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3. The Sheaf of Regular Functions

After having defined affine varieties, our next goal must be to say what kind of maps between them
we want to consider as morphisms, i. e. as “nice maps preserving the structure of the variety”. In
this chapter we will look at the easiest case of this: the so-called regular functions, i. e. maps to the
ground field K =A1. They should be thought of as the analogue of continuous functions in topology,
differentiable functions in real analysis, or holomorphic functions in complex analysis.

So what kind of nice “algebraic” functions should we consider on an affine variety X? First of all,
as in the case of continuous or differentiable functions, we should not only aim for a definition of
functions on all of X , but also on an arbitrary open subset U of X . In contrast to the coordinate
ring A(X) of polynomial functions on the whole space X , this allows us to consider quotients g

f of
polynomial functions f ,g ∈ A(X) with f 6= 0 as well, since we can exclude the zero set V ( f ) of the
denominator from the domain of definition of the function.

But taking our functions to be quotients of polynomials turns out to be a little bit too restrictive. The
problem with this definition would be that it is not local : recall that the condition on a function to
be continuous or differentiable is local in the sense that it can be checked at every point, with the
whole function then being continuous or differentiable if it has this property at every point. Being a
quotient of polynomials however is not a condition of this type — we would have to find one global
representation as a quotient of polynomials that is then valid at every point. Imposing such non-local
conditions is usually not a good thing to do, since it would be hard in practice to find the required
global representations of the functions.

The way out of this problem is to consider functions that are only locally quotients of polynomials,
i. e. functions ϕ : U → K such that each point a ∈U has a neighborhood in U in which ϕ = g

f holds
for two polynomials f and g (that may depend on a). In fact, we will see in Example 3.5 that passing
from global to local quotients of polynomials really makes a difference. So let us now give the
corresponding formal definition of regular functions.

Definition 3.1 (Regular functions). Let X be an affine variety, and let U be an open subset of X . A
regular function on U is a map ϕ : U → K with the following property: for every a ∈U there are
polynomial functions f ,g ∈ A(X) with f (x) 6= 0 and

ϕ(x) =
g(x)
f (x)

for all x in an open subset Ua with a ∈Ua ⊂U . The set of all such regular functions on U will be
denoted OX (U).

Notation 3.2. We will usually write the condition “ϕ(x) = g(x)
f (x) for all x ∈ Ua” of Definition 3.1

simply as “ϕ = g
f on Ua”. This is certainly an intuitive notation that should not lead to any con-

fusion. However, a word of warning in particular for those of you who know commutative algebra
already: this also means that (unless stated otherwise) the fraction g

f of two elements of A(X) will
always denote the pointwise quotient of the two corresponding polynomial functions — and not the
algebraic concept of an element in a localized ring as introduced later in Construction 3.12.

Remark 3.3 (OX (U) as a ring and K-algebra). It is obvious that the set OX (U) of regular functions
on an open subset U of an affine variety X is a ring with pointwise addition and multiplication.
However, it has an additional structure: it is also a K-vector space since we can multiply a regular
function pointwise with a fixed scalar in K. In algebraic terms, this means that OX (U) is a K-algebra,
which is defined as follows.
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Definition 3.4 (K-algebras [G5, Definition 1.23 and Remark 1.24]).
(a) A K-algebra is a ring R that is at the same time a K-vector space such that the ring multipli-

cation is K-bilinear.

(b) For two K-algebras R and R′ a morphism (or K-algebra homomorphism) from R to R′ is a
map f : R→ R′ that is a ring homomorphism as well as a K-linear map.

Example 3.5 (Local 6= global quotients of polynomials). Consider the 3-dimensional affine variety
X =V (x1x4− x2x3)⊂ A4 and the open subset

U = X\V (x2,x4) = {(x1,x2,x3,x4) ∈ X : x2 6= 0 or x4 6= 0} ⊂ X .

Then

ϕ : U → K, (x1,x2,x3,x4) 7→

{ x1
x2

if x2 6= 0,
x3
x4

if x4 6= 0
(∗)

is a regular function on U : it is well-defined since the defining equation for X implies x1
x2

= x3
x4

whenever x2 6= 0 and x4 6= 0, and it is obviously locally a quotient of polynomials. But none of the
two representations in (∗) as quotients of polynomials can be used on all of U , since the first one does
not work e. g. at the point (0,0,0,1) ∈U , whereas the second one does not work at (0,1,0,0) ∈U .
Algebraically, this is just the statement that A(X) is not a unique factorization domain [G5, Definition
8.1] because of the relation x1x4 = x2x3.

In fact, one can show that there is also no other global representation of ϕ as a quotient of two
polynomials. We will not need this statement here, and so we do not prove it — we should just keep
in mind that representations of regular functions as quotients of polynomials will in general not be
valid on the complete domain of definition of the function.
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As a first result, let us prove the expected statement that zero loci of regular functions are always
closed in their domain of definition.

Lemma 3.6 (Zero loci of regular functions are closed). Let U be an open subset of an affine variety
X, and let ϕ ∈ OX (U) be a regular function on U. Then

V (ϕ) := {x ∈U : ϕ(x) = 0}
is closed in U.

Proof. By Definition 3.1 any point a ∈U has an open neighborhood Ua in U on which ϕ = ga
fa

for
some fa,ga ∈ A(X) (with fa nowhere zero on Ua). So the set

{x ∈Ua : ϕ(x) 6= 0}=Ua\V (ga)

is open in X , and hence so is their union over all a∈U , which is just U\V (ϕ). This means that V (ϕ)
is closed in U . �

Remark 3.7 (Identity Theorem for regular functions). A simple but remarkable consequence of
Lemma 3.6 is the following: let U ⊂ V be non-empty open subsets of an irreducible affine variety
X . If ϕ1,ϕ2 ∈ OX (V ) are two regular functions on V that agree on U , then they must agree on all
of V : the locus V (ϕ1−ϕ2) where the two functions agree contains U and is closed in V by Lemma
3.6, hence it also contains the closure U of U in V . But V = X by Remark 2.18 (b), hence V is
irreducible by Exercise 2.19 (b), which again by Remark 2.18 (b) means that the closure of U in V
is V . Consequently, we have ϕ1 = ϕ2 on V .

Note that this statement is not really surprising since the open subsets in the Zariski topology are
so big: over the ground field C, for example, it is also true in the classical topology that the closure
of U in V is V , and hence the equation ϕ1 = ϕ2 on V already follows from ϕ1|U = ϕ2|U by the
(classical) continuity of ϕ1 and ϕ2. The interesting fact here is that the very same statement holds in
complex analysis for holomorphic functions as well (or more generally, in real analysis for analytic
functions): two holomorphic functions on a (connected) open subset U ⊂ Cn must be the same if
they agree on any smaller open subset V ⊂U . This is called the Identity Theorem for holomorphic
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functions. In complex analysis this is a real theorem because the open subset V can be very small,
so the statement that the extension to U is unique is a lot more surprising than it is here in algebraic
geometry. Still this is an example of a theorem that is true in literally the same way in both algebraic
and complex geometry, although these two theories are quite different a priori. We will see another
case of this in Example 3.14.

Let us now go ahead and compute the K-algebras OX (U) in some cases. A particularly important
result in this direction can be obtained if U is the complement of the zero locus of a single polynomial
function f ∈ A(X). In this case it turns out that (in contrast to Example 3.5) the regular functions on
U can always be written with a single representation as a fraction, whose denominator is in addition
a power of f .

Definition 3.8 (Distinguished open subsets). For an affine variety X and a polynomial function
f ∈ A(X) on X we call

D( f ) := X\V ( f ) = {x ∈ X : f (x) 6= 0}
the distinguished open subset of f in X .

Remark 3.9. The distinguished open subsets of an affine variety X behave nicely with respect to
intersections and unions:

(a) For any f ,g∈A(X) we have D( f )∩D(g) =D( f g), since f (x) 6= 0 and g(x) 6= 0 is equivalent
to ( f g)(x) 6= 0 for all x ∈ X . In particular, finite intersections of distinguished open subsets
are again distinguished open subsets.

(b) Any open subset U ⊂ X is a finite union of distinguished open subsets: by definition of the
Zariski topology it is the complement of an affine variety, which in turn is the zero locus
of finitely many polynomial functions f1, . . . , fk ∈ A(X) by Proposition 1.21 (a). Hence we
have

U = X\V ( f1, . . . , fk) = D( f1)∪·· ·∪D( fk).

We can therefore think of the distinguished open subsets as the “smallest” open subsets of X — in
topology, the correct notion for this would be to say that they form a basis of the Zariski topology
on X .

Proposition 3.10 (Regular functions on distinguished open subsets). Let X be an affine variety, and
let f ∈ A(X). Then

OX (D( f )) =
{

g
f n : g ∈ A(X),n ∈ N

}
.

In particular, setting f = 1 we see that OX (X) = A(X), i. e. the regular functions on all of X are
exactly the polynomial functions.

Proof. The inclusion “⊃” is obvious: every function of the form g
f n for g∈ A(X) and n∈N is clearly

regular on D( f ).

For the opposite inclusion “⊂”, let ϕ : D( f ) → K be a regular function. By Definition 3.1 we
obtain for every a ∈ D( f ) a local representation ϕ = ga

fa
for some fa,ga ∈ A(X) which is valid on an

open neighborhood of a in D( f ). After possibly shrinking these neighborhoods we may assume by
Remark 3.9 (b) that they are distinguished open subsets D(ha) for some ha ∈ A(X). Moreover, we
can change the representations of ϕ by replacing ga and fa by gaha and faha (which does not change
their quotient on D(ha)) to assume that both ga and fa vanish on the complement V (ha) of D(ha).
Finally, this means that fa vanishes on V (ha) and does not vanish on D(ha) — so ha and fa have the
same zero locus, and we can therefore assume that ha = fa.

As a consequence, note that
ga fb = gb fa for all a,b ∈ D( f ) : (∗)

these two functions agree on D( fa)∩D( fb) since ϕ = ga
fa
= gb

fb
there, and they are both zero otherwise

since by our construction we have ga(x) = fa(x) = 0 for all x ∈V ( fa) and gb(x) = fb(x) = 0 for all
x ∈V ( fb).
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Now all our open neighborhoods cover D( f ), i. e. we have D( f ) =
⋃

a∈D( f ) D( fa). Passing to the
complement we obtain

V ( f ) =
⋂

a∈D( f )

V ( fa) =V
(
{ fa : a ∈ D( f )}

)
,

and thus by Proposition 1.21 (b)

f ∈ I(V ( f )) = I
(
V
(
{ fa : a ∈ D( f )}

))
=
√

( fa : a ∈ D( f )).

This means that f n = ∑a ka fa for some n ∈ N and ka ∈ A(X) for finitely many elements a ∈ D( f ).
Setting g := ∑a kaga, we then claim that ϕ = g

f n on all of D( f ): for all b ∈D( f ) we have ϕ = gb
fb

and

g fb = ∑
a

kaga fb
(∗)
= ∑

a
kagb fa = gb f n

on D( fb), and these open subsets cover D( f ). �

Remark 3.11. In the proof of Proposition 3.10 we had to use Hilbert’s Nullstellensatz again. In fact,
the statement is false if the ground field is not algebraically closed, as you can see from the example
of the function 1

x2+1 that is regular on all of A1
R, but not a polynomial function.

Proposition 3.10 is deeply linked to commutative algebra. Although we considered the quotients g
f n

in this statement to be fractions of polynomial functions, there is also a purely algebraic construction
of fractions in a (polynomial) ring — in the same way as we could regard the elements of A(X) either
geometrically as functions on X or algebraically as elements in the quotient ring K[x1, . . . ,xn]/I(X).
In these notes we will mainly use the geometric interpretation as functions, but it is still instructive
to see the corresponding algebraic construction. For reasons that will become apparent in Lemma
3.21 it is called localization; it is also one of the central topics in the “Commutative Algebra” class.

Construction 3.12 (Localizations [G5, Chapter 6]). Let R be a ring. A multiplicatively closed
subset of R is a subset S⊂ R with 1 ∈ S and f g ∈ S for all f ,g ∈ S.

For such a multiplicatively closed subset S we then consider pairs (g, f ) with g ∈ R and f ∈ S, and
call two such pairs (g, f ) and (g′, f ′) equivalent if there is an element h ∈ S with h(g f ′−g′ f ) = 0.
The equivalence class of a pair (g, f ) will formally be written as a fraction g

f , the set of all such
equivalence classes is denoted S−1R. Together with the usual rules for the addition and multiplication
of fractions, S−1R is again a ring. It is called the localization of R at S.

By construction we can think of the elements of S−1R as formal fractions, with the numerators in
R and the denominators in S. In Proposition 3.10 our set of denominators is S = { f n : n ∈ N} for a
fixed element f ∈ R; in this case the localization S−1R is usually written as R f . We will meet other
sets of denominators later in Lemma 3.21 and Exercise 9.8 (a).

So let us now prove rigorously that the K-algebra OX (D( f )) of Proposition 3.10 can also be inter-
preted algebraically as a localization.

Lemma 3.13 (Regular functions as localizations). Let X be an affine variety, and let f ∈ A(X). Then
OX (D( f )) is isomorphic (as a K-algebra) to the localized ring A(X) f .

Proof. There is an obvious K-algebra homomorphism

A(X) f → OX (D( f )),
g
f n 7→

g
f n

that interprets a formal fraction in the localization A(X) f as an actual quotient of polynomial func-
tions on D( f ). It is in fact well-defined: if g

f n = g′
f m as formal fractions in the localization A(X) f

then f k (g f m−g′ f n) = 0 in A(X) for some k ∈ N, which means that g f m = g′ f n and thus g
f n = g′

f m

as functions on D( f ).

The homomorphism is surjective by Proposition 3.10. It is also injective: if g
f n = 0 as a function on

D( f ) then g = 0 on D( f ) and hence f g = 0 on all of X , which means f (g ·1−0 · f n) = 0 in A(X)
and thus g

f n = 0
1 as formal fractions in the localization A(X) f . �
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Example 3.14 (Regular functions on A2\{0}). Probably the easiest case of an open subset of an
affine variety that is not a distinguished open subset is the complement U = A2\{0} of the origin in
the affine plane X = A2. We are going to see that

OA2(A2\{0}) = K[x1,x2]

and thus that OX (U) = OX (X), i. e. every regular function on U can be extended to X . Note that this
is another result that is true in the same way in complex analysis: there is a Removable Singularity
Theorem that implies that every holomorphic function on C2\{0} can be extended holomorphically
to C2.

To prove our claim let ϕ ∈ OX (U). Then ϕ is regular on the distinguished open subsets D(x1) =

(A1\{0})×A1 and D(x2) = A1× (A1\{0}), and so by Proposition 3.10 we can write ϕ = f
xm

1
on

D(x1) and ϕ = g
xn

2
on D(x2) for some f ,g ∈ K[x1,x2] and m,n ∈ N. Of course we can do this so that

x1 6 | f and x2 6 | g.

On the intersection D(x1)∩D(x2) both representations of ϕ are valid, and so we have f xn
2 = gxm

1 on
D(x1)∩D(x2). But the locus V ( f xn

2− gxm
1 ) where this equation holds is closed, and hence we see

that f xn
2 = gxm

1 also on D(x1)∩D(x2) = A2. In other words, we have f xn
2 = gxm

1 in the polynomial
ring A(A2) = K[x1,x2].

Now if we had m > 0 then x1 must divide f xn
2, which is clearly only possible if x1 | f . This is a

contradiction, and so it follows that m = 0. But then ϕ = f is a polynomial, as we have claimed.

Exercise 3.15. For those of you who know some commutative algebra already: generalize the proof
of Example 3.14 to show that OX (U) = OX (X) = A(X) for any open subset U of an affine variety X
such that A(X) is a unique factorization domain [G5, Definition 8.1] and U is the complement of an
irreducible subvariety of codimension at least 2 in X .

Recall that we have defined regular functions on an open subset U of an affine variety as set-theoretic
functions from U to the ground field K that satisfy some local property. Local constructions of
function-like objects occur in many places in algebraic geometry (and also in other “topological”
fields of mathematics), and so we will spend the rest of this chapter to formalize the idea of such
objects. This will have the advantage that it gives us an “automatic” definition of morphisms between
affine varieties in Chapter 4, and in fact also between more general varieties in Chapter 5.

Definition 3.16 (Sheaves). A presheaf F (of rings) on a topological space X consists of the data:

• for every open set U ⊂ X a ring F (U) (think of this as the ring of functions on U),

• for every inclusion U ⊂ V of open sets in X a ring homomorphism ρV,U : F (V )→F (U)
called the restriction map (think of this as the usual restriction of functions to a subset),

such that

• F ( /0) = 0,

• ρU,U is the identity map on F (U) for all U ,

• for any inclusion U ⊂V ⊂W of open sets in X we have ρV,U ◦ρW,V = ρW,U .

The elements of F (U) are usually called the sections of F over U , and the restriction maps ρV,U
are written as ϕ 7→ ϕ|U .

A presheaf F is called a sheaf of rings if it satisfies the following gluing property: if U ⊂ X is
an open set, {Ui : i ∈ I} an arbitrary open cover of U and ϕi ∈F (Ui) sections for all i such that
ϕi|Ui∩U j = ϕ j|Ui∩U j for all i, j ∈ I, then there is a unique ϕ ∈F (U) such that ϕ|Ui = ϕi for all i.
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Example 3.17. Intuitively speaking, any “function-like” object forms a presheaf; it is a sheaf if the
conditions imposed on the “functions” are local (i. e. if they can be checked on an open cover). The
following examples illustrate this.
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(a) Let X be an affine variety. Then the rings OX (U) of regular functions on open subsets
U ⊂ X , together with the usual restriction maps of functions, form a sheaf OX on X . In
fact, the presheaf axioms are obvious, and the gluing property just means that a function
ϕ : U → K is regular if it is regular on each element of an open cover of U (which follows
from the definition that ϕ is regular if it is locally a quotient of polynomial functions). We
call OX the sheaf of regular functions on X .

(b) Similarly, on X = Rn the rings

F (U) = {ϕ : U → R continuous}

for open subsets U ⊂X form a sheaf F on X with the usual restriction maps. In the same way
we can consider on X the sheaves of differentiable functions, analytic functions, arbitrary
functions, and so on.

(c) On X = Rn let

F (U) = {ϕ : U → R constant function}

with the usual restriction maps. Then F is a presheaf, but not a sheaf, since being a constant
function is not a local condition. More precisely, let U1 and U2 be any non-empty disjoint
open subsets of X , and let ϕ1 ∈F (U1) and ϕ2 ∈F (U2) be constant functions with different
values. Then ϕ1 and ϕ2 trivially agree on U1∩U2 = /0, but there is still no constant function
on U = U1 ∪U2 that restricts to both ϕ1 on U1 and ϕ2 on U2. Hence F does not satisfy
the gluing property. Note however that we would obtain a sheaf if we considered locally
constant functions instead of constant ones.

In order to get used to the language of sheaves let us now consider two common constructions with
them.

Definition 3.18 (Restrictions of (pre-)sheaves). Let F be a presheaf on a topological space X , and
let U ⊂ X be an open subset. Then the restriction of F to U is defined to be the presheaf F |U on
U with

F |U (V ) := F (V )

for every open subset V ⊂U , and with the restriction maps taken from F . Note that if F is a sheaf
then so is F |U .

Construction 3.19 (Stalks of (pre-)sheaves). Again let F be a presheaf on a topological space X .
Fix a point a ∈ X and consider pairs (U,ϕ) where U is an open neighborhood of a and ϕ ∈F (U).
We call two such pairs (U,ϕ) and (U ′,ϕ ′) equivalent if there is an open subset V with a∈V ⊂U∩U ′

and ϕ|V = ϕ ′|V (it is easy to check that this is indeed an equivalence relation). The set of all such
pairs modulo this equivalence relation is called the stalk Fa of F at a; it inherits a ring structure
from the rings F (U). The elements of Fa are called germs of F at a.

Remark 3.20. The geometric interpretation of the germs of a sheaf is that they are functions (resp.
sections of the sheaf) that are defined in an arbitrarily small neighborhood of the given point — we
will also refer to these objects as local functions at this point. Hence e. g. on the real line the germ
of a differentiable function at a point a allows you to compute the derivative of this function at a, but
none of the actual values of the function at any point except a. On the other hand, we have seen in
Remark 3.7 that holomorphic functions on a (connected) open subset of Cn are already determined
by their values on any smaller open set. So in this sense germs of holomorphic functions carry
“much more information” than germs of differentiable functions.

In algebraic geometry, the situation is similar: let ϕ1 and ϕ2 be two regular functions on an open
subset U of an irreducible affine variety X . If there is a point of U at which the germs of ϕ1 and ϕ2
are the same then ϕ1 and ϕ2 have to agree on a non-empty open subset, which means by Remark 3.7
that ϕ1 = ϕ2 on U . In other words, the germ of a regular function determines the function uniquely
already. Note that the corresponding statement is clearly false for differentiable functions as we have
seen above.
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In fact, germs of regular functions on an affine variety X can also be described algebraically in terms
of localizations as introduced in Construction 3.12 — which is the reason why this algebraic concept
is called “localization”. As one might expect, such a germ at a point a ∈ X , i. e. a regular function in
a small neighborhood of a, is given by an element in the localization of A(X) for which we allow as
denominators all polynomials that do not vanish at a.

Lemma 3.21 (Germs of regular functions as localizations). Let a be a point on an affine variety X,
and let S = { f ∈ A(X) : f (a) 6= 0}. Then the stalk OX ,a of OX at a is isomorphic (as a K-algebra) to
the localized ring

S−1A(X) =

{
g
f

: f ,g ∈ A(X), f (a) 6= 0
}
.

It is called the local ring of X at a.

Proof. Note that S is clearly multiplicatively closed, so that the localization S−1A(X) exists. Con-
sider the K-algebra homomorphism

S−1A(X)→ OX ,a,
g
f
7→
(

D( f ),
g
f

)
that maps a formal fraction g

f to the corresponding quotient of polynomial functions on the open

neighborhood of a where the denominator does not vanish. It is well-defined: if g
f = g′

f ′ in the

localization then h(g f ′−g′ f ) = 0 for some h ∈ S. Hence the functions g
f and g′

f ′ agree on the open
neighborhood D(h) of a, and thus they determine the same element in the stalk OX ,a.

The K-algebra homomorphism is surjective since by definition any regular function in a sufficiently
small neighborhood of a must be representable by a fraction g

f with g ∈ A(X) and f ∈ S. It is also
injective: assume that a function g

f represents the zero element in the stalk OX ,a, i. e. that it is zero in
an open neighborhood of a. By possibly shrinking this neighborhood we may assume by Remark 3.9
(b) that it is a distinguished open subset D(h) containing a, i. e. with h ∈ S. But then h(g ·1−0 · f )
is zero on all of X , hence zero in A(X), and thus g

f =
0
1 in the localization S−1A(X). �

Local rings will become important later on when we construct tangent spaces (see Lemma 10.5) and
vanishing multiplicities (see Definition 12.23). We will then mostly use their algebraic description
of Lemma 3.21 and write the elements of OX ,a as quotients g

f with f ,g ∈ A(X) such that f (a) 6= 0.

Algebraically, the most important property of the local ring OX ,a is that it has only one maximal
ideal in the sense of the following lemma. In fact, in commutative algebra a local ring is defined to
be a ring with only one maximal ideal.

Lemma and Definition 3.22 (Maximal ideals). Let a be a point on an affine variety X. Then every
proper ideal of the local ring OX ,a is contained in the ideal

Ia := I(a)OX ,a :=
{

g
f

: f ,g ∈ A(X),g(a) = 0, f (a) 6= 0
}

of all local functions vanishing at the point a. The ideal Ia is therefore called the maximal ideal of
OX ,a.

Proof. It is easily checked that Ia is in fact an ideal. Now let IEOX ,a be any ideal not contained in
Ia. By definition, this means that there is an element g

f ∈ I with f (a) 6= 0 and g(a) 6= 0. But then f
g

exists in OX ,a as well. Hence 1 = f
g ·

g
f ∈ I, and we conclude that I = OX ,a. �

Exercise 3.23. Let X ⊂ An be an affine variety, and let a ∈ X . Show that OX ,a ∼= OAn,a/I(X)OAn,a,
where I(X)OAn,a denotes the ideal in OAn,a generated by all quotients f

1 for f ∈ I(X).

Exercise 3.24. Let F be a sheaf on a topological space X , and let a ∈ X . Show that the stalk Fa is
a local object in the following sense: if U ⊂ X is an open neighborhood of a then Fa is isomorphic
to the stalk of F |U at a on the topological space U .
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Remark 3.25 (Sheaves for other categories). In Definition 3.16 we have constructed (pre-)sheaves
of rings. In the same way one can define (pre-)sheaves of K-algebras, Abelian groups, or other
suitable categories, by requiring that all F (U) are objects and all restriction maps are morphisms
in the corresponding category. Note that the stalks of such a (pre-)sheaf then inherit this structure.
For example, all our (pre-)sheaves considered so far have also been (pre-)sheaves of K-algebras for
some field K, and thus their stalks are all K-algebras. In fact, starting in the next chapter we will
restrict ourselves to this situation.


