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11. The 27 Lines on a Smooth Cubic Surface

As an application of the theory that we have developed so far, we now want to study lines on cubic
surfaces in P3. In Example 0.9, we have already mentioned that every smooth cubic surface has
exactly 27 lines on it. Our goal is now to show this, to study the configuration of these lines, and to
prove that every smooth cubic surface is birational (but not isomorphic) to P2. All these results are
classical, dating back to the 19th century. They can be regarded historically as being among the first
non-trivial statements in projective algebraic geometry.

The results of this chapter will not be needed later on. Most proofs will therefore not be given in
every detail here. The aim of this chapter is rather to give an idea of what can be done with our
current methods.

For simplicity, we will restrict ourselves to the case of the ground field K = C. By a smooth cubic
surface we will always mean a smooth hypersurface in P3 that can be written as the zero locus of an
irreducible homogeneous polynomial of degree 3. Let us start with the discussion of a special case
of such a cubic surface: the Fermat cubic Vp(x3

0 + x3
1 + x3

2 + x3
3)⊂ P3 as in Example 10.20.

Lemma 11.1. The Fermat cubic X =Vp(x3
0 + x3

1 + x3
2 + x3

3)⊂ P3 contains exactly 27 lines.

Proof. Up to a permutation of coordinates, every line in P3 is given by two linear equations of the
form x0 = a2x2 + a3x3 and x1 = b2x2 + b3x3 for suitable a2,a3,b2,b3 ∈ C. Such a line lies in X if
and only if

(a2x2 +a3x3)
3 +(b2x2 +b3x3)

3 + x3
2 + x3

3 = 0

as a polynomial in C[x2,x3], so by comparing coefficients if and only if

a3
2 +b3

2 =−1, (1)

a3
3 +b3

3 =−1, (2)

a2
2a3 =−b2

2b3, (3)

a2a2
3 =−b2b2

3. (4)

If a2,a3,b2,b3 are all non-zero, then (3)2/(4) gives a3
2 = −b3

2, in contradiction to (1). Hence for a
line in the cubic at least one of these numbers must be zero. Again after possibly renumbering the
coordinates we may assume that a2 = 0. Then b3

2 =−1 by (1), b3 = 0 by (3), and a3
3 =−1 by (2).

Conversely, for such values of a2,a3,b2,b3 the above equations all hold, so that we really obtain a
line in the cubic.

We thus obtain 9 lines in X by setting b2 = −ω j and a3 = −ωk for 0 ≤ j,k ≤ 2 and ω = exp( 2πi
3 )

a primitive third root of unity. So by finally allowing permutations of the coordinates we find that
there are exactly the following 27 lines on X :

x0 + x3ω
k = x1 + x2ω

j = 0, 0≤ j,k ≤ 2,

x0 + x2ω
k = x3 + x1ω

j = 0, 0≤ j,k ≤ 2,

x0 + x1ω
k = x3 + x2ω

j = 0, 0≤ j,k ≤ 2. �
18

Corollary 11.2. Let X ⊂ P3 again be the Fermat cubic as in Lemma 11.1.

(a) Given any line L in X, there are exactly 10 other lines in X that intersect L.

(b) Given any two disjoint lines L1,L2 in X, there are exactly 5 other lines in X meeting both L1
and L2.
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Proof. As we know all the lines in X by the proof of Lemma 11.1, this is just simple checking. For
example, to prove (a) we may assume by permuting coordinates and multiplying them with suitable
third roots of unity that L is given by x0 + x3 = x1 + x2 = 0. The other lines meeting L are then
exactly the following:

4 lines of the form x0 + x3ω
k = x1 + x2ω

j = 0, ( j,k) = (1,0),(2,0),(0,1),(0,2),

3 lines of the form x0 + x2ω
j = x3 + x1ω

j = 0, 0≤ j ≤ 2,

3 lines of the form x0 + x1ω
j = x3 + x2ω

j = 0, 0≤ j ≤ 2.

The proof of part (b) is analogous. �

Let us now transfer these results to an arbitrary smooth cubic surface. This is where it gets interest-
ing, since the equations determining the lines lying in the cubic as in the proof of Lemma 11.1 will
in general be too complicated to solve them directly. Instead, we will only show that the number of
lines in a smooth cubic must be the same for all cubics, so that we can then conclude by Lemma 11.1
that this number must be 27. In other words, we have to consider all smooth cubic surfaces at once.

Construction 11.3 (The incidence correspondence of lines in smooth cubic surfaces). As in Exer-
cise 10.22 (b), let P19 = P(

3+3
3 )−1 be the projective space of all homogeneous degree-3 polynomials

in x0,x1,x2,x3 modulo scalars, so that the space of smooth cubic surfaces is a dense open subset U
of P19. More precisely, a smooth cubic surface can be given as the zero locus of an irreducible poly-
nomial fc := ∑α cα xα = 0 in multi-index notation, i. e. α runs over all quadruples of non-negative
indices (α0,α1,α2,α3) with ∑i αi = 3. The corresponding point in U ⊂ P19 is then the one with
homogeneous coordinates c = (cα)α .

Moreover, we know already that the lines in P3 are parametrized by the Grassmannian G(2,4) intro-
duced in Chapter 8. We can therefore consider the incidence correspondence

M := {(X ,L) : L is a line contained in the smooth cubic X} ⊂U×G(2,4).

Note that it comes with a natural projection map π : M→U sending a pair (X ,L) to X , and that the
number of lines in a cubic surface is just its number of inverse images under π .

To show that this number of inverse images is constant on U , we will pass from the algebraic to the
analytic category and prove the following statement.

Lemma 11.4. With notations as in Construction 11.3, the
incidence correspondence M is. . .

(a) closed in the Zariski topology of U×G(2,4);

(b) locally in the classical topology the graph of a contin-
uously differentiable function U → G(2,4), as shown
in the picture on the right.

π

U

M ⊂U×G(2,4)

Proof. Let (X ,L)∈M. By a linear change of coordinates we can assume that L is given by the equa-
tions x2 = x3 = 0. Locally around this point L ∈G(2,4) in the Zariski topology we can use the affine
coordinates on the Grassmannian as in Construction 8.15, namely a2,a3,b2,b3 ∈ C corresponding
to the line in P3 spanned by the rows of the matrix(

1 0 a2 a3
0 1 b2 b3

)
,

with the point (a2,a3,b2,b3) = (0,0,0,0) corresponding to L. On the space U of smooth cubic
surfaces we use the coordinates (cα)α as in Construction 11.3. In these coordinates (a,b,c) =
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(a2,a3,b2,b3,cα) on U×G(2,4), the incidence correspondence M is then given by

(a,b,c) ∈M ⇐⇒ fc(s(1,0,a2,a3)+ t (0,1,b2,b3)) = 0 for all s, t

⇐⇒ ∑
α

cα sα0tα1(sa2 + t b2)
α2(sa3 + t b3)

α3 = 0 for all s, t

⇐⇒ : ∑
i

sit3−iFi(a,b,c) = 0 for all s, t

⇐⇒ Fi(a,b,c) = 0 for 0≤ i≤ 3.

This shows (a), since F0, . . . ,F3 are polynomial functions in a,b,c. The claim of (b) is that these
four equations determine (a2,a3,b2,b3) locally around the origin in the classical topology in terms
of c. Of course, we will prove this with (the complex version of) the Implicit Function Theorem
[G2, Proposition 27.9]. All we have to show is therefore that the Jacobian matrix J := ∂ (F0,F1,F2,F3)

∂ (a2,a3,b2,b3)

is invertible at a = b = 0.

So let us compute this Jacobian matrix. Note that

∂

∂a2

(
∑

i
sit3−iFi

)∣∣∣
a=b=0

=
∂

∂a2
fc(s, t,sa2 + t b2,sa3 + t b3)

∣∣∣
a=b=0

= s
∂ fc

∂x2
(s, t,0,0).

The (s, t)-coefficients of this polynomial are the first column in the matrix J. Similarly, the other
columns are obviously s ∂ fc

∂x3
(s, t,0,0), t ∂ fc

∂x2
(s, t,0,0), and t ∂ fc

∂x3
(s, t,0,0). Hence, if the matrix J was

not invertible, there would be a relation

(λ2s+µ2t)
∂ fc

∂x2
(s, t,0,0)+(λ3s+µ3t)

∂ fc

∂x3
(s, t,0,0) = 0

identically in s, t, with (λ2,µ2,λ3,µ3) ∈ C4\{0}. As homogeneous polynomials in two variables
always decompose into linear factors, this means that ∂ fc

∂x2
(s, t,0,0) and ∂ fc

∂x3
(s, t,0,0) must have a

common linear factor, i. e. that there is a point p = (p0, p1,0,0) ∈ L with ∂ fc
∂x2

(p) = ∂ fc
∂x3

(p) = 0.

But as the line L lies in the cubic Vp( fc), we also have fc(s, t,0,0) = 0 for all s, t. Differentiating this
with respect to s and t gives ∂ fc

∂x0
(p) = 0 and ∂ fc

∂x1
(p) = 0, respectively. Hence all partial derivatives

of fc vanish at p ∈ L ⊂ X . By the Jacobi criterion of Exercise 10.12 (b) this means that p would be
a singular point of X , in contradiction to our assumption. Hence J must be invertible, and part (b) of
the lemma follows. �

Corollary 11.5. Every smooth cubic surface contains exactly 27 lines.

Proof. In this proof we will work with the classical topology throughout. Let X ∈ U be a fixed
smooth cubic, and let L⊂ P3 be an arbitrary line. We distinguish two cases:

Case 1: If L lies in X , Lemma 11.4 (b) shows that there is an open neighborhood VL×WL of (X ,L) in
U ×G(2,4) in which the incidence correspondence M is the graph of a continuously differentiable
function. In particular, every cubic in VL contains exactly one line in WL.

Case 2: If L does not lie in X there is an open neighborhood VL×WL of (X ,L) such that no cubic in
VL contains any line (since the incidence correspondence is closed by Lemma 11.4 (a)).

Now let L vary. As the Grassmannian G(2,4) is projective, and hence compact, there are finitely
many WL that cover G(2,4). Let V be the intersection of the corresponding VL, which is then again
an open neighborhood of X . By construction, in this neighborhood V all cubic surfaces have the
same number of lines (namely the number of WL coming from case 1). As this argument holds for
any cubic, we conclude that the number of lines contained in a cubic surface is a locally constant
function on U .
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To see that this number is also globally constant, it therefore suffices to show that U is connected.
But this follows from Exercise 10.22 (b): we know that U is the complement of a proper Zariski-
closed subset in P19. But as such a closed subset has complex codimension at least 1 and hence real
codimension at least 2, taking this subset away from the smooth and connected space P19 leaves us
again with a connected space. �

Remark 11.6.
(a) In topological terms, the argument of the proof of Corollary 11.5 says that the map π : M→U

of Construction 11.3 is a 27-sheeted covering map.

(b) Applying the methods of Lemma 11.4 and Corollary 11.5 to suitable incidence correspon-
dences involving two resp. three lines in cubic surfaces, one can show similarly that the
statements of Corollary 11.2 hold for an arbitrary smooth cubic surface X as well: there
are exactly 10 lines in X meeting any given one, and exactly 5 lines in X meeting any two
disjoint given ones.

Note that a cubic surface X is clearly not isomorphic to P2: by Remark 11.6 (b) there are two disjoint
lines on X , whereas in P2 any two curves intersect by Exercise 6.32 (b). However, we will now see
that X is birational to P2, and that it is in fact isomorphic to a blow-up of P2 at six points.

Proposition 11.7. Any smooth cubic surface is birational to P2.

Proof. By Remark 11.6 (b) there are two disjoint lines L1,L2 ⊂ X .
The following mutually inverse rational maps X 99K L1× L2 and
L1×L2 99K X show that X is birational to L1×L2 ∼= P1×P1, and
hence to P2:

“X 99K L1×L2”: By Exercise 6.30, for every point a not on L1 or L2
there is a unique line L in P3 through L1, L2, and a. Take the rational
map from X to L1× L2 sending a to (a1,a2) := (L1 ∩ L,L2 ∩ L),
which is obviously well-defined away from L1∪L2.

L2

a

L1

L

X

a1

a2

“L1×L2 99K X”: Map any pair of points (a1,a2) ∈ L1×L2 to the third intersection point of X with
the line L through a1 and a2. This is well-defined whenever L is not contained in X . �

Proposition 11.8. Any smooth cubic surface is isomorphic to P2 blown up in 6 (suitably chosen)
points.

Proof. We will only sketch the proof. Let X be a smooth cubic surface, and let f : X 99K L1×L2 ∼=
P1×P1 be the rational map as in the proof of Proposition 11.7.

First of all we claim that f is actually a morphism. To see this, note that there is a different description
for f : if a ∈ X\L1, let H be the unique plane in P3 that contains L1 and a, and set f2(a) = H ∩L2.
If one defines f1(a) similarly, then f (a) = ( f1(a), f2(a)). Now if the point a lies on L1, let H be the
tangent plane to X at a, and again set f2(a) = H ∩L2. Extending f1 similarly, one can show that this
extends f = ( f1, f2) to a well-defined morphism X → P1×P1 on all of X .

Now let us investigate where the inverse map P1×P1 99K X is not well-defined. As already men-
tioned in the proof of Proposition 11.7, this is the case if the point (a1,a2)∈ L1×L2 is chosen so that
a1a2 ⊂ X . In this case, the whole line a1a2 will be mapped to (a1,a2) by f , and it can be checked
that f is actually locally the blow-up of this point. By Remark 11.6 (b) there are exactly 5 such lines
a1a2 on X . Hence X is the blow-up of P1×P1 in 5 points, i. e. by Lemma 9.28 the blow-up of P2 in
6 suitably chosen points. �

Remark 11.9. It is interesting to see the lines on a cubic surface X in the picture of Proposition 11.8
in which we think of X as a blow-up of P2 in 6 points. It turns out that the 27 lines correspond to the
following curves that we know already (and that are all isomorphic to P1):

• the 6 exceptional hypersurfaces,
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• the strict transforms of the
(6

2

)
= 15 lines through two of the blown-up points,

• the strict transforms of the
(6

5

)
= 6 conics through five of the blown-up points (see Exercise

7.31 (c)).

In fact, it is easy to check by the above explicit description of the isomorphism of X with the blow-up
of P2 that these curves on the blow-up actually correspond to lines on the cubic surface.

It is also interesting to see again in this picture that every such “line” meets 10 of the other “lines”,
as mentioned in Remark 11.6 (b):

• Every exceptional hypersurface intersects the 5 lines and the 5 conics that pass through this
blown-up point.

• Every line through two of the blown-up points meets

– the 2 exceptional hypersurfaces of the blown-up points,

– the
(4

2

)
= 6 lines through two of the four remaining points,

– the 2 conics through the four remaining points and one of the blown-up points.

• Every conic through five of the blown-up points meets the 5 exceptional hypersurfaces at
these points, as well as the 5 lines through one of these five points and the remaining point.

Exercise 11.10. As in Exercise 10.22 (b) let U ⊂ P(
4+5

4 )−1 = P125 be the set of smooth (3-
dimensional) hypersurfaces of degree 5 in P4. Prove:

(a) The incidence correspondence

{(X ,L) ∈U×G(2,5) : L is a line contained in X}
is smooth of dimension 125, i. e. of the same dimension as U .

(b) Although (a) suggests that a smooth hypersurface of degree 5 in P4 contains only finitely
many lines, the Fermat hypersurface Vp(x5

0 + · · ·+ x5
4)⊂ P4 contains infinitely many lines.


