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14. Divisors on Curves

In its version for curves, Bézout’s Theorem determines the number of zeroes of a homogeneous
polynomial on a projective curve (see Corollaries 12.20 and 12.26). For example, if X ⊂ P2 is a
cubic curve then the zero locus of a homogeneous linear polynomial f on X consists of three points,
counted with multiplicities. But of course not every collection of three points on X can arise in this
way, as three points will in general not lie on a line, and thus cannot be in the zero locus of f . So
by reducing the question of the zeroes of polynomials to just their number we are losing information
about their possible positions. To avoid this, we will now present a theory that is able to keep track
of the actual configurations of points on curves.

It turns out that these configurations, called divisors below, are parametrized by a group that is
naturally associated to the curve X . This will allow us to study and classify curves with methods
from group theory, very much in the same way as in topology the fundamental group or the homology
groups can be used to study and distinguish topological spaces. For example, using divisors we will
be able to prove in Proposition 14.19 and Remark 14.20 that a smooth plane cubic curve as above is
never isomorphic to P1. Note that for the ground field C we have already seen this topologically in
Remark 13.19 since a smooth plane cubic is a torus whereas P1

C is a sphere — but of course this was
using techniques from topology that would certainly require some work to make them rigorous. In
contrast, our new proof here will be entirely self-contained and algebraic, so in particular applicable
to any ground field.

The concept of divisors can be defined for arbitrary curves. For example, in the smooth affine case
this leads to the notion of Dedekind domains studied in commutative algebra [G5, Chapter 13], and
for singular curves one needs two different concepts of divisors, called Weil divisors and Cartier
divisors. However, in our applications we will only need irreducible smooth projective curves. So
for simplicity of notation we will restrict ourselves to this case from the very beginning, even if
many of our constructions and results do not need all these assumptions.

Let us start by giving the definition of divisors. It should be noted that the name “divisor” in this
context has historical reasons; it is completely unrelated to the notion of divisors in an integral
domain.

Definition 14.1 (Divisors). Let X be an irreducible smooth projective curve.

(a) A divisor on X is a formal finite linear combination k1a1 + · · ·+ knan of distinct points
a1, . . . ,an ∈ X with integer coefficients k1, . . . ,kn ∈Z for some n∈N. Obviously, the divisors
on X form an Abelian group under pointwise addition of the coefficients. We will denote it
by DivX .

Equivalently, in algebraic terms DivX is just the free Abelian group generated by the points
of X (i. e. the group of maps X→Z being non-zero at only finitely many points; with a point
mapping to its coefficient in the sense above).

(b) A divisor D = k1a1 + · · ·+ knan as above is called effective, written D ≥ 0, if ki ≥ 0 for all
i = 1, . . . ,n. If D1,D2 are two divisors with D2−D1 effective, we also write this as D2 ≥D1
or D1 ≤ D2. In other words, we have D2 ≥ D1 if and only if the coefficient of any point in
D2 is greater than or equal to the coefficient of this point in D1.

(c) The degree of a divisor D = k1a1+ · · ·+knan as above is the number degD := k1+ · · ·+kn ∈
Z. Obviously, the degree is a group homomorphism deg : DivX → Z. Its kernel is denoted
by

Div0 X = {D ∈ DivX : degD = 0}.
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Construction 14.2 (Divisors from polynomials and intersections). Again, let X ⊂ Pn be an irre-
ducible smooth curve. Our construction of multiplicities in Definition 12.23 (b) allows us to define
divisors on X as follows.

(a) For a non-zero homogeneous polynomial f ∈ S(X) the divisor of f is defined to be

div f := ∑
a∈VX ( f )

multa( f ) ·a ∈ DivX ,

where VX ( f ) denotes the zero locus of f on X as in Construction 6.18. In other words,
the divisor div f contains the data of the zeroes of f together with their multiplicities. By
Bézout’s Theorem as in Corollary 12.26 (a), its degree is deg(div f ) = degX ·deg f .

(b) If n = 2 and Y ⊂ P2 is another curve not containing X , the intersection divisor of X and Y is

X ·Y := ∑
a∈X∩Y

multa(X ,Y ) ·a ∈ DivX .

By definition, this divisor is just the same as div f for a generator f of I(Y ). Note that it is
symmetric in X and Y , so in particular the result can be considered as an element of DivY as
well if Y is also smooth and irreducible. By Bézout’s Theorem as in Corollary 12.26 (b), we
have deg(X ·Y ) = degX ·degY .

Example 14.3. Consider again the two projective curves X =V (x0x2− x2
1) and Y =V (x2) in P2 of

Example 12.28. We have seen in this example that X and Y intersect in a single point a = (1:0 :0)
with multiplicity 2. Hence X ·Y = 2a in DivX in the notation of Construction 14.2. Equivalently,
we can write divx2 = 2a on X , and div(x0x2− x2

1) = 2a on Y .

Note that so far all our multiplicities have been non-negative, and hence all the divisors in Construc-
tion 14.2 are effective. Let us now extend this construction to multiplicities and divisors of rational
functions, which will lead to negative multiplicities at their poles, and thus to non-effective divisors.
To do this, we need the following lemma first.

Lemma 14.4. Let X be an irreducible smooth projective curve, and let f ,g ∈ S(X) be two non-zero
polynomials. Then

multa( f g) = multa( f )+multa(g)
for all a ∈ X. In particular, we have div( f g) = div f +divg in DivX.

Proof. By Remark 12.25 (a) we have to show that

dimK OX ,a/( f g) = dimK OX ,a/( f )+dimK OX ,a/(g).

for all a ∈ X . But this follows immediately by Lemma 12.5 from the exact sequence

0−→ OX ,a/( f )
·g−→ OX ,a/( f g)−→ OX ,a/(g)−→ 0

(for the injectivity of the first map note that OX ,a is an integral domain since X is irreducible). Taking
these results for all a ∈ X together, we conclude that div( f g) = div f +divg. �

Construction 14.5 (Multiplicities and divisors of rational functions). Let X be an irreducible smooth
projective curve, and let ϕ ∈ K(X)∗ be a non-zero rational function (see Construction 9.6). By
Definition 7.1 we can write ϕ = g

f for two homogeneous polynomials f and g of the same degree.

(a) We define the multiplicity of ϕ at a point a ∈ X to be

multa(ϕ) := multa(g)−multa( f ) ∈ Z.

Note that this is well-defined: if g′
f ′ =

g
f for two other homogeneous polynomials f ′ and g′ of

the same degree then g′ f − f ′g = 0 on a non-empty open subset, hence on all of X since X is
irreducible, and consequently g′ f = f ′g ∈ S(X). Lemma 14.4 thus implies that multa(g′)+
multa( f ) = multa( f ′)+multa(g), i. e. that multa(g′)−multa( f ′) = multa(g)−multa( f ).

Geometrically, we can think of this multiplicity as the order of the zero (if multa(ϕ) > 0)
resp. pole (if multa(ϕ)< 0) of ϕ at a.
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(b) Analogously to Construction 14.2, we define the divisor of ϕ to be

divϕ := ∑
a∈VX ( f )∪VX (g)

multa(ϕ) ·a = divg−div f .

23

Example 14.6. The rational function ϕ = x0x1
(x0−x1)2 on P1 has divisor

divϕ = (1:0)+(0:1)−2(1:1).

Remark 14.7 (Multiplicities of local functions). By Exercise 9.8 (b) every local function ϕ ∈ OX ,a
at a point a of an irreducible smooth projective curve X can be considered as a rational function on
X . Hence Construction 14.5 also defines a multiplicity multa(ϕ) for any non-zero ϕ ∈ OX ,a.

Moreover, note that ϕ then has a representation of the form ϕ = g
f with f ,g ∈ S(X) and f (a) 6= 0.

By Remark 12.24, this means that multa( f ) = 0, and thus multa(ϕ) = multa(g) ∈ N. By the same
remark, we have multa(ϕ) = 0 if and only if g(a) 6= 0 as well, i. e. if and only if ϕ(a) 6= 0.

Remark 14.8. As above, let X be an irreducible smooth projective curve.

(a) Lemma 14.4 implies that multa(ϕ1ϕ2) = multa ϕ1+multa ϕ2 for any a∈ X and any two non-
zero rational functions ϕ1,ϕ2 ∈ K(X)∗. We therefore also have div(ϕ1ϕ2) = divϕ1 +divϕ2,
i. e. the map div : K(X)∗→ DivX is a homomorphism of groups.

(b) As any non-zero rational function on X has the form ϕ = g
f for two homogeneous polyno-

mials of the same degree, we see by Construction 14.2 (a) that its divisor always has degree
0:

degdivϕ = deg(divg−div f ) = degdivg−degdiv f = degX ·degg−degX ·deg f = 0.

Hence the homomorphism of (a) can also be viewed as a morphism div : K(X)∗→ Div0 X .

This observation leads to the idea that we should give special attention to the divisors of rational
functions, i. e. to the image subgroup of the above divisor homomorphism.

Definition 14.9 (Principal divisors and the Picard group). Let X be an irreducible smooth projective
curve.

(a) A divisor on X is called principal if it is the divisor of a (non-zero) rational function. We
denote the set of all principal divisors by PrinX . Note that PrinX is just the image of the
divisor homomorphism div : K(X)∗→ Div0 X of Remark 14.8 (b), and hence a subgroup of
both Div0 X and DivX .

(b) The quotient
PicX := DivX/PrinX

is called the Picard group or group of divisor classes on X . Restricting to degree zero, we
also define Pic0 X := Div0 X/PrinX . By abuse of notation, a divisor and its class in PicX
will usually be denoted by the same symbol.

Remark 14.10. The groups PicX and Pic0 X carry essentially the same information on X , since we
always have

PicX/Pic0 X ∼= DivX/Div0 X ∼= Z.
It just depends on the specific application in mind whether it is more convenient to work with PicX
or with Pic0 X .

By construction, the group DivX of divisors on an irreducible smooth projective curve X is a free
Abelian group with an infinite number of generators, and hence not very interesting from a group-
theoretic point of view. In contrast, the Picard group is rather “small” and has quite a rich structure
that we want to study now in some examples.
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Example 14.11 (The Picard group of P1 is trivial). On P1, every degree-0 divisor is principal: if
D= k1 (a1,0 :a1,1)+ · · ·+kn (an,0 :an,1) for some points (ai,0 :ai,1)∈ P1 and integers ki for i= 1, . . . ,n
with k1 + · · ·+ kn = 0, the rational function given by

ϕ(x0 :x1) =
n

∏
i=1

(ai,1x0−ai,0x1)
ki

has divisor divϕ = D. Hence the divisor map div : K(P1)∗→ Div0P1 is surjective, so that we have
PrinP1 = Div0P1, and consequently

Pic0P1 = {0} and PicP1 = DivP1/Div0P1 ∼= Z,
with the isomorphism deg : PicP1→ Z.

Let us now move on to more complicated curves. We know already from Example 7.6 (d) that a
smooth conic X ⊂ P2 (which is irreducible by Exercise 10.22 (a)) is isomorphic to P1. As the Picard
group is clearly invariant under isomorphisms, this means that Pic0 X will then be the trivial group
again. So the next case to consider is a smooth cubic curve X ⊂ P2. Our main goal in this chapter
is to prove that Pic0 X is not trivial in this case, so that X cannot be isomorphic to P1. In fact, in the
next chapter in Proposition 15.2 we will even be able to compute Pic0 X for a plane cubic explicitly.

However, even for the special case of plane cubics the computation of Pic0 X is not easy, and so
we will need some preliminaries first. The following lemma will be well-known to you if you have
attended the Commutative Algebra class already, since it essentially states in algebraic terms that the
local rings of X are discrete valuation rings [G5, Lemma 12.1]. It is the first time in this chapter that
the smoothness assumption on X is essential.

Lemma 14.12 (Local coordinates on a smooth plane curve). Let X ⊂ P2 be a smooth curve, and let
IaEOX ,a be the maximal ideal in the local ring of a point a ∈ X as in Definition 3.22.

(a) The ideal Ia is principal, with Ia = (ϕa) for a suitable ϕa ∈ OX ,a with multa(ϕa) = 1.

(b) Any non-zero ϕ ∈ OX ,a can be written as ϕ = c ·ϕm
a , where c ∈ OX ,a\Ia and m = multa(ϕ).

Proof.

(a) Choose a linear function ϕa vanishing at a such that the line V (ϕa) is not the tangent line to
X at a. Then ϕa vanishes on X with multiplicity 1 at a by Exercise 12.27. Hence ϕa ∈ Ia,
and

1 = dimK OX ,a/(ϕa)≥ dimK OX ,a/Ia > 0.
It follows that we must have equality, so in particular that Ia = (ϕa).

(b) Note that ϕ /∈ Im+1
a , since by (a) the elements of Im+1

a are multiples of ϕm+1
a , and thus have

multiplicity at least m+ 1 at a. Hence there is a maximal n ∈ N with ϕ ∈ In
a . By (a) this

means ϕ = c ·ϕn
a for some c ∈ OX ,a. But we must have c /∈ Ia since n is maximal. Hence

m = multa(ϕ) = multa(c ·ϕn
a ) = n, and the result follows. �

Remark 14.13. Thinking of a smooth curve X ⊂ P2
C as a 1-dimensional complex manifold, we can

interpret the function ϕa of Lemma 14.12 as a local coordinate on X at a, i. e. as a function that
gives an isomorphism of a neighborhood of a with a neighborhood of the origin in C in the classical
topology. By standard complex analysis, any local holomorphic function on X at a can then be
written as a non-vanishing holomorphic function times a power of the local coordinate [G4, Lemma
10.4]. Lemma 14.12 (b) is just the corresponding algebraic statement. Note however that this is only
a statement about the local ring — in contrast to the analytic setting it does not imply that X has a
Zariski-open neighborhood of a isomorphic to an open subset of A1

C!

Remark 14.14 (Infinite multiplicity). Let X ⊂ P2 be a smooth curve. For the following lemma, it
is convenient to set formally multa(X , f ) = ∞ for all a ∈ X if f is a homogeneous polynomial that
vanishes identically on X . Note that by Lemma 14.12 (b) we then have for an arbitrary homogeneous
polynomial f that multa(X , f )≥m if and only if f is a multiple of ϕm

a in OX ,a, where we interpret f
as an element in OX ,a as in Remark 12.25, and ϕa is a local coordinate as in Lemma 14.12.
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Lemma 14.15. Let X ⊂ P2 be a smooth curve, and let a ∈ X be a point.

(a) Let f ,g∈K[x0,x1,x2] be homogeneous polynomials of the same degree with multa(X , f )≥m
and multa(X ,g)≥ m for some m ∈ N. Then:

• multa(X ,λ f +µg)≥ m for all λ ,µ ∈ K;

• there are λ ,µ ∈ K, not both zero, such that multa(X ,λ f +µg)≥ m+1.

(b) Let Y ⊂ P2 be another curve, and set m = multa(X ,Y ). If f ∈ K[x0,x1,x2] is a homogeneous
polynomial with multa(X , f )≥ m, then we also have multa(Y, f )≥ m.

Proof. As in Remark 12.25, we will consider f and g as elements in the local ring OX ,a.

(a) We may assume that f and g do not vanish identically on X , since otherwise the statement is
trivial. By Remark 14.14 there are then u,v ∈OX ,a such that f = uϕm

a and g = vϕm
a in OX ,a.

So for any λ ,µ ∈ K, we have λ f + µg = (λu+ µv)ϕm
a , and thus multa(λu+ µv) ≥ m.

Moreover, we can pick λ and µ not both zero such that λu(a) + µv(a) = 0 ∈ K. Then
multa(λu+µv)≥ 1, and hence multa(λ f +µg)≥ m+1.

(b) As above we can assume that f does not vanish identically on X or Y . Let g and h be
polynomials such that I(X) = (g) and I(Y ) = (h). The assumption then means that k :=
multa(X , f )≥ m = multa(X ,h). Hence f = uϕk

a and h = vϕm
a for suitable units u,v ∈ OX ,a

by Lemma 14.12 (b). This implies that ( f )⊂ (h) in OX ,a, so that ( f ,g)⊂ (g,h) in OA2,a. But
then ( f ,h)⊂ (g,h) in OA2,a as well, hence multa( f ,h)≥multa(g,h), and thus multa(Y, f )≥
multa(X ,Y ) = m. �

Example 14.16. The following examples show that the smoothness assumption in Lemma 14.15 (b)
is crucial.

(a) Let X and Y be two smooth plane curves such that multa(X ,Y ) = 2. By Exercise 12.27 this
means that X and Y are tangent at a, as in the picture below on the left. Lemma 14.15 (b)
then states that any polynomial vanishing on X to order at least 2 at a also vanishes on Y to
order at least 2 at a. In terms of the corresponding curve V ( f ), this means using Exercise
12.27 again that any other curve that is (singular or) tangent to X at a is also (singular or)
tangent to Y at a — which is obvious.

(b) In contrast to (a), in the picture on the right we have X =Vp(x3
2− x2

1x0), Y =Vp(x2), f = x1,
and thus at the origin m = multa(X ,Y ) = 2, multa(X , f ) = 3, but multa(Y, f ) = 1. This fits
well with the geometric interpretation of Remark 14.13: the curve X is singular at the origin,
so locally not a 1-dimensional complex manifold. Hence there is no local coordinate on X
around a, and the argument of Lemma 14.12 resp. Lemma 14.15 breaks down.

X

Y

V ( f )

(b)

a

(a)

V ( f )

Y

X
a

Lemma 14.17. Let X ⊂ P2 be a smooth curve, and let g,h ∈ S(X) be two non-zero homogeneous
polynomials.

(a) If divg = divh then g and h are linearly dependent in S(X).

(b) If h is linear and divg≥ divh then h |g in S(X).

Proof. Let f ∈ K[x0,x1,x2] be a homogeneous polynomial with I(X) = ( f ).
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(a) By assumption we have ma := multa(g) = multa(h) for all a ∈ X . Moreover, Bézout’s The-
orem as in Corollary 12.26 (a) implies that ∑a∈X ma = degX · degg = degX · degh, so in
particular we see already that d := degg = degh.

Now pick an arbitrary point b ∈ X . By Lemma 14.15 (a) there are λ ,µ ∈ K, not both zero,
such that multa(λg+µh)≥ ma for all a ∈ X , and multb(λg+µh)≥ mb +1. Summing up,
this means that ∑a∈X multa(λg+µh)≥ d ·degX +1. But λg+µh also has degree d, hence
by Bézout again it follows that λ f + µg must vanish identically on X , i. e. λg+ µh = 0 ∈
S(X).

(b) Let L =V (h), and choose a representative g̃ ∈ K[x0,x1,x2] of g ∈ S(X). We may assume that
g̃ does not vanish identically on L, as otherwise h | g̃ in K[x0,x1,x2], and we are done.

By assumption, we have multa(X , g̃)≥multa(X ,L) for all a∈X∩L. As X is smooth, Lemma
14.15 (b) shows that then multa(L, g̃) ≥ multa(X ,L), and thus that div g̃ ≥ div f on L. As
L ∼= P1, we can find a homogeneous polynomial f ′ ∈ K[x0,x1,x2] of degree degg− deg f
with div f ′ = div g̃− div f on L as in Example 14.11. Then div( f f ′) = div g̃ on L, which
means by (a) that f f ′ and g̃ are linearly dependent in S(L). But then g̃ = f f ′+ ph for some
homogeneous polynomial p and after possibly multiplying f ′ with a non-zero scalar, which
means that g = ph in K[x0,x1,x2]/( f ) = S(X). �

24
We are now finally ready to prove that the Picard group of a smooth cubic curve in P2 is not trivial.

Notation 14.18. Let a and b be two points on a smooth cubic curve X ⊂
P2, not necessarily distinct. By Exercise 12.27 there is then a unique line
L⊂ P2 such that a+b≤ L ·X as divisors on X (in the sense of Definition
14.1 (b)), namely the line through a and b if these points are distinct, and
the tangent line to X at a = b otherwise. But L ·X is an effective divisor
of degree 3 on X , and hence there is a unique point c ∈ X (which need not
be distinct from a and b) with L ·X = a+b+ c. In the following, we will
denote this point c by ψ(a,b).

a
b

ψ(a,b)

ψ(a′,a′)
a′

X

In geometric terms, for general a,b ∈ X (i. e. such that none of the above points coincide) the point
ψ(a,b) is just the third point of intersection of X with the line through a and b. Hence the above
definition is a generalization of our construction in Exercise 7.15. In fact, one can show that the map
ψ : X×X → X ,(a,b) 7→ ψ(a,b) is a morphism, but we will not need this result here.

Proposition 14.19. Let X ⊂ P2 be a smooth cubic curve. Then for all distinct a,b ∈ X we have
a−b 6= 0 in Pic0 X, i. e. there is no non-zero rational function ϕ on X with divϕ = a−b.

Proof. Assume for a contradiction that the statement of the proposition is false. Then there are a
positive integer d and homogeneous polynomials f ,g ∈ S(X) of degree d such that the following
conditions hold:

(a) There are points a1, . . . ,a3d−1 and a 6= b on X such that

divg = a1 + · · ·+a3d−1 +a and div f = a1 + · · ·+a3d−1 +b

(hence divϕ = a−b for ϕ = g
f ).

(b) Among the a1, . . . ,a3d−1 there are at least 2d distinct points. (If this is not the case in the first
place, we can replace f and g by f · l and g · l, respectively, for some homogeneous linear
polynomial l that vanishes on X at three distinct points that are not among the ai. This raises
the degree of the polynomials by 1 and the number of distinct points by 3, so by doing this
often enough we can get at least 2d distinct points.)

Pick d minimal with these two properties.

If d = 1 then divg = a1 + a2 + a and div f = a1 + a2 + b, so we must have a = b = ψ(a1,a2) by
Notation 14.18, in contradiction to our assumption. Hence we can assume that d > 1. Let us relabel
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the points a1, . . . ,a3d−1 such that a2 6= a3, and such that a1 = a2 if there are any equal points among
the ai.

Now consider linear combinations λ f + µg for λ ,µ ∈ K, not both zero. As the polynomials f and
g have different divisors they are linearly independent in S(X), and hence λ f +µg does not vanish
identically on X . Moreover, by Lemma 14.15 (a) we have a1 + · · ·+ a3d−1 ≤ div(λ f + µg) for all
λ and µ , and for any given c ∈ X there are λ and µ with a1 + · · ·+ a3d−1 + c ≤ div(λ f + µg). Of
course, by Bézout’s Theorem we must then have div(λ f +µg) = a1 + · · ·+a3d−1 + c.

In other words, by passing to linear combinations of f and g we can assume that the last points
a and b in the divisors of f and g are any two points we like. Let us choose a = ψ(a1,a2) and
b = ψ(a1,a3). Then

divg = (a1 +a2 +ψ(a1,a2))+a3 +a4 + · · ·+a3d−1

and div f = (a1 +a3 +ψ(a1,a3))+a2 +a4 + · · ·+a3d−1.

But a1 + a2 +ψ(a1,a2) and a1 + a3 +ψ(a1,a3) are divisors of homogeneous linear polynomials
k and l in S(X), respectively, and hence by Lemma 14.17 (b) there are homogeneous polynomials
f ′,g′ ∈ S(X) of degree d−1 with g = kg′ and f = l f ′, and thus with

divg′ = a4 + · · ·+a3d−1 +a3 and div f ′ = a4 + · · ·+a3d−1 +a2.

Note that these new polynomials f ′ and g′ satisfy (a) for d replaced by d−1, as a3 6= a2 by assump-
tion. Moreover, f ′ and g′ satisfy (b) because, if there are any equal points among the ai at all, then by
our relabeling of these points there are only two distinct points among a1,a2,a3, and so there must
still be at least 2d−2 distinct points among a4, . . . ,a3d−1.

This contradicts the minimality of d, and therefore proves the proposition. �

Remark 14.20. In particular, Proposition 14.19 implies that Pic0 X 6= {0} for any smooth cubic
surface X ⊂ P2. So by Example 14.11 we can already see that X is not isomorphic to P1. In fact, we
will see in the next chapter that Proposition 14.19 suffices to compute Pic0 X explicitly.


