦ f = fX and πY ◦ f = fY .

As in the affine case in Proposition 4.10, this means that giving a morphism
to the product P is the same as giving a morphism to each of the factors X
and Y . Y

πY

P
πX

f
Z

fY

fX

X

Proposition 5.17 (Existence and uniqueness of products). Any two prevarieties X and Y have a
product. Moreover, this product P with morphisms πX : P→ X and πY : P→ Y is unique up to
unique isomorphism: if P′ with π ′X : P′ → X and π ′Y : P′ → Y is another product there is a unique
isomorphism f : P′→ P such that πX ◦ f = π ′X and πY ◦ f = π ′Y .

We will denote this product simply by X×Y .

Proof. To show existence we glue the affine products of Proposition 4.10 using Construction 5.7.
More precisely, let X and Y be covered by affine varieties Ui and Vj for i ∈ I and j ∈ J, respectively.
Use Construction 5.7 to glue the affine products Ui×Vj, where we glue any two such products Ui×Vj
and Ui′×Vj′ along the identity isomorphism of the common open subset (Ui∩Ui′)× (Vj∩Vj′). Note
that these isomorphisms obviously satisfy the conditions (a) and (b) of the construction, and that the
resulting glued space P is just the usual product X ×Y as a set. Moreover, using Lemma 4.6 we
can glue the affine projection morphisms Ui×Vj → Ui ⊂ X and Ui×Vj → Vj ⊂ Y to morphisms
πX : P→ X and πY : P→ Y .

Let us now check the universal property of Definition 5.16 for our construction. If fX : Z→ X and
fY : Z → Y are any two morphisms from a prevariety Z, the only way to achieve πX ◦ f = fX and
πY ◦ f = fY is to define f : Z → P as f (z) = ( fX (z), fY (z)), where we identify P set-theoretically
with X ×Y . By Lemma 4.6, we can check that this is a morphism by restricting it to an affine open
cover. If we first cover Z by the open subsets f−1

X (Ui)∩ f−1
Y (Vj) for all i ∈ I and j ∈ J, and these

subsets then by affine open subsets by Construction 5.12 (a), we may assume that every affine open



44 Andreas Gathmann

subset in our open cover of Z is mapped to a single (and hence affine) patch Ui×Vj. But after this
restriction to the affine case we know by Proposition 4.10 that f is a morphism.

To show uniqueness, assume that P′ with π ′X : P′→ X and π ′Y : P′→ Y is another product. By the
universal property of P applied to the morphisms π ′X : P′→ X and π ′Y : P′→ Y , we see that there is
a unique morphism f : P′ → P with πX ◦ f = π ′X and πY ◦ f = π ′Y . Reversing the roles of the two
products, we get in the same way a unique morphism g : P→ P′ with π ′X ◦g = πX and π ′Y ◦g = πY .

Finally, apply the universal property of P to the two morphisms πX : P→ X and πY : P→ Y . Since
both

πX ◦ ( f ◦g) = π ′X ◦g = πX

πY ◦ ( f ◦g) = π ′Y ◦g = πY
and

πX ◦ idP = πX

πY ◦ idP = πY

the uniqueness part of the universal property shows that f ◦ g = idP. In the same way we see that
g◦ f = idP′ , so that f is an isomorphism. �

Remark 5.18. Again, a check might be in order that our constructions were consistent: let X and
Y be prevarieties, and let X ′ ⊂ X and Y ′ ⊂ Y be closed subprevarieties. Then we have defined two
structures of prevarieties on the set-theoretic product X ′×Y ′: the closed subprevariety structure of
X ′×Y ′ in X×Y as in Construction 5.12 (b), and the product prevariety structure of Definition 5.16.
As expected, these two structures agree: in fact, by Definition 5.16 together with Remark 5.14 the
set-theoretic identity map is a morphism between these two structures in both ways.

Finally, as already announced let us now impose a condition on prevarieties that excludes such un-
wanted spaces as the affine line with two zero points of Example 5.5 (b). In the theory of manifolds,
this is usually done by requiring that the topological space satisfies the so-called Hausdorff property,
i. e. that every two distinct points have disjoint open neighborhoods. This is obviously not satisfied
in our case, since the two zero points do not have such disjoint open neighborhoods.

However, in the Zariski topology the Hausdorff property does not make too much sense, as non-
empty open subsets of an irreducible space can never be disjoint by Remark 2.18 (a). So we need
a suitable replacement for this condition that captures our geometric idea of the absence of doubled
points also in the Zariski topology.

The solution to this problem is inspired by a proposition in general topology stating that the Haus-
dorff property of a topological space X is equivalent to the condition that the so-called diagonal
∆X = {(x,x) : x ∈ X} is closed in X ×X (with the product topology). The picture below illustrates
this in the case when X is the affine line with two zero points a and b: the product X ×X then
contains four zero points (a,a), (a,b), (b,a), and (b,b), but by definition only two of them, namely
(a,a) and (b,b), are in ∆X . Hence the diagonal is not closed: the other two zero points are also
contained in its closure.

X

a

b

∆X

X×Xa
b

a
b

Of course, this equivalence does not really help us directly in algebraic geometry since we do not
use the product topology on X ×X . But the geometric idea to detect doubled points shown in the
picture above on the right is still valid in the Zariski topology — and so we will just use the diagonal
condition to define the property that we want:

Definition 5.19 (Varieties).
(a) A prevariety X is called a variety (or separated) if the diagonal

∆X := {(x,x) : x ∈ X}
is closed in X×X .
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(b) Analogously to Definition 2.30 (b), a variety of pure dimension 1 or 2 is called a curve resp.
surface. If X is a pure-dimensional variety and Y a pure-dimensional subvariety of X with
dimY = dimX−1 we say that Y is a hypersurface in X .

So by the argument given above, the affine line with two zero points of Example 5.5 (b) is not a
variety. In contrast, the following lemma shows that most prevarieties that we will meet are also
varieties. From now on we will almost always assume that our spaces are separated, and thus talk
about varieties instead of prevarieties.

Lemma 5.20.
(a) Affine varieties are varieties.

(b) Open, closed, and locally closed subprevarieties of varieties are varieties. We will therefore
simply call them open, closed, and locally closed subvarieties, respectively.

Proof.

(a) If X ⊂ An then ∆X =V (x1− y1, . . . ,xn− yn)⊂ X×X , where x1, . . . ,xn and y1, . . . ,yn are the
coordinates on the two factors, respectively. Hence ∆X is closed.

(b) If Y ⊂ X is an open, closed, or locally closed subvariety, consider the inclusion morphism i :
Y ×Y → X×X (which exists by the universal property of Definition 5.16). As ∆Y = i−1(∆X )
and ∆X is closed by assumption, ∆Y is closed as well by the continuity of i. �

For varieties, we have the following additional desirable properties in addition to the ones for preva-
rieties:

Proposition 5.21 (Properties of varieties). Let f ,g : X → Y be morphisms of prevarieties, and as-
sume that Y is a variety.

(a) The graph Γ f := {(x, f (x)) : x ∈ X} is closed in X×Y .

(b) The set {x ∈ X : f (x) = g(x)} is closed in X.

Proof.

(a) By the universal property of products of prevarieties as in Definition 5.16 there is a morphism
( f , id) : X ×Y → Y ×Y, (x,y) 7→ ( f (x),y). As Y is a variety we know that ∆Y is closed, and
hence so is Γ f = ( f , id)−1(∆Y ) by continuity.

(b) Similarly to (a), the given set is the inverse image of the diagonal ∆Y under the morphism
X → Y ×Y, x 7→ ( f (x),g(x)). Hence it is closed again since ∆Y is closed. �

Exercise 5.22. Show that the space P1 of Example 5.5 (a) is a variety.

Exercise 5.23. Let X and Y be prevarieties. Show:

(a) If X and Y are varieties then so is X×Y .

(b) If X and Y are irreducible then so is X×Y .

Exercise 5.24. Use diagonals to prove the following statements:

(a) The intersection of any two affine open subsets of a variety is again an affine open subset.

(b) If X ,Y ⊂ An are two pure-dimensional affine varieties then every irreducible component of
X ∩Y has dimension at least dimX +dimY −n.

Exercise 5.25. In Exercise 2.33 (b) we have seen that the dimension of a dense open subset U of a
topological space X need not be the same as that of X .

However, show now that dimU = dimX holds in this situation if X is a variety.
08


