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13. Applications of Bézout’s Theorem

Bézout’s Theorem (as in Proposition 12.16 or Corollary 12.26) is clearly one of the most powerful
results in algebraic geometry that we will discuss in this class. To illustrate this, let us now take
some time to study several of its applications, which are in fact of quite different flavors.

Our first application is actually not much more than a simple remark. It concerns the question
whether the ideal of a given variety of pure dimension n — k in affine space A" or projective space
P" can be generated by k elements. We have seen in Exercise 7.16 (a) already that this is always the
case if k = 1. On the other hand, Example 0.11 and Exercise 2.32 show that for k > 2 one sometimes
needs more than k generators. Bézout’s Theorem can often be used to detect when this happens, e. g.
in the following setting.

Proposition 13.1. Let X C P3 be a curve that is not contained in any proper linear subspace of 3.
If deg X is a prime number, then 1(X) cannot be generated by two elements.

Proof. Assume for a contradiction that we have I(X) = (f,g) for two homogeneous polynomials
/& € K[xp,x1,x2,x3]. Clearly, g does not vanish identically on any irreducible component of V(f),
since otherwise the zero locus of (f,g) would have codimension 1. By Proposition 12.16 and Ex-
ample 12.17 we therefore have

degX = deg((f) + (g)) = deg(f) -degg =deg f - deg.
As degX is a prime number, this is only possible if deg f = 1 or degg = 1, i.e. if one of these

polynomials is linear. But then X is contained in a proper linear subspace of P?, in contradiction to
our assumption. O

Example 13.2. Let X be the degree-3 Veronese embedding of P! as in Construction 7.27, i.e.

X ={(s*:8’t:51%:0%) : (s:1) e P} C PP,
By Exercise 12.15 (b) we know that X is a cubic curve, i. e. degX = 3. Moreover, X is not contained
in any proper linear subspace of 3, since otherwise the monomials s°,s%¢,st2,#> would have to

satisfy a K-linear relation. Hence Proposition 13.1 implies that the ideal /(X) cannot be generated
by two elements.

However, one can check directly that (X) can be generated by three elements. For example, we can
write
I(X) = (xox2 — X7, X1X3 — X3, X0X3 — X X2).

In the spirit of Bézout’s Theorem, we can also see geometrically why none of these three generators
is superfluous: if we leave out e. g. the last generator and consider I = (xx2 —x%,xl)q —x%) instead,
we now have deg/ = 2-2 = 4. Clearly, V(I) still contains the cubic X, and hence by the additivity of
degrees as in Example 12.14 (b) there must be another 1-dimensional component in V (I) of degree
1. In fact, this component is easy to find: we have V(I) = X UL for the line L =V (x1,xp).

Exercise 13.3. Let X C P” be an irreducible curve of degree d. Show that X is contained in a linear
subspace of P" of dimension at most d.

As another application of Bézout’s Theorem, we are now able to prove the result already announced
in Example 7.6 (a) that any isomorphism of P" is linear, i. e. a projective automorphism in the sense
of this example. Note that the corresponding statement would be false in the affine case, as e. g.
fiA2— A% (x1,x2) — (x1,%2 +x7) is an isomorphism with inverse f~!: (x1,x2) = (x1,%2 —x3).

Proposition 13.4. Every isomorphism f : P" — P" is linear, i.e. of the form f(x) = Ax for an
invertible matrix A € GL(n+ 1,K).
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Proof. Let H C IP" be a hyperplane (given as the zero locus of one homogeneous linear polynomial),
and let L C IP" be a line not contained in H. Clearly, the intersection LN H consists of one point
with multiplicity 1 (i.e. I(L) +1(H) has multiplicity 1 in the sense of Definition 12.23 (a)). As f
is an isomorphism, f(L) and f(H) must again be a curve resp. a hypersurface that intersect in one
point with multiplicity 1. By the local version of Bézout’s Theorem as in Corollary 12.26 (a), this
means that deg f(L) - deg f(H) = 1. This is only possible if deg f(H) = 1. In other words, f must
map hyperplanes to hyperplanes.

By composing f with a suitable projective automorphism (i. e. a linear map as in Example 7.6 (a)) we
can therefore assume that f maps the affine part A" = P"\V (xp) isomorphically to itself. Passing to
this affine part with coordinates xi,...,x,, the above argument shows that f~!(V(x;)) = V(f*x;)
is an affine linear space for all i, so that f*x; must be a power of a linear polynomial. But
f* i Kxi,...,x] = K[x1,...,x,] is an isomorphism by Corollary 4.8 and thus maps irreducible
polynomials to irreducible polynomials again. Hence f*x; is itself linear for all i, which means that
f is an affine linear map on A", i.e. a linear map on P". U

For the rest of this chapter we will now restrict to plane curves. One consequence of Bézout’s
Theorem in this case is that it gives an upper bound on the number of singular points that such a
curve can have, in terms of its degree.

Proposition 13.5. Let X C P? be an irreducible curve of degree d. Then X has at most (dgl)
singular points.

Example 13.6.

(a) A plane curve of degree 1 is a line, which is isomorphic to P!. A curve of degree 2, i.e. a
conic, is always isomorphic to P! as well, as we have seen in Example 7.6 (d). So in both
these cases the curve does not have any singular points, in accordance with the statement of
Proposition 13.5.

(b) By Proposition 13.5, a cubic curve in P can have at most one singular point. In fact, we
have already seen both a cubic with no singular points (e. g. the Fermat cubic in Example
10.20) and a cubic with one singular point (e. g. V,, (xox3 — x0x7 —x3) or V,,(xox3 —x3 ), whose
affine parts we have studied in Example 10.3).

(c) Without the assumption of X being irreducible the statement of Proposition 13.5 is false: a
union of two intersecting lines in P2 has degree 2, but a singular point (namely the intersec-
tion point). However, we will see in Exercise 13.7 that there is a similar statement with a
slightly higher bound also for not necessarily irreducible curves.

Proof of Proposition 13.5. By Example 13.6 (a) it suffices to prove the y
theorem for d > 3. Assume for a contradiction that there are distinct sin- X
gular points ay,. .. ,a(d,l) 41 of X. Moreover, pick d — 3 arbitrary further -

2 1
distinct points by, ...,b;_3 on X, so that the total number of points is

ar
d—1 d
1+d—-3= —1.

We claim that there is a curve Y of degree at most d — 2 that passes through all these points. The ar-
gument is essentially the same as in Exercise 7.31 (c): the space K[xo,x],X2]4—2 of all homogeneous
polynomials of degree d — 2 in three variables is a vector space of dimension (”21), with the coeffi-
cients of the polynomials as coordinates. Moreover, the condition that such a polynomial vanishes
at a given point is clearly a homogeneous linear equation in these coordinates. As (g) — 1 homoge-
neous linear equations in a vector space of dimension (‘21) must have a non-trivial common solution,
we conclude that there is a non-zero polynomial f € K|[xq,x],X2]4—» vanishing at all points a; and
b;. The corresponding curve ¥ = V,,(f) then has degree at most d — 2 (strictly less if f contains
repeated factors) and passes through all these points.
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Note that X and Y cannot have a common irreducible component, since X is irreducible and of bigger
degree than Y. Hence Corollary 12.26 (b) shows that the curves X and Y can intersect in at most
degX -degY = d(d —2) points, counted with multiplicities. But the intersection multiplicity at all a;
is at least 2 by Exercise 12.27 since X is singular there. Hence the number of intersection points that
we know already, counted with their respective multiplicities, is at least

d—1
2(( ) >4—1)4—(61’—3)=d(d—2)+1>d(d—2)7
which is a contradiction. O

Exercise 13.7. Show that a (not necessarily irreducible) curve of degree d in P? has at most (‘é)
singular points. Can you find an example for each 4 in which this maximal number of singular
points is actually reached?

Let us now study smooth plane curves in more detail. An interesting topic that we have neglected
entirely so far is the classical topology of such curves when we consider them over the real or
complex numbers, e. g. their number of connected components in the standard topology. We will
now see that Bézout’s Theorem is able to answer such questions.

Of course, for these results we will need some techniques and statements from topology that have
not been discussed in this class. The following proofs in this chapter should therefore rather be
considered as sketch proofs, which can be made into exact arguments with the necessary topolog-
ical background. However, all topological results that we will need should be intuitively clear —
although their exact proofs are often quite technical. Let us start with the real case, as real curves
are topologically simpler than complex ones.

Remark 13.8 (Real curves). Note that we have developed most of our theory only for algebraically
closed ground fields, so that our constructions and results are not directly applicable to real curves.
However, as we will not go very deep into the theory of real algebraic geometry it suffices to note
that the definition of projective curves and their ideals works over R in the same way as over C. To
apply other concepts and theorems to a real curve X with ideal /(X) = (f) for a real homogeneous
polynomial f, we will simply pass to the corresponding complex curve X¢ = V,(f) C ]P% first. For
example, we will say that X is smooth or irreducible if X is.

Remark 13.9 (Loops of real projective curves). Let X C IE”HZg be a smooth projective curve over R. In
the classical topology, X is then a compact 1-dimensional manifold (see Remark 10.14). This means
that X is a disjoint union of finitely many connected components, each of which is homeomorphic
to a circle. We will refer to these components as loops of X.

Note that X can consist of several loops in the classical topology even if f is irreducible (so that X is
irreducible in the Zariski topology). A convenient way to construct such curves is by deformations
of singular curves. For example, consider the singular cubic curve X in IP’]% whose affine part in AH%
is the zero locus of f3 := x3 —x7 —x3 as in Example 10.3. It has a double point at the origin, as
shown in the picture below on the left. In P%, the curve contains one additional point at infinity that
connects the two unbounded branches, so that X is homeomorphic to two circles glued together at a

point.

O

f3(x1,x2) =0 f(x1,x) —€=0 flx,x)+e=0
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Let us now perturb f3 and consider the curves f3(x,x;) & = 0 for a small number € € R~ instead.
This deforms X into a smooth cubic with one or two loops depending on the sign of the perturbation,
as shown in the picture above. The same technique applied to a singular quartic curve, e. g. the
union of two ellipses given by fi = (x2 +2x3 — 1)(x3 +2x7 — 1), yields two or four loops as in the

following picture.

fa(xi,x) =0 4(x1,x2) (X1,X2)+€—0

Remark 13.10 (Even and odd loops). Although all loops of smooth curves in IP’]% are homeomorphic
to a circle, there are two different kinds of them when we consider their embeddings in projective
space. To understand this, recall from Remark 6.3 that }P’Hzg is obtained from AH% (which we will draw
topologically as an open disc below) by adding a point at infinity for each direction in A%R. This has
the effect of adding a boundary to the disc, with the boundary points corresponding to the points at
infinity. But note that opposite points of the boundary of the disc belong to the same direction in Aﬁ
and hence are the same point in ]P’HZQ. In other words, ]P’BZQ is topologically equivalent to a closed disc
with opposite boundary points identified, as in the picture below on the left.

identify Even loop Odd loop

The consequence of this is that we have two different types of loops. An even loop is a loop such that
its complement has two connected components, which we might call its “interior” (shown in dark
in the picture above, homeomorphic to a disc) and “exterior” (homeomorphic to a Mobius strip),
respectively. In contrast, an odd loop does not divide IE”]%a into two regions; its complement is a single
component homeomorphic to a disc. Note that the distinction between even and odd is not whether
the affine part of the curve is bounded: whereas an odd loop always has to be unbounded, an even
loop may well be unbounded, too. Instead, if you know some topology you will probably recognize
that the statement being made here is just that the fundamental group 7; (Pﬂzg) is isomorphic to Z/27Z;
the two types of loops simply correspond to the two elements of this group.

In principle, a real curve can have even as well as odd loops. There is one restriction however: as the
complement of an odd loop is simply a disc, all other loops in this complement will have an interior
and exterior, so that they are even. In other words, a smooth curve in ]P’HZQ can have at most one odd
loop.

We are now ready to find a bound on the number of loops in a smooth curve in ]P’HZQ of a given
degree. Interestingly, the idea in its proof is almost identical to that in Proposition 13.5, although the
resulting statement is quite different.

Proposition 13.11 (Harnack’s Theorem). A smooth real projective curve of degree d in P]% has at
most (dgl) + 1 loops.
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Example 13.12. A line (d = 1) has always exactly one loop. A conic (d = 2) is a hyperbola,
parabola, or ellipse, so in every case the number of loops is again 1 (after adding the points at
infinity). For d = 3 Harnack’s Theorem gives a maximum number of 2 loops, and for d = 4 we get
at most 4 loops. We have just seen examples of these numbers of loops in Remark 13.9. In fact,
one can show that the bound given in Harnack’s theorem is sharp, i. e. that for every d one can find
smooth real curves of degree d with exactly (dgl) + 1 loops.

Proof sketch of Proposition 13.11. By Example 13.12 it suffices to con-
sider the case d > 3. Assume that the statement of the proposition is false,
i. e. that there are at least (dgl) + 2 loops. We have seen in Remark 13.10
that at least (dgl) + 1 of these loops must be even. Hence we can pick

points ay,...,a (") 41 on distinct even loops of X, and d — 3 more points

by,...,bg_3 on another loop (which might be even or odd). So as in the
proof of Proposition 13.5, we have a total of () — 1 points.

Again as in the proof of Proposition 13.5, it now follows that there is a real curve Y of degree at
most d — 2 passing through all these points. Note that the corresponding complex curves X¢ and Y¢
as in Remark 13.8 cannot have a common irreducible component since X¢ is assumed to be smooth,
hence irreducible by Exercise 10.22 (a), and has bigger degree than Yc. So Bézout’s Theorem as
in Corollary 12.26 (b) implies that X¢ and Y¢ intersect in at most d(d — 2) points, counted with
multiplicities. But recall that the even loops of X containing the points a; divide the real projective
plane into two regions, hence if Y enters the interior of such a loop it has to exit it again at another
point d; of the same loop as in the picture above (it may also happen that Y is tangent to X at g;, in
which case their intersection multiplicity is at least 2 there by Exercise 12.27). So in any case the
total number of intersection points, counted with their respective multiplicities, is at least

d—1
2(( ) )+l>+(d—3)=d(d—2)+l>d(d—2),
which is a contradiction. O

Let us now turn to the case of complex curves. Of course, their topology is entirely different, as they
are 2-dimensional spaces in the classical topology. In fact, we have seen such an example already in
Example 0.1 of the introduction.

Remark 13.13 (Classical topology of complex curves). Let X C ]P% be a smooth curve. Then X is
a compact 2-dimensional manifold in the classical topology (see Remark 10.14). Moreover, one can
show:

(a) X is always an oriented manifold in the classical topology, i.e. a “two-sided surface”, as
opposed to e. g. a Mobius strip. To see this, note that all tangent spaces T, X of X fora € X
are isomorphic to C, and hence admit a well-defined multiplication with the imaginary unit
i. Geometrically, this means that all tangent planes have a well-defined notion of a clockwise
rotation by 90 degrees, varying continuously with a — which defines an orientation of X. In
fact, this statement holds for all smooth complex curves, not just for curves in IP’(Z:.

(b) In contrast to the real case that we have just studied, X is always connected. In short, the
reason for this is that the notion of degree as well as Bézout’s Theorem can be extended
to compact oriented 2-dimensional submanifolds of ]P%. Hence, if X had (at least) two
connected components X; and X, in the classical topology, each of these components would
be a compact oriented 2-dimensional manifold itself, and there would thus be well-defined
degrees deg X|,deg X, € N-. But then X; and X> would have to intersect in degX; - deg X,
points (counted with multiplicities), which is obviously a contradiction.

Of course, the methods needed to prove Bézout’s Theorem in the topological setting are
entirely different from ours in Chapter 12. If you know some algebraic topology, the state-
ment here is that the 2-dimensional homology group H; (]P’%C,Z) is isomorphic to Z. With
this isomorphism, the class of a compact oriented 2-dimensional submanifold in Hz(IED(Z:, Z)
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is a positive number, and the intersection product H, (P%,Z) x Hy(P%,Z) — Hy(P%,Z) = Z
(using Poincaré duality) is just the product of these numbers.

It is now a (non-trivial but intuitive) topological result that a con-

nected compact orientable 2-dimensional manifold X is always

homeomorphic to a sphere with some finite number of “handles”. ( o

This number of handles is called the genus of X. Hence every curve 4 '
in IP% can be assigned a genus that describes its topological type in

the classical topology. The picture on the right shows a complex

curve of genus 2.

Our goal for the rest of this chapter will be to compute the genus of a smooth curve in IP% in terms of
its degree, as already announced in Example 0.3. To do this, we will need the following technique
from topology.

Construction 13.14 (Cell decompositions). Let X be a compact 2-dimensional manifold. A cell
decomposition of X is given by writing X topologically as a finite disjoint union of points, (open)
lines, and (open) discs. This decomposition should be “nice” in a certain sense, e. g. the boundary
points of every line in the decomposition must be points of the decomposition. We do not want to
give a precise definition here (which would necessarily be technical), but only remark that every
“reasonable” decomposition that one could think of will be allowed. For example, the following
picture shows three valid decompositions of the complex curve ]P’(lc, which is topologically a sphere.

| e,

In the left two pictures, we have 1 point, 1 line, and 2 discs (the two halves of the sphere), whereas
in the picture on the right we have 2 points, 4 lines, and 4 discs.

Of course, there are many possibilities for cell decompositions of X. But there is an important
number that does not depend on the chosen decomposition:

Lemma and Definition 13.15 (Euler characteristic). Let X be a compact 2-dimensional manifold.
Consider a cell decomposition of X, consisting of 0y points, 01 lines, and o, discs. Then the number
X :=0p—0]+02

depends only on X, and not on the chosen decomposition. We call it the (topological) Euler charac-
teristic of X.

Proof sketch. Let us first consider the case when we move from one decomposition to a finer one,
i.e. if we add points or lines to the decomposition. Such a process is always obtained by performing
the following steps a finite number of times:

e Adding another point on a line: in this case we raise 0y and o by 1 as in the picture below,
hence the alternating sum 6y — 0] + 0> does not change.

e Adding another line in a disc: in this case we raise o7 and o, by 1, so again 6y — 0] + 02
remains invariant.

add a add a
point line
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We conclude that the alternating sum 6y — 61 + 6> does not change under refinements. But any two
decompositions have a common refinement — which is essentially given by taking all the points
and lines in both decompositions, and maybe adding more points where two such lines intersect. For
example, in Construction 13.14 the decomposition in the picture on the right is a common refinement
of the other two. Hence the Euler characteristic is independent of the chosen decomposition. g

Example 13.16 (Euler characteristic <+ genus). Let X be
a connected compact orientable 2-dimensional manifold of
genus g, and consider the cell decomposition of X as shown ‘ ;
on the right. It has op = 2g + 2 points, 61 = 4g +4 lines, and ' ; %
4 discs, and hence we conclude that the Euler characteristic AN
of X is

X=00—01+0,=2—2g.
In other words, the genus is given in terms of the Euler characteristic as g = 1 — %
We are now ready to compute the genus of a smooth curve in }P%.

Proposition 13.17 (Degree-genus formula). A smooth curve of degree d in IP’% has genus (dgl).

Proof sketch. Let I(X) = (f) for a homogeneous polynomial f of degree d. By a linear change of
coordinates we can assume that a := (1:0:0) ¢ X. Then the projection

X =P, (x0:x1x2) = (x1:x2) wa
from a as in the picture on the right is a well-defined mor- P
phism on X. Let us study its inverse images of a fixed point Y
(x1:xp) € ]P’(lc. Of course, they are given by the values of xo such \
that f(xo,x1,x2) = 0, so that there are exactly d such points — . 3
unless the polynomial f(-,xj,x;) has a multiple zero in xj at a ! \
%c;(int in the inverse image, which happens if and only if f and . IE”%:

g Are simultaneously zero. rﬂ(b) m(c)’

If we choose our original linear change of coordinates general enough, exactly two of the zeroes of
S (+,x1,x2) will coincide at these points in the common zero locus of f and %, so that 771 (x1 1 x7)
then consists of d — 1 instead of d points. These points, as e.g. b and c in the picture above, are
usually called the ramification points of 7. Note that the picture might be a bit misleading since it
suggests that X is singular at b and ¢, which is not the case. The correct topological picture of the
map is impossible to draw however since it would require a real 4-dimensional space, namely an
affine chart of IP’%:.

Let us now pick a sufficiently fine cell decomposition of IP’(IC, containing all images of the ramifi-
cation points as points of the decomposition. If 6y, 01,0, denote the number of points, lines, and
discs in this decomposition, respectively, we have 6y — 01 + 02 = 2 by Example 13.16 since IP’}C is
topologically a sphere, i.e. of genus 0. Now lift this cell decomposition to a decomposition of X
by taking all inverse images of the cells of IP’(%:. By our above argument, all cells will have exactly
d inverse images — except for the images of the ramification points, which have one inverse image
less. As the number of ramification points is |V, (f, g—x’;)| =deg f-deg g—)f; =d(d — 1) by Bézout’s
Theorem, the resulting decomposition of X has doy — d(d — 1) points, doj lines, and do, discs.
Hence by Lemma 13.15 the Euler characteristic of X is

x=doy—d(d—1)—doy+dor =2d —d(d —1) =3d — d?,

which means by Example 13.16 that its genus is

X (d2—3d+2):<d;l>. 0

N —

:1——:
J 2
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Example 13.18.

(a) A smooth curve of degree 1 or 2 in ]P% is isomorphic to IP’}C (see Example 7.6 (d)). It is
therefore topologically a sphere, i. e. of genus 0, in accordance with Proposition 13.17.

(b) By Proposition 13.17, a smooth curve of degree 3 in IE”% has genus 1, i.e. it is topologically
a torus. We will study such plane cubic curves in detail in Chapter 15.

Remark 13.19. Note that every isomorphism of complex varieties is also a homeomorphism in the
classical topology. In particular, two smooth connected projective curves over C of different genus
cannot be isomorphic. Combining this with Proposition 13.17, we see that two smooth curves in ]P’é
of different degree are never isomorphic, unless these degrees are 1 and 2.

Exercise 13.20 (Arithmetic genus). For a projective variety X the number (—1)%™X . (yx(0) —1) is
called its arithmetic genus, where yx denotes as usual the Hilbert polynomial of X. Show that the
arithmetic genus of a smooth curve in IP’% agrees with the (geometric) genus introduced above.

In fact, one can show that this is true for any smooth projective curve over C. However, the proof
of this statement is hard and goes well beyond the scope of these notes. Note that, as the definition
of the arithmetic genus is completely algebraic, one can use it to extend the notion of genus to
projective curves over arbitrary ground fields.

Exercise 13.21. Show that
{((x0 = x1), (yo : 31)) : (5 +21) 05 +7) =xoxiyoyr}  C P xPp

is a smooth curve of genus 1.



