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12. Hilbert Polynomials and Bézout’s Theorem

After our study of smooth cubic surfaces in the last chapter, let us now come back to the general
theory of algebraic geometry. Our main goal of this chapter will be to determine the number of
intersection points of given varieties (in case this number is finite). For example, let X and Y be
two plane curves, with (principal) ideals generated by two polynomials f and g, respectively. If they
do not have a common irreducible component, their intersection will be zero-dimensional, and we
can ask for the number of points in X ∩Y . We will see in Bézout’s Theorem as in Corollaries 12.20
(b) and 12.26 (b) that this number of points is at most deg f ·degg, and that we can even make this
an equality if we count the points with suitable multiplicities. We have seen a special case of this
already in Exercise 4.13, where one of the two curves was a line or a conic.

In particular, this statement means that the number of points in X ∩Y (counted with multiplicities)
depends only on the degrees of the defining polynomials, and not on the polynomials themselves.
One can view this as a direct generalization of the statement that a degree-d polynomial in one
variable always has d zeroes, again counted with multiplicities.

In order to set up a suitable framework for Bézout’s Theorem, we have to take note of the following
two technical observations:

• As mentioned above, we have to define suitable intersection multiplicities, e. g. for two plane
curves X and Y . We have motivated in Remark 1.27 already that such multiplicities are
encoded in the (possibly non-radical) ideal I(X)+ I(Y ). Most constructions in this chapter
are therefore based on ideals rather than on varieties, and consequently commutative algebra
will play a somewhat greater role than before.

• The simplest example of Bézout’s Theorem is that two distinct lines in the plane always meet
in one point. This would clearly be false in the affine setting, where two such lines might
be parallel. We therefore have to work with projective varieties that can have intersection
points at infinity in such cases. 19

Taking these two points into account, we see that our main objects of study will have to be homo-
geneous ideals in polynomial rings. The central concept that we will need is the Hilbert function of
such an ideal.

Definition 12.1 (Hilbert functions).
(a) Let IEK[x0, . . . ,xn] be a homogeneous ideal. Then K[x0, . . . ,xn]/I is a finite-dimensional

graded K-algebra by Lemma 6.10 (c). We can therefore define the function

hI : N→ N, d 7→ dimK K[x0, . . . ,xn]d/Id

encoding the dimensions of the graded parts of this quotient algebra. It is called the Hilbert
function of I.

(b) For a projective variety X ⊂ Pn we set hX := hI(X), so that

hX : N→ N, d 7→ dimK S(X)d ,

where S(X) =K[x0, . . . ,xn]/I(X) is the homogeneous coordinate ring of X as in Construction
6.18. We call hX the Hilbert function of X .

Remark 12.2. Note that the Hilbert function of an ideal is invariant under projective auto-
morphisms as in Example 7.6 (a): an invertible matrix corresponding to an automorphism
Pn → Pn also defines an isomorphism An+1 → An+1, and hence by Corollary 4.8 an isomorphism
K[x0, . . . ,xn]→ K[x0, . . . ,xn] of K-algebras. As this isomorphism respects the grading, any ideal has
the same Hilbert function as its image under this isomorphism.
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Example 12.3.

(a) The Hilbert function of Pn is given by hPn(d) = dimK K[x0, . . . ,xn]d =
(n+d

n

)
for d ∈ N.

(b) Let I EK[x0, . . . ,xn] be a homogeneous ideal with Vp(I) = /0. Then
√

I = (x0, . . . ,xn) or√
I = (1) by the projective Nullstellensatz of Proposition 6.22. In both cases we have xki

i ∈ I
for suitable ki ∈N for all i. This means that all monomials of degree at least k := k0+ · · ·+kn
are contained in I. Hence Id = K[x0, . . . ,xn]d for all d ≥ k, or in other words

hI(d) = 0 for almost all d ∈ N,

where as usual we use the term “almost all” for “all but finitely many”.

(c) Let X = {a} ⊂ Pn be a single point. To compute its Hilbert function we may assume by
Remark 12.2 that this point is a = (1:0 : · · · :0), so that its ideal is I(a) = (x1, . . . ,xn). Then
S(X) = K[x0, . . . ,xn]/I(a)∼= K[x0], and hence

hX (d) = 1 for all d ∈ N.

Exercise 12.4. Compute the Hilbert function of. . .

(a) the ideal (x2
0x2

1,x
3
0)EK[x0,x1];

(b) two intersecting lines in P3;

(c) two non-intersecting lines in P3.

In order to work with Hilbert functions it is convenient to adopt the language of exact sequences
from commutative algebra. The only statement that we will need about them is the following.

Lemma and Definition 12.5 (Exact sequences). Let f : U → V and g : V →W be linear maps
of vector spaces over K. Assume that f is injective, g is surjective, and that im f = kerg. These
assumptions are usually summarized by saying that

0−→U
f−→V

g−→W −→ 0

is an exact sequence [G5, Chapter 4].

Then dimK V = dimK U +dimK W.

Proof. This is just standard linear algebra: we have

dimK V = dimK kerg+dimK img = dimK im f +dimK img = dimK U +dimK W,

with the last equation following since f is injective and g is surjective. �

Proposition 12.6. For any two homogeneous ideals I,JEK[x0, . . . ,xn] we have

hI∩J +hI+J = hI +hJ .

Proof. Set R = K[x0, . . . ,xn]. It is easily checked that

0 −→ R/(I∩ J) −→ R/I×R/J −→ R/(I + J) −→ 0

f 7−→
(

f , f
)(

f ,g
)
7−→ f −g

is an exact sequence. Taking its degree-d part and applying Lemma 12.5 gives the desired result. �

Example 12.7.
(a) Let X and Y be disjoint projective varieties in Pn. Then I(X)∩ I(Y ) = I(X ∪Y ) by Re-

mark 6.23. Moreover, by the same remark the ideal I(X)+ I(Y ) has empty zero locus since
V (I(X)+ I(Y )) = V (I(X))∩V (I(Y )) = X ∩Y = /0, and hence its Hilbert function is almost
everywhere zero by Example 12.3 (b). Proposition 12.6 thus implies that

hX∪Y (d) = hX (d)+hY (d) for almost all d ∈ N.
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In particular, this means by Example 12.3 (c) that for a finite set X = {a1, . . . ,ar} of r points
we have

hX (d) = r for almost all d ∈ N.

(b) Let I = (x2
1)EK[x0,x1]. It is a non-radical ideal whose projective zero locus consists of the

single point (1:0) ∈ P1. In fact, it can be viewed as an ideal describing this point “with
multiplicity 2” as in Remark 1.27.

The Hilbert function remembers this multiplicity: as K[x0,x1]d/Id has basis xd
0 and xd−1

0 x1
for d ≥ 1, we see that hI(d) = 2 for almost all d, in the same way as for the Hilbert function
of two distinct points as in (a).

(c) Let X ⊂ P2 be the union of three points lying on a line. Then there is a homoge-
neous linear polynomial in K[x0,x1,x2] vanishing on X , so that dimK I(X)1 = 1. Hence
hX (1) = dimK K[x0,x1,x2]1/I(X)1 = 3 − 1 = 2. On the other hand, if X consists of
three points not on a line, then no linear polynomial vanishes on X , and consequently
hX (1) = dimK K[x0,x1,x2]1/I(X)1 = 3− 0 = 3. So in particular, we see that in contrast
to Remark 12.2 the Hilbert function is not invariant under arbitrary isomorphisms, since any
set of three points is isomorphic to any other such set.

Together with the result of (a), for a finite set X ⊂ Pn we can say intuitively that hX (d)
encodes the number of points in X for large values of d, whereas it gives some information
on the relative position of these points for small values of d.

Note that the intersection X ∩Y of two varieties X and Y corresponds to the sum of their ideals.
To obtain a formula for the number of points in X ∩Y we therefore have to compute the Hilbert
functions of sums of ideals. The following lemma will help us to do this in the case when one of the
ideals is principal.

Lemma 12.8. Let IEK[x0, . . . ,xn] be a homogeneous ideal, and let f ∈ K[x0, . . . ,xn] be a homoge-
neous polynomial of degree e. Assume that there is a number d0 ∈ N with the following property:

for all homogeneous g ∈ K[x0, . . . ,xn] of degree at least d0 with f g ∈ I we have g ∈ I.

Then hI+( f )(d) = hI(d)−hI(d− e) for almost all d ∈ N.

Proof. Let R = K[x0, . . . ,xn]. There is an exact sequence

0−→ Rd−e/Id−e
· f−→ Rd/Id −→ Rd/(I +( f ))d −→ 0

for all d with d−e≥ d0, where the second map is just the quotient map. In fact, it is obvious that this
quotient map is surjective, and that its kernel is exactly the image of the first map. The injectivity of
the first map is precisely the assumption of the lemma.

The desired statement now follows immediately from Lemma 12.5. �

Before we can apply this lemma, we have to analyze the geometric meaning of the somewhat tech-
nical assumption that f g ∈ I implies g ∈ I for all polynomials g (of sufficiently large degree).

Remark 12.9. Assume that I = I(X) is the (radical) ideal of a projective variety X . Consider the
irreducible decomposition X = X1∪·· ·∪Xr of X , so that I = I(X1)∩·· ·∩ I(Xr) by Remark 6.23 (c).

We claim that the assumption of Lemma 12.8 is then satisfied if f does not vanish identically on any
Xi. In fact, in this case f is non-zero in the integral domain S(Xi) for all i (see Exercise 6.31 (b)).
Hence g f ∈ I, i. e. g f = 0 ∈ S(Xi), implies g = 0 ∈ S(Xi) for all i, and thus g ∈ I.

If I is not radical, a similar statement holds — but in order for this to work we need to be able to
decompose I as an intersection of ideals corresponding to irreducible varieties again. This so-called
primary decomposition of I is one of the main topics in the Commutative Algebra class [G5, Chapter
8]. We will therefore just quote the results that we are going to need.
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Remark 12.10 (Primary decompositions). Let IEK[x0, . . . ,xn] be an arbitrary ideal. Then there is
a decomposition

I = I1∩·· ·∩ Ir

into primary ideals I1, . . . , Ir, which means by definition that g f ∈ Ii implies g ∈ Ii or f ∈
√

Ii for all
i and all polynomials f ,g ∈ K[x0, . . . ,xn] [G5, Definition 8.9 and Proposition 8.16]. Moreover, this
decomposition satisfies the following properties:

(a) The zero loci Va(Ii) are irreducible: by Proposition 2.9 and the Nullstellensatz, this is the
same as saying that K[x0, . . . ,xn]/

√
Ii is an integral domain. So assume that f and g are two

polynomials with g f ∈
√

Ii. Then gk f k ∈ Ii for some k ∈ N. But this implies that gk ∈ Ii or
f k ∈
√

Ii since Ii is primary, and hence that g ∈
√

Ii or f ∈
√√

Ii =
√

Ii.

(b) Applying Remark 1.25 (c) to our decomposition, we see that

Va(I) =Va(I1)∪·· ·∪Va(Ir).

In particular, by (a) all irreducible components of Va(I) must be among the varieties
Va(I1), . . . ,Va(Ir). Moreover, we can assume that no two of these varieties coincide: if
Va(Ii) = Va(I j) for some i 6= j, i. e. by the Nullstellensatz

√
Ii =

√
I j, we can replace the

two ideals Ii and I j by the single ideal Ii∩ I j in the decomposition, which is easily seen to be
primary again.

However, it may well happen that there are (irreducible) varieties among Va(I1), . . . ,Va(Ir)
that are strictly contained in an irreducible component of Va(I) [G5, Example 8.23]. These
varieties are usually called the embedded components of I. In the primary decomposition,
the ideals corresponding to the irreducible components are uniquely determined, whereas
the ones corresponding to the embedded components are usually not [G5, Example 8.23 and
Proposition 8.34].

Using these primary decompositions, we can now show for a homogeneous ideal IEK[x0, . . . ,xn]
that, by a suitable homogeneous linear change of coordinates, we can always achieve that f = x0
satisfies the condition of Lemma 12.8. In fact, assume that g is a homogeneous polynomial such that
gx0 ∈ Ii for all i. We distinguish two cases:

• If Va(Ii) ⊂ {0} then
√

Ii ⊃ (x0, . . . ,xn) by the Nullstellensatz. Hence K[x0, . . . ,xn]d ⊂ Ii for
large d in the same way as in Example 12.3 (b), which means that g ∈ Ii if the degree of g is
big enough.

• If Va(Ii) 6⊂ {0} a general homogeneous linear change of coordinates will assure that Va(Ii)
is not contained in the hypersurface Va(x0). Then x0 is not identically zero on Va(Ii), so that
x0 /∈ Ia(Va(Ii)) =

√
Ii. Since Ii is primary, we conclude that g ∈ Ii.

Let us now come back to our study of Hilbert functions. We have already seen that the important
information in hI concerning the number of intersection points of varieties is contained in its values
hI(d) for large d. We therefore have to study the behavior of hI(d) as d→ ∞. The central result in
this direction is that the Hilbert function is eventually polynomial, with particularly the degree and
the leading coefficient of this polynomial deserving special attention.

Proposition and Definition 12.11 (Hilbert polynomials). Let IEK[x0, . . . ,xn] be a homogeneous
ideal. Then there is a unique polynomial χI ∈ Q[d] such that χI(d) = hI(d) for almost all d ∈ N.
Moreover,

(a) The degree of χI is m := dimVp(I).

(b) If Vp(I) 6= /0, the leading coefficient of χI is 1
m! times a positive integer.

The polynomial χI is called the Hilbert polynomial of I. For a projective variety X ⊂ Pn we set
χX := χI(X).
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Proof. It is obvious that a polynomial with infinitely many fixed values is unique. So let us prove
the existence of χI by induction on m = dimVp(I). The start of the induction follows from Example
12.3 (b): for Vp(I) = /0 we obtain the zero polynomial χI .

Let us now assume that Vp(I) 6= /0. By a homogeneous linear change of coordinates (which does not
affect the Hilbert function by Remark 12.2) we can assume that the polynomial x0 does not vanish
identically on any irreducible component of Vp(I). Hence dimVp(I +(x0)) ≤ m− 1, and so by our
induction on m we know that d 7→ hI+(x0)(d) is a polynomial of degree at most m− 1 for large d.
For reasons that will be apparent later, let us choose

(d
0

)
, . . . ,

( d
m−1

)
as a basis of the vector space of

polynomials in d of degree at most m−1, so that for suitable c0, . . . ,cm−1 ∈Q we can write

hI+(x0)(d) =
m−1

∑
i=0

ci

(
d
i

)
for almost all d ∈ N.

Moreover, by Remark 12.10 we can assume that Lemma 12.8 is applicable for f = x0, so that

hI(d)−hI(d−1) = hI+(x0)(d) =
m−1

∑
i=0

ci

(
d
i

)
for almost all d ∈ N. (1)

We will now show by induction on d that there is a constant c ∈Q such that

hI(d) = c+
m−1

∑
i=0

ci

(
d +1
i+1

)
for almost all d ∈ N. (2)

The start of the induction is trivial, since we can always adjust c so that this equation holds at a single
value of d (chosen so that (1) holds for all larger values of d). But then for all larger d we have

hI(d +1) = hI(d)+
m−1

∑
i=0

ci

(
d +1

i

)
= c+

m−1

∑
i=0

ci

((
d +1
i+1

)
+

(
d +1

i

))
= c+

m−1

∑
i=0

ci

(
d +2
i+1

)
by (1) and the induction assumption. As the right hand side of (2) is a polynomial in d (of degree at
most m), this proves the existence of χI .

Finally, if Vp(I) 6= /0 let us show that the dm-coefficient of χI is 1
m! times a positive integer, thus

proving the additional statements (a) and (b). We will do this again by induction on m.

• m = 0: In this case χI is a constant, and it is clearly a non-negative integer, since it is by
definition the dimension of K[x0, . . . ,xn]d/Id for large d. Moreover, it cannot be zero, since
otherwise Id = K[x0, . . . ,xn]d for some d, which implies xd

i ∈ Id for all i and thus Vp(I) = /0.

• m > 0: In this case Vp(I) has an irreducible component of dimension m (and none of bigger
dimension). In our proof above, the zero locus of x0 on this component is non-empty by
Exercise 6.32 (b), and of dimension m−1 by Proposition 2.25 (c). Hence dimVp(I+(x0)) =
m−1, and so by induction χI+(x0) is a polynomial of degree m−1, with (m−1)! times the
leading coefficient being a positive integer. But note that in the proof above this integer is
just cm−1, which is then also m! times the leading coefficient of χI by (2). �

Remark 12.12. Of course, all our statements concerning the values of the Hilbert function d 7→ hI(d)
at large values of d can be transferred immediately to the Hilbert polynomial. For example, Example
12.3 implies that χI = 0 (as a polynomial) if Vp(I) = /0, and χI = 1 if I is the ideal of a point. Similar
statements hold for Proposition 12.6, Example 12.7, and Lemma 12.8.

Definition 12.13 (Degree). Let IEK[x0, . . . ,xn] be a homogeneous ideal with non-empty projective
zero locus, and let m = dimVp(I). Then m! times the leading coefficient of χI , which is a positive
integer by Proposition 12.11, is called the degree deg I of I. The reason for this name will become
clear in Example 12.17.

For a projective variety X , its degree is defined as degX := deg I(X).

Example 12.14.
(a) The degree of Pn is n! times the dn-coefficient of dimK K[x0, . . . ,xn]d =

(n+d
n

)
, i. e. degPn = 1.

By Example 12.3 (c), the degree of a single point is 1 as well.
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More generally, if X ⊂ Pn is any linear space then its homogeneous coordinate ring is iso-
morphic to a polynomial ring, and hence as above degX = 1 again.

(b) Let X and Y be projective varieties in Pn of the same dimension m, and assume that they
do not have a common irreducible component. Then the zero locus X ∩Y of I(X)+ I(Y )
has dimension smaller than m, so that χI(X)+I(Y ) has degree less than m. Moreover, we have
I(X)∩ I(Y ) = I(X ∪Y ), and hence considering m! times the degree-m coefficients in the
Hilbert polynomials of I(X)∩ I(Y ), I(X)+ I(Y ), I(X), and I(Y ) yields

deg(X ∪Y ) = degX +degY

by Proposition 12.6 (which of course holds for the Hilbert polynomials as well as for the
Hilbert functions).

(c) Let IEK[x0, . . . ,xn] be a homogeneous ideal with finite zero locus, consisting of r points.
Then χ√I = r by Example 12.7 (a). But

√
I ⊃ I also implies χ√I ≤ χI , and so we conclude

that
deg I = χI ≥ χ√I = r.

In fact, in Corollary 12.26 we will refine this statement by interpreting deg I as a sum of mul-
tiplicities for each point in Vp(I), with each of these multiplicities being a positive integer.

Exercise 12.15.
(a) Show that the degree of the Segre embedding of Pm×Pn is

(n+m
n

)
.

(b) Show that the degree of the degree-d Veronese embedding of Pn is dn.
20

We are now ready to prove the main result of this chapter.

Proposition 12.16 (Bézout’s Theorem). Let X ⊂ Pn be a projective variety of dimension at least
1, and let f ∈ K[x0, . . . ,xn] be a homogeneous polynomial that does not vanish identically on any
irreducible component of X. Then

deg(I(X)+( f )) = degX ·deg f .

Proof. Let m = dimX . By Definition 12.13, the Hilbert polynomial of X is given by

χX (d) =
degX

m!
dm +adm−1 + (terms of degree less than m−1)

for some a ∈Q. So by Remark 12.9 we can apply Lemma 12.8 and obtain with e := deg f

χI(X)+( f )(d) = χX (d)−χX (d− e)

=
degX

m!
(dm− (d− e)m)+a(dm−1− (d− e)m−1)+ (terms of degree less than m−1)

=
e degX
(m−1)!

dm−1 + (terms of degree less than m−1).

By Definition 12.13 again, this means that deg(I(X)+( f )) = e degX = degX ·deg f . �

Example 12.17. Let I = ( f )EK[x0, . . . ,xn] be a principal ideal. Then Bézout’s Theorem together
with Example 12.14 (a) implies

deg I = deg((0)+( f )) = degPn ·deg f = deg f .

In particular, if X ⊂ Pn is a hypersurface, so that I(X) = ( f ) for some homogeneous polynomial f
by Exercise 7.16 (a), then degX = deg f . This justifies the name “degree” in Definition 12.13.

Exercise 12.18. Prove that every pure-dimensional projective variety of degree 1 is a linear space.

Notation 12.19. Let X ⊂Pn be an irreducible projective variety. In certain cases there are commonly
used names to describe the degree and / or the dimension of X that we have probably used informally
already several times:
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(a) If degX = 1 then X is called a line if dimX = 1, a plane if dimX = 2, and a hyperplane if
dimX = n−1.

(b) For any dimension, X is called a quadric if degX = 2, a cubic if degX = 3, a quartic if
degX = 4, and so on.

Corollary 12.20 (Bézout’s Theorem for curves).
(a) Let X ⊂ Pn be a curve, and let f ∈ K[x0, . . . ,xn] be a homogeneous polynomial that does not

vanish identically on any irreducible component of X. Then

|X ∩V ( f )| ≤ degX ·deg f .

(b) For any two curves X and Y in P2 without a common irreducible component we have

|X ∩Y | ≤ degX ·degY.

Proof.

(a) As I(X)+ ( f ) is an ideal with zero locus X ∩V ( f ), the statement follows from Bézout’s
Theorem together with Example 12.14 (c).

(b) Apply (a) to a polynomial f generating I(Y ), and use Example 12.17. �

For the remaining part of this chapter we will focus on the case of curves as in Corollary 12.20. Our
goal is to assign a natural multiplicity to each point in X ∩V ( f ) (resp. X ∩Y ) so that the inequality
becomes an equality when all points are counted with their respective multiplicities. In order to
achieve this we have to study the degree of a homogeneous ideal with zero-dimensional zero locus
from a local point of view. It is convenient to do this in an affine chart of Pn, and then finally in the
local rings.

Exercise 12.21. Let IEK[x0, . . . ,xn] be a homogeneous ideal with dimVp(I) = 0. Assume that we
have chosen coordinates so that all points in Vp(I) have a non-vanishing x0-coordinate. Prove that
the degree of I is then

deg I = χI = dimK K[x1, . . . ,xn]/J,

where J = { f (1,x1, . . . ,xn) : f ∈ I}EK[x1, . . . ,xn].

The following lemma now expresses this dimension as a sum of local dimensions. In case you
have attended the Commutative Algebra class already you will probably recognize this as precisely
the Structure Theorem for Artinian rings, stating that an Artinian ring is always the product of its
localizations [G5, Proposition 7.20].

Lemma 12.22. Let JEK[x1, . . . ,xn] be an ideal with finite affine zero locus Va(J) = {a1, . . . ,ar}.
Then

K[x1, . . . ,xn]/J ∼= OAn,a1/J OAn,a1 ×·· ·×OAn,ar/J OAn,ar ,

where J OAn,ai denotes the ideal in OAn,ai generated by all elements f
1 for f ∈ J.

Proof. Consider the primary decomposition of J as in Remark 12.10. By part (b) of this remark it
is of the form J = J1∩ ·· ·∩ Jr for some ideals J1, . . . ,Jr with Va(Ji) = {ai} for all i. Moreover, note
that Ji OAn,a j is the unit ideal for i 6= j since a j /∈ Va(Ji) implies that there is a polynomial in Ji not
vanishing at a j, so that it is a unit in the local ring OAn,a j . Hence it suffices to prove that

K[x1, . . . ,xn]/J ∼= OAn,a1/J1 OAn,a1 ×·· ·×OAn,ar/Jr OAn,ar .

We will do this by showing that the K-algebra homomorphism

ϕ : K[x1, . . . ,xn]/J→ OAn,a1/J1 OAn,a1 ×·· ·×OAn,ar/Jr OAn,ar , f 7→
(

f , . . . , f
)

is bijective.
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• ϕ is injective: Let f be a polynomial with ϕ
(

f
)
= 0. Then f lies in Ji OAn,ai for all i, i. e.

f
1 = gi

fi
for some gi, fi with gi ∈ Ji and fi ∈ K[x0, . . . ,xn] such that f (ai) 6= 0. This means that

hi( fi f − gi) = 0 for some hi with hi(ai) 6= 0, and hence hi fi f ∈ Ji. But hi fi /∈ I(ai) means
hi fi /∈

√
Ji, and thus f ∈ Ji since Ji is primary. As this holds for all i, we conclude that f ∈ J,

i. e. f = 0 in K[x1, . . . ,xn]/J.

• ϕ is surjective: By symmetry of the factors it suffices to prove that (1,0, . . . ,0) ∈ imϕ . As
V (J1+Ji) = {a1}∩{ai}= /0 for all i > 1 we see that 1∈

√
J1 + Ji, and hence also 1∈ J1+Ji.

There are thus ai ∈ J1 and bi ∈ Ji with ai +bi = 1, so that bi ≡ 0 mod Ji and bi ≡ 1 mod J1.
Hence the product b2 · · · · ·br is an inverse image of (1,0, . . . ,0) under ϕ . �

It is now straightforward to translate Bézout’s Theorem for curves into a local version.

Definition 12.23 (Multiplicities).
(a) Let IEK[x0, . . . ,xn] be a homogeneous ideal with finite projective zero locus, and let a ∈ Pn.

Choose an affine patch of Pn containing a, and let J be the corresponding affine ideal as in
Exercise 12.21. Then

multa(I) := dimK OAn,a/J OAn,a

is called the multiplicity of I at a.

(b) Let X ⊂ Pn be a projective curve, and let a ∈ X be a point. For a homogeneous polynomial
f ∈ K[x0, . . . ,xn] that does not vanish identically on any irreducible component of X , the
number

multa(X , f ) := multa(I(X)+( f ))
is called the (vanishing) multiplicity of f at a. Note that multa(X , f ) depends only on the
class of f modulo I(X) and not on f itself, so that we can also construct the multiplicity
multa(X , f ) for f ∈ S(X). In this case, we will also often simplify its notation to multa( f ).

If n = 2 and Y ⊂ P2 is another curve that does not share a common irreducible component
with X , the intersection multiplicity of X and Y at a is defined as

multa(X ,Y ) := multa(I(X)+ I(Y )).

Remark 12.24 (Positivity of multiplicities). Continuing the notation of Definition 12.23 (a), note
that 1 /∈ J OAn,a if and only if a ∈ Vp(I). It follows that multa(I) ≥ 1 if and only if a ∈ Vp(I).
Applying this to Definition 12.23 (b), we see that the vanishing multiplicity multa(X , f ) is at least
1 if and only if f (a) = 0, and the intersection multiplicity multa(X ,Y ) is at least 1 if and only if
a ∈ X ∩Y . In fact, we will show in Exercise 12.27 that there is also an easy geometric criterion for
when multa(X ,Y ) = 1.

Remark 12.25 (Vanishing and intersection multiplicities in local rings). It is often useful to ex-
press the multiplicities of Definition 12.23 (b) in terms of local rings as in Definition 12.23 (a). As
above, we choose an affine patch {x ∈ Pn : xi 6= 0} ∼=An of Pn containing a. By abuse of notation, if
f ∈ K[x0, . . . ,xn] is a homogeneous polynomial, we will also denote by f the (not necessarily homo-
geneous) polynomial obtained from it by setting xi equal to 1, and then also its quotient by 1 in the
local ring OAn,a (see Exercise 3.24). Then Definition 12.23 can be formulated as follows:

(a) Let X ⊂ Pn be a curve, and let f ∈K[x0, . . . ,xn] be a homogeneous polynomial not vanishing
identically on any irreducible component of X . Denote by U = X ∩An the affine part of X in
the chosen patch, and let J = I(U) be its ideal. Then the vanishing multiplicity of f at a∈ Pn

is equal to dimK OAn,a/(J +( f ))OAn,a by Definition 12.23. But OAn,a/J OAn,a ∼= OX ,a by
Exercise 3.23, and so we conclude that

multa(X , f ) = dimK OX ,a/( f ).

Note that we could use the same formula to define the vanishing multiplicity for any local
function f ∈OX ,a that does not vanish identically on any irreducible component of X through
a. In fact, for an irreducible variety we will even define such a multiplicity for rational
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functions in Construction 14.5, which then includes the case of local functions (see Exercise
9.8 (b) and Remark 14.7).

(b) For two curves X ,Y ⊂ P2 without common irreducible component and ideals I(X) = ( f ) and
I(X) = (g) their intersection multiplicity is

multa(X ,Y ) = dimK OA2,a/( f ,g),

or alternatively with (a)

multa(X ,Y ) = dimK OX ,a/(g) = dimK OY,a/( f ).

Of course, as we have defined the multiplicities above using affine charts, we could construct them
equally well for affine instead of projective varieties. However, the projective case is needed for the
local version of Bézout’s Theorem, which we can now prove.

Corollary 12.26 (Bézout’s Theorem for curves, local version).
(a) Let X ⊂ Pn be a curve, and let f ∈ K[x0, . . . ,xn] be a homogeneous polynomial that does not

vanish identically on any irreducible component of X. Then

∑
a∈X∩V ( f )

multa(X , f ) = degX ·deg f .

(b) For any two curves X and Y in P2 without a common irreducible component we have

∑
a∈X∩Y

multa(X ,Y ) = degX ·degY.

Proof.

(a) By Exercise 12.21, Lemma 12.22, and the definition of multiplicities, all applied to the ideal
I(X)+( f ), we have

deg(I(X)+( f )) = ∑
a∈X∩V ( f )

multa(X , f ).

Hence the statement follows immediately from Proposition 12.16.

(b) This follows from (a) for f a polynomial generating I(Y ), since degY = deg f by Example
12.17. �

Exercise 12.27 (Geometric interpretation of intersection multiplicities). Let X ,Y ⊂A2 be two affine
curves containing the origin. Moreover, let I(X) = ( f ) and I(Y ) = (g) be their ideals. Show that the
following statements are equivalent:

(a) dimK OA2,0/( f ,g) = 1 (i. e. the intersection multiplicity of X and Y at the origin is 1).

(b) X and Y are smooth at 0 and have different tangent spaces there (i. e. “X and Y intersect
transversely at the origin”).

Example 12.28. Consider the two projective curves

X =V (x0x2− x2
1) and Y =V (x2)

in P2, whose affine parts (which we have already considered in Remark
1.27) are shown in the picture on the right. Note that degX = 2 and
degY = 1 by Example 12.17, and that a := (1:0 :0) is the only point in
the intersection X ∩Y . As X and Y have the same tangent space at a, we
must have multa(X ,Y )≥ 2 by Exercise 12.27.

X

a

Y

In fact, it is easy to compute multa(X ,Y ) explicitly: by definition we have

multa(X ,Y ) = multa(x0x2− x2
1,x2) = dimK OA2,0/(x2− x2

1,x2) = dimK OA2,0/(x
2
1,x2),

and since a is the only intersection point of X and Y we can rewrite this by Lemma 12.22 as

multa(X ,Y ) = dimK K[x1,x2]/(x2
1,x2) = dimK K[x1]/(x2

1) = 2.
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Note that this is in accordance with Bézout’s Theorem as in Corollary 12.26 (b), since multa(X ,Y ) =
2 = degX ·degY .


