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2. The Zariski Topology

In this chapter we will define a topology on an affine variety X , i. e. a notion of open and closed
subsets of X . We will see that many properties of X can be expressed purely in terms of this topology,
e. g. its dimension or the question whether it consists of several components. The advantage of this
is that these concepts can then easily be reused later in Chapter 5 when we consider more general
varieties — which are still topological spaces, but arise in a slightly different way.
Compared to e. g. the standard topology on subsets of real vector spaces, the properties of our topol-
ogy on affine varieties will be very unusual. Consequently, most concepts and results covered in a
standard introductory course on topology will be trivial or useless in our case, so that we will only
need the very first definitions of general topology. Let us quickly review them here.

Remark 2.1 (Topologies). A topology on a set X is given by declaring some subsets of X to be
closed, such that the following properties hold:

(a) the empty set /0 and the whole space X are closed;
(b) arbitrary intersections of closed sets are closed;
(c) finite unions of closed sets are closed.

Given such a topology on X , a subset U of X is then called open if its complement X\U is closed.
The closure A of a subset A ⊂ X is defined to be the smallest closed subset containing A, or more
precisely the intersection of all closed subsets containing A (which is closed again by (b)).
A topology on X induces a subspace topology on any subset A⊂ X by declaring the subsets of A to
be closed that are of the form A∩Y for a closed subset Y of X (or equivalently the subsets of A to be
open that are of the form A∩U for an open subset U of X). Subsets of topological spaces will always
be equipped with this subspace topology unless stated otherwise. Note that if A is closed itself then
the closed subsets of A in the subspace topology are exactly the closed subsets of X contained in A;
if A is open then the open subsets of A in the subspace topology are exactly the open subsets of X
contained in A.
A map ϕ : X→Y between topological spaces is called continuous if inverse images of closed subsets
of Y under ϕ are closed in X , or equivalently if inverse images of open subsets are open.
Note that the standard definition of closed subsets in Rn (or more generally in metric spaces) that you
know from real analysis satisfies the conditions (a), (b), and (c), and leads with the above definitions
to the well-known notions of open subsets, closures, and continuous functions.

With these preparations we can now define the standard topology used in algebraic geometry.

Definition 2.2 (Zariski topology). Let X be an affine variety. We define the Zariski topology on X
to be the topology whose closed sets are exactly the affine subvarieties of X , i. e. the subsets of the
form V (S) for some S⊂ A(X). Note that this in fact a topology by Example 1.4 (a) and Lemma 1.24.
Unless stated otherwise, topological notions for affine varieties (and their subsets, using the subspace
topology of Remark 2.1) will always be understood with respect to this topology.

Remark 2.3. Let X ⊂ An be an affine variety. Then we have just defined two topologies on X :

(a) the Zariski topology on X , whose closed subsets are the affine subvarieties of X ; and
(b) the subspace topology of X in An, whose closed subsets are the sets of the form X ∩Y , with

Y a variety in An.

These two topologies agree, since the subvarieties of X are precisely the affine varieties contained
in X and the intersection of two affine varieties is again an affine variety. Hence it will not lead to
confusion if we consider both these topologies to be the standard topology on X .
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Exercise 2.4. Let X ⊂ An be an arbitrary subset. Prove that V (I(X)) = X .

Example 2.5 (Topologies on complex varieties). Compared to the classical metric topology in the
case of the ground field C, the Zariski topology is certainly unusual:

(a) The metric unit ball A = {x ∈ A1
C : |x| ≤ 1} in A1

C is clearly closed in the classical topology,
but not in the Zariski topology. In fact, by Example 1.6 the Zariski-closed subsets of A1 are
only the finite sets and A1 itself. In particular, the closure of A in the Zariski topology is all
of A1.
Intuitively, we can say that the closed subsets in the Zariski topology are very “small”, and
hence that the open subsets are very “big” (see also Remark 2.18). Any Zariski-closed subset
is also closed in the classical topology (since it is given by equations among polynomial
functions, which are continuous in the classical topology), but as the above example shows
only “very few” closed subsets in the classical topology are also Zariski-closed.

(b) Let ϕ : A1→ A1 be any bijective map. Then ϕ is continuous in the Zariski topology, since
inverse images of finite subsets of A1 under ϕ are finite.
This statement is essentially useless however, as we will not define morphisms of affine
varieties as just being continuous maps with respect to the Zariski topology. In fact, this
example gives us a strong hint that we should not do so.

(c) In general topology there is a notion of a product topology: if X and Y are topological spaces
then X ×Y has a natural structure of a topological space by saying that a subset of X ×Y is
open if and only if it is a union of products Ui×Vi for open subsets Ui ⊂ X and Vi ⊂ Y with
i in an arbitrary index set.
With this construction, note however that the Zariski topology of an affine product variety
X ×Y is not the product topology: e. g. the subset V (x1− x2) = {(a,a) : a ∈ K} ⊂ A2 is
closed in the Zariski topology, but not in the product topology of A1×A1. In fact, we will
see in Proposition 4.10 that the Zariski topology is the “correct” one, whereas the product
topology is useless in algebraic geometry.

But let us now start with the discussion of the topological concepts that are
actually useful in the Zariski topology. The first ones concern components of an
affine variety: the affine variety X =V (x1x2)⊂A2 as in the picture on the right
can be written as the union of the two coordinate axes X1 = V (x2) and X2 =
V (x1), which are themselves affine varieties. However, X1 and X2 cannot be
decomposed further into finite unions of smaller affine varieties. The following
notion generalizes this idea. X = X1∪X2

X2

X1

Definition 2.6 (Irreducible and connected spaces). Let X be a topological space.

(a) We say that X is reducible if it can be written as X = X1∪X2 for closed subsets X1,X2 ( X .
Otherwise X is called irreducible.

(b) The space X is called disconnected if it can be written as X = X1 ∪X2 for closed subsets
X1,X2 ( X with X1∩X2 = /0. Otherwise X is called connected.

Remark 2.7. Although we have given this definition for arbitrary topological spaces, you will usu-
ally want to apply the notion of irreducibility only in the Zariski topology. For example, in the
classical topology, the complex plane A1

C is reducible because it can be written e. g. as the union of
closed subsets as

A1
C = {z ∈ C : |z| ≤ 1}∪{z ∈ C : |z| ≥ 1}.

In the Zariski topology however, A1 is irreducible by Example 1.6 (as it should be).
In contrast, the notion of connectedness can be used in the “usual” topology too and does mean there
what you think it should mean.

In the Zariski topology, the algebraic characterization of the irreducibility and connectedness of
affine varieties is the following.
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Proposition 2.8. Let X be a disconnected affine variety, with X = X1 ∪X2 for two disjoint closed
subsets X1,X2 ( X. Then A(X)∼= A(X1)×A(X2).

Proof. By Proposition 1.21 (c) we have A(X1)∼= A(X)/I(X1) and A(X2)∼= A(X)/I(X2). Hence there
is a ring homomorphism

ϕ : A(X)→ A(X1)×A(X2), f 7→ ( f , f ).

We have to show that it is bijective.

• ϕ is injective: If ( f , f ) = (0,0) then f ∈ I(X1)∩ I(X2) = I(X1∪X2) = I(X) = (0) by Lemma
1.26 (b).

• ϕ is surjective: Let ( f1, f2) ∈ A(X1)×A(X2). Note that

A(X) = I( /0) = I(X1∩X2) =
√

I(X1)+ I(X2)

by Lemma 1.26 (a). Thus 1 ∈
√

I(X1)+ I(X2), and hence 1 ∈ I(X1)+ I(X2), which means
I(X1)+I(X2)=A(X). We can therefore find g1 ∈ I(X1) and g2 ∈ I(X2) with f1− f2 = g1−g2,
so that f1−g1 = f2−g2. This latter element of A(X) then maps to ( f1, f2) under ϕ . �

Proposition 2.9. An affine variety X is irreducible if and only if A(X) is an integral domain.

Proof. “⇒”: Assume that A(X) is not an integral domain, i. e. there are non-zero f1, f2 ∈ A(X) with
f1 f2 = 0. Then X1 =V ( f1) and X2 =V ( f2) are closed, not equal to X (since f1 and f2 are non-zero),
and X1∪X2 =V ( f1)∪V ( f2) =V ( f1 f2) =V (0) = X . Hence X is reducible.

“⇐”: Assume that X is reducible, with X = X1 ∪X2 for closed subsets X1,X2 ( X . By Proposition
1.21 (b) this means that I(Xi) 6= (0) for i = 1,2, and so we can choose non-zero fi ∈ I(Xi). Then f1 f2
vanishes on X1∪X2 = X . Hence f1 f2 = 0 ∈ A(X), i. e. A(X) is not an integral domain. �

Remark 2.10. If X is an affine subvariety of an affine variety Y we know by Proposition 1.21 (c)
that A(X) = A(Y )/I(X). So A(X) is an integral domain, i. e. X is irreducible, if and only if for all
f ,g ∈ A(Y ) the relation f g ∈ I(X) implies f ∈ I(X) or g ∈ I(X). In commutative algebra, ideals
with this property are called prime ideals. So in other words, in the one-to-one correspondence
of Proposition 1.21 (b) between affine subvarieties of Y and radical ideals in A(Y ) the irreducible
subvarieties correspond exactly to prime ideals.

Example 2.11.
(a) A finite affine variety is irreducible if and only if it is connected: namely if and only if it

contains at most one point.

(b) Any irreducible space is connected.

(c) The affine space An is irreducible (and thus connected) by Proposition 2.9 since its coor-
dinate ring A(An) = K[x1, . . . ,xn] is an integral domain. More generally, this holds for any
affine variety given by linear equations, since again its coordinate ring is isomorphic to a
polynomial ring.

(d) The union X =V (x1x2)⊂ A2 of the two coordinate axes X1 =V (x2) and X2 =V (x1) is not
irreducible, since X = X1 ∪X2. But X1 and X2 themselves are irreducible by (c). Hence we
have decomposed X into a union of two irreducible spaces.

As already announced, we now want to see that such a decomposition into finitely many irreducible
spaces is possible for any affine variety. In fact, this works for a much larger class of topological
spaces, the so-called Noetherian spaces:

Definition 2.12 (Noetherian topological spaces). A topological space X is called Noetherian if there
is no infinite strictly decreasing chain

X0 ) X1 ) X2 ) · · ·
of closed subsets of X .
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Lemma 2.13. Any affine variety is a Noetherian topological space.

Proof. Let X be an affine variety. Assume that there is an infinite chain X0 ) X1 ) X2 ) · · · of
subvarieties of X . By Proposition 1.21 (b) there is then a corresponding infinite chain

I(X0)( I(X1)( I(X2)( · · ·
of ideals in A(X). It is checked immediately that the union I :=

⋃
∞
n=0 I(Xi) is then an ideal as well

[G1, Exercise 10.38 (a)]. By Proposition 1.21 (a) it is finitely generated, i. e. we have I = ( f1, . . . , fn)
for some f1, . . . , fn ∈ I. All these polynomials have to lie in one of the ideals I(Xm) — and in fact
in the same one since these ideals form a chain. But then we have I = ( f1, . . . , fn) ⊂ I(Xm) ( I, a
contradiction. �

Remark 2.14 (Subspaces of Noetherian spaces are Noetherian). Let A be a subset of a Noetherian
topological space X . Then A is also Noetherian: otherwise we would have an infinite strictly de-
scending chain of closed subsets of A, which by definition of the subspace topology we can write
as

A∩Y0 ) A∩Y1 ) A∩Y2 ) · · ·
for closed subsets Y0,Y1,Y2, . . . of X . Then

Y0 ⊃ Y0∩Y1 ⊃ Y0∩Y1∩Y2 ⊃ ·· ·
is an infinite decreasing chain of closed subsets of X . In fact, in contradiction to our assumption it
is also strictly decreasing, since Y0∩·· ·∩Yk = Y0∩·· ·∩Yk+1 for some k ∈ N would imply A∩Yk =
A∩Yk+1 by intersecting with A.

Combining Lemma 2.13 with Remark 2.14 we therefore see that any subset of an affine variety
is a Noetherian topological space. In fact, all topological spaces occurring in this class will be
Noetherian, and thus we can safely restrict our attention to this class of spaces.

Proposition 2.15 (Irreducible decomposition of Noetherian spaces). Every Noetherian topological
space X can be written as a finite union X = X1 ∪ ·· · ∪ Xr of irreducible closed subsets. If one
assumes that Xi 6⊂ X j for all i 6= j, then X1, . . . ,Xr are unique (up to permutation). They are called
the irreducible components of X.

Proof. To prove existence, assume that there is a topological space X for which the statement is
false. In particular, X is reducible, hence X = X1 ∪ X ′1 as in Definition 2.6 (a). Moreover, the
statement of the proposition must be false for at least one of these two subsets, say X1. Continuing
this construction, one arrives at an infinite chain X ) X1 ) X2 ) · · · of closed subsets, which is a
contradiction as X is Noetherian.

To show uniqueness, assume that we have two decompositions

X = X1∪·· ·∪Xr = X ′1∪·· ·∪X ′s . (∗)
Then for any fixed i ∈ {1, . . . ,r} we have Xi ⊂

⋃
j X ′j, so Xi =

⋃
j(Xi∩X ′j). But Xi is irreducible, and

so we must have Xi = Xi ∩X ′j, i. e. Xi ⊂ X ′j for some j. In the same way we conclude that X ′j ⊂ Xk

for some k, so that Xi ⊂ X ′j ⊂ Xk. By assumption this is only possible for i = k, and consequently
Xi = X ′j. Hence every set appearing on the left side of (∗) also appears on the right side (and vice
versa), which means that the two decompositions agree. �

Remark 2.16 (Computation of irreducible decompositions). In general, the actual computation of
the irreducible decomposition of an affine variety is quite difficult and requires advanced algorithmic
methods of computer algebra. In fact, the corresponding question in commutative algebra is to find
the isolated primes of a so-called primary decomposition of an ideal [G5, Chapter 8]. But in simple
cases the irreducible decomposition might be easy to spot geometrically, as e. g. in Example 2.11
(d).

Exercise 2.17. Find the irreducible components of the affine variety V (x1− x2x3,x1x3− x2
2)⊂ A3

C.
03
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Remark 2.18 (Open subsets of irreducible spaces are dense). We have already seen in Example 2.5
(a) that open subsets tend to be very “big” in the Zariski topology. Here are two precise statements
along these lines. Let X be an irreducible topological space, and let U and U ′ be non-empty open
subsets of X . Then:

(a) The intersection U ∩U ′ is never empty. In fact, by taking complements this is just equivalent
to saying that the union of the two proper closed subsets X\U and X\U ′ is not equal to X ,
i. e. to the definition of irreducibility.

(b) The closure U of U is all of X — one says that U is dense in X . This is easily seen: if
Y ⊂ X is any closed subset containing U then X =Y ∪ (X\U), and since X is irreducible and
X\U 6= X we must have Y = X .

Exercise 2.19. Let A be a subset of a topological space X . Prove:

(a) If Y ⊂ A is closed in the subspace topology of A then Y ∩A = Y .

(b) A is irreducible if and only if A is irreducible.

Exercise 2.20. Let {Ui : i∈ I} be an open cover of a topological space X , and assume that Ui∩U j 6= /0
for all i, j ∈ I. Show:

(a) If Ui is connected for all i ∈ I then X is connected.

(b) If Ui is irreducible for all i ∈ I then X is irreducible.

Exercise 2.21. Let f : X → Y be a continuous map of topological spaces. Prove:

(a) If X is irreducible then so is f (X).

(b) If X is connected then so is f (X).

Exercise 2.22. Let X ⊂ An and Y ⊂ Am be irreducible affine varieties. Prove that the coordinate
ring A(X×Y ) of their product is an integral domain, and hence that X×Y is irreducible as well.

An important application of the notion of irreducibility is the definition of the dimension of an affine
variety (or more generally of a topological space — but as with our other concepts above you will
only want to apply it to the Zariski topology). Of course, at least in the case of complex varieties we
have a geometric idea what the dimension of an affine variety should be: the number of coordinates
that you need to describe X locally around any point. Although there are algebraic definitions of
dimension that mimic this intuitive one [G5, Proposition 11.31], the standard definition of dimension
that we will give here uses only the language of topological spaces. Finally, all these definitions are
of course equivalent and describe the intuitive notion of dimension, but it is actually quite hard to
prove this rigorously.

The idea to construct the dimension in algebraic geometry using the Zariski topology is rather sim-
ple: if X is an irreducible topological space, then any closed subset of X not equal to X should have
smaller dimension. The resulting definition is the following.

Definition 2.23 (Dimension and codimension). Let X be a non-empty topological space.

(a) The dimension dimX ∈ N∪{∞} is the supremum over all n ∈ N such that there is a chain

/0 6= Y0 ( Y1 ( · · ·( Yn ⊂ X

of length n of irreducible closed subsets Y1, . . . ,Yn of X .

(b) If Y ⊂ X is a non-empty irreducible closed subset of X the codimension codimX Y of Y in X
is again the supremum over all n such that there is a chain

Y ⊂ Y0 ( Y1 ( · · ·( Yn ⊂ X

of irreducible closed subsets Y1, . . . ,Yn of X containing Y .

To avoid confusion, we will always denote the dimension of a K-vector space V by dimK V , leaving
the notation dimX (without an index) for the dimension of a topological space X as above.
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According to the above idea, one should imagine each Yi as having dimension i in a maximal chain
as in Definition 2.23 (a), so that finally dimX = n. In the same way, each Yi in Definition 2.23 (b)
should have dimension i+dimY in a maximal chain, so that n = dimX−dimY can be thought of as
the difference of the dimensions of X and Y .

Example 2.24.
(a) If X is a (non-empty) finite affine variety then dimX = 0. In fact, since points are closed in

X all subsets of X will be closed, and thus the only irreducible closed subsets of X are single
points. There are therefore only chains of length 0 of irreducible closed subsets of X .

(b) In contrast to (a), general finite topological spaces need not have dimension 0. For example,
the two-pointed topological space X = {a,b} whose closed subsets are exactly /0, {a}, and
X has dimension 1 since {a} ( X is a chain of length 1 of irreducible closed subsets of X
(and there are certainly no longer ones).
However, this will not be of further importance for us since all topological spaces occurring
in this class will have the property that points are closed.

(c) By Example 1.6 the affine space A1 has dimension 1: maximal chains of irreducible closed
subsets of A1 are {a}(A1 for any a ∈ A1.

(d) It is easy to see that the affine space An for n ∈ N>0 has dimension at least n, since there is
certainly a chain

V (x1, . . . ,xn)(V (x2, . . . ,xn)( · · ·(V (xn)(V (0) = An

of irreducible (linear) closed subsets of An of length n.

Of course, we would expect geometrically that the dimension of An is equal to n. Although this turns
out to be true, the proof of this result is unfortunately rather difficult and technical. It is given in the
“Commutative Algebra” class, where dimension is one of the major topics. In fact, our Definition
2.23 is easy to translate into commutative algebra: since irreducible closed subvarieties of an affine
variety X correspond exactly to prime ideals in A(X) by Remark 2.10, the dimension of X is the
supremum over all n such that there is a chain I0 ) I1 ) · · ·) In of prime ideals in A(X) — and this
can be studied algebraically.
Let us now quote the results on the dimension of affine varieties that we will use from commutative
algebra. They are all very intuitive: besides the statement that dimAn = n they say that for irreducible
affine varieties the codimension of Y in X is in fact the difference of the dimensions of X and Y , and
that cutting down an irreducible affine variety by one non-trivial equation reduces the dimension by
exactly 1.

Proposition 2.25 (Properties of dimension). Let X and Y be non-empty irreducible affine varieties.

(a) We have dim(X×Y ) = dimX +dimY . In particular, dimAn = n.
(b) If Y ⊂ X we have dimX = dimY + codimX Y . In particular, codimX{a} = dimX for every

point a ∈ X.
(c) If f ∈ A(X) is non-zero every irreducible component of V ( f ) has codimension 1 in X (and

hence dimension dimX−1 by (b)).

Proof. Statement (a) is [G5, Proposition 11.9 (a) and Exercise 11.33 (a)], (b) is [G5, Example 11.13
(a)], and (c) is [G5, Corollary 11.19]. �

Example 2.26. Let X =V (x2−x2
1)⊂A2

C be the affine variety whose real
points are shown in the picture on the right. Then we have as expected:

(a) X is irreducible by Proposition 2.9 since its coordinate ring
A(X) = C[x1,x2]/(x2− x2

1)
∼= C[x1] is an integral domain.

(b) X has dimension 1 by Proposition 2.25 (c), since it is the zero locus
of one non-zero polynomial in the affine space A2, and dimA2 = 2
by Proposition 2.25 (a).

X
x2

x1
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Remark 2.27 (Infinite-dimensional spaces). One might be tempted to think that the “finiteness
condition” of a Noetherian topological space X ensures that dimX is always finite. This is not
true however: if we equip the natural numbers X = N with the topology in which (except /0 and
X) exactly the subsets Yn := {0, . . . ,n} for n ∈ N are closed, then X is Noetherian, but has chains
Y0 ( Y1 ( · · ·( Yn of non-empty irreducible closed subsets of arbitrary length.

However, Proposition 2.25 (a) together with the following exercise shows that this cannot happen
for arbitrary subsets of affine varieties. In fact, all topological spaces considered in this class will
have finite dimension.

Exercise 2.28. Let A be an arbitrary subset of a topological space X . Prove that dimA≤ dimX .

Remark 2.29. Depending on where our chains of irreducible closed subvarieties end resp. start, we
can break up the supremum in Definition 2.23 into irreducible components or local contributions:

(a) If X = X1∪·· ·∪Xr is the irreducible decomposition of a Noetherian topological space as in
Proposition 2.15, we have

dimX = max{dimX1, . . . ,dimXr} :

“≤” Assume that dimX ≥ n, so that there is a chain Y0 ( · · ·(Yn of non-empty irreducible
closed subvarieties of X . Then Yn = (Yn ∩X1)∪ ·· · ∪ (Yn ∩Xr) is a union of closed
subsets. So as Yn is irreducible we must have Yn =Yn∩Xi, and hence Yn ⊂ Xi, for some
i. But then Y0 ( · · ·( Yn is a chain of non-empty irreducible closed subsets in Xi, and
hence dimXi ≥ n.

“≥” Let max{dimX1, . . . ,dimXr} ≥ n. Then there is a chain of non-empty irreducible
closed subsets Y0 ( · · · ( Yn in some Xi. This is also such a chain in X , and hence
dimX ≥ n.

So for many purposes it suffices to consider the dimension of irreducible spaces.

(b) We always have dimX = sup{codimX{a} : a ∈ X}:
“≤” If dimX ≥ n there is a chain Y0 ( · · ·( Yn of non-empty irreducible closed subsets of

X . For any a ∈ Y0 this chain then shows that codimX{a} ≥ n.

“≥” If codimX{a} ≥ n for some a ∈ X there is a chain {a} ⊂ Y0 ( · · · ( Yn of non-empty
irreducible closed subsets of X , which also shows that dimX ≥ n.

The picture below illustrates these two equations: the affine variety X = V (x1x3,x2x3) ⊂ A3 is a
union of two irreducible components, a line V (x1,x2) of dimension 1 and a plane V (x3) of dimension
2 (see Proposition 2.25 (a)). So by (a) we have dimX = 2 (with a maximal chain of length 2 as in
Definition 2.23 (a) given by Y0 ( Y1 ( Y2).

X1

(

X0

Y1( (Y0 Y2

As for (b), the codimension of the point Y0 is 2, whereas the codimension of the point X0 is 1, as
illustrated by the chains in the picture. Note that this codimension of a point can be interpreted
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geometrically as the local dimension of X at this point. Hence Proposition 2.25 (b) can also be
interpreted as saying that the local dimension of an irreducible variety is the same at every point.

In practice, we will usually be concerned with affine varieties all of whose components have the same
dimension. These spaces have special names that we want to introduce now. Note however that (as
with the definition of a variety, see Remark 1.3) these terms are not used consistently throughout the
literature — sometimes e. g. a curve is required to be irreducible, and sometimes it might be allowed
to have additional components of dimension less than 1.

Definition 2.30 (Pure-dimensional spaces).
(a) A Noetherian topological space X is said to be of pure dimension n if every irreducible

component of X has dimension n.

(b) An affine variety is called . . .

• an affine curve if it is of pure dimension 1;

• an affine surface if it is of pure dimension 2;

• an affine hypersurface of an irreducible affine variety Y ⊃ X if it is of pure dimension
dimY −1.

Exercise 2.31. Let X be the set of all 2×3 matrices over a field K that have rank at most 1, consid-
ered as a subset of A6 = Mat(2×3,K).

Show that X is an affine variety. Is it irreducible? What is its dimension?

Exercise 2.32. Show that the ideal I = (x1x2,x1x3,x2x3)EC[x1,x2,x3] cannot be generated by fewer
than three elements. What is the zero locus of I?

Exercise 2.33. Let X be a topological space. Prove:

(a) If {Ui : i ∈ I} is an open cover of X then dimX = sup{dimUi : i ∈ I}.
(b) If X is an irreducible affine variety and U ⊂ X a non-empty open subset then dimX = dimU .

Does this statement hold more generally for any irreducible topological space?

Exercise 2.34. Prove the following (maybe at first surprising) statements:

(a) Every affine variety in the real affine space An
R is the zero locus of one polynomial.

(b) Every Noetherian topological space is compact. In particular, every open subset of an affine
variety is compact in the Zariski topology. (Recall that by definition a topological space X
is compact if every open cover of X has a finite subcover.)

(c) The zero locus of a non-constant polynomial in C[x1,x2] is never compact in the classical
topology of A2

C = C2.

(For those of you who know commutative algebra: can you prove that an affine variety over
C containing infinitely many points is never compact in the classical topology?)


