11. The 27 Lines on a Smooth Cubic Surface

As an application of the theory that we have developed so far, we now want to study lines on cubic surfaces in \mathbb{P}^{3}. In Example 0.9 , we have already mentioned that every smooth cubic surface has exactly 27 lines on it. Our goal is now to show this, to study the configuration of these lines, and to prove that every smooth cubic surface is birational (but not isomorphic) to \mathbb{P}^{2}. All these results are classical, dating back to the 19th century. They can be regarded historically as being among the first non-trivial statements in projective algebraic geometry.
The results of this chapter will not be needed later on. Most proofs will therefore not be given in every detail here. The aim of this chapter is rather to give an idea of what can be done with our current methods.
For simplicity, we will restrict ourselves to the case of the ground field $K=\mathbb{C}$. By a smooth cubic surface we will always mean a smooth hypersurface in \mathbb{P}^{3} that can be written as the zero locus of an irreducible homogeneous polynomial of degree 3 . Let us start with the discussion of a special case of such a cubic surface: the Fermat cubic $V_{p}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right) \subset \mathbb{P}^{3}$ as in Example 10.20.
Lemma 11.1. The Fermat cubic $X=V_{p}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right) \subset \mathbb{P}^{3}$ contains exactly 27 lines.
Proof. Up to a permutation of coordinates, every line in \mathbb{P}^{3} is given by two linear equations of the form $x_{0}=a_{2} x_{2}+a_{3} x_{3}$ and $x_{1}=b_{2} x_{2}+b_{3} x_{3}$ for suitable $a_{2}, a_{3}, b_{2}, b_{3} \in \mathbb{C}$. Such a line lies in X if and only if

$$
\left(a_{2} x_{2}+a_{3} x_{3}\right)^{3}+\left(b_{2} x_{2}+b_{3} x_{3}\right)^{3}+x_{2}^{3}+x_{3}^{3}=0
$$

as a polynomial in $\mathbb{C}\left[x_{2}, x_{3}\right]$, so by comparing coefficients if and only if

$$
\begin{align*}
a_{2}^{3}+b_{2}^{3} & =-1, \tag{1}\\
a_{3}^{3}+b_{3}^{3} & =-1, \tag{2}\\
a_{2}^{2} a_{3} & =-b_{2}^{2} b_{3}, \tag{3}\\
a_{2} a_{3}^{2} & =-b_{2} b_{3}^{2} . \tag{4}
\end{align*}
$$

If $a_{2}, a_{3}, b_{2}, b_{3}$ are all non-zero, then $(3)^{2} /(4)$ gives $a_{2}^{3}=-b_{2}^{3}$, in contradiction to (1). Hence for a line in the cubic at least one of these numbers must be zero. Again after possibly renumbering the coordinates we may assume that $a_{2}=0$. Then $b_{2}^{3}=-1$ by (1), $b_{3}=0$ by (3), and $a_{3}^{3}=-1$ by (2). Conversely, for such values of $a_{2}, a_{3}, b_{2}, b_{3}$ the above equations all hold, so that we really obtain a line in the cubic.
We thus obtain 9 lines in X by setting $b_{2}=-\omega^{j}$ and $a_{3}=-\omega^{k}$ for $0 \leq j, k \leq 2$ and $\omega=\exp \left(\frac{2 \pi i}{3}\right)$ a primitive third root of unity. So by finally allowing permutations of the coordinates we find that there are exactly the following 27 lines on X :

$$
\begin{array}{ll}
x_{0}+x_{3} \omega^{k}=x_{1}+x_{2} \omega^{j}=0, & 0 \leq j, k \leq 2, \\
x_{0}+x_{2} \omega^{k}=x_{3}+x_{1} \omega^{j}=0, & 0 \leq j, k \leq 2, \\
x_{0}+x_{1} \omega^{k}=x_{3}+x_{2} \omega^{j}=0, & 0 \leq j, k \leq 2 .
\end{array}
$$

Corollary 11.2. Let $X \subset \mathbb{P}^{3}$ again be the Fermat cubic as in Lemma 11.1.
(a) Given any line L in X, there are exactly 10 other lines in X that intersect L.
(b) Given any two disjoint lines L_{1}, L_{2} in X, there are exactly 5 other lines in X meeting both L_{1} and L_{2}.

Proof. As we know all the lines in X by the proof of Lemma 11.1, this is just simple checking. For example, to prove (a) we may assume by permuting coordinates and multiplying them with suitable third roots of unity that L is given by $x_{0}+x_{3}=x_{1}+x_{2}=0$. The other lines meeting L are then exactly the following:

$$
\begin{aligned}
& 4 \text { lines of the form } x_{0}+x_{3} \omega^{k}=x_{1}+x_{2} \omega^{j}=0, \quad(j, k)=(1,0),(2,0),(0,1),(0,2), \\
& 3 \text { lines of the form } x_{0}+x_{2} \omega^{j}=x_{3}+x_{1} \omega^{j}=0, \quad 0 \leq j \leq 2, \\
& 3 \text { lines of the form } x_{0}+x_{1} \omega^{j}=x_{3}+x_{2} \omega^{j}=0, \quad 0 \leq j \leq 2 .
\end{aligned}
$$

The proof of part (b) is analogous.

Let us now transfer these results to an arbitrary smooth cubic surface. This is where it gets interesting, since the equations determining the lines lying in the cubic as in the proof of Lemma 11.1 will in general be too complicated to solve them directly. Instead, we will only show that the number of lines in a smooth cubic must be the same for all cubics, so that we can then conclude by Lemma 11.1 that this number must be 27 . In other words, we have to consider all smooth cubic surfaces at once.

Construction 11.3 (The incidence correspondence of lines in smooth cubic surfaces). As in Exercise $10.22(\mathrm{~b})$, let $\mathbb{P}^{19}=\mathbb{P}^{\left.\left({ }^{3+3}\right)^{3}\right)-1}$ be the projective space of all homogeneous degree-3 polynomials in $x_{0}, x_{1}, x_{2}, x_{3}$ modulo scalars, so that the space of smooth cubic surfaces is a dense open subset U of \mathbb{P}^{19}. More precisely, a smooth cubic surface can be given as the zero locus of an irreducible polynomial $f_{c}:=\sum_{\alpha} c_{\alpha} x^{\alpha}=0$ in multi-index notation, i. e. α runs over all quadruples of non-negative indices $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ with $\sum_{i} \alpha_{i}=3$. The corresponding point in $U \subset \mathbb{P}^{19}$ is then the one with homogeneous coordinates $c=\left(c_{\alpha}\right)_{\alpha}$.

Moreover, we know already that the lines in \mathbb{P}^{3} are parametrized by the Grassmannian $G(2,4)$ introduced in Chapter 8. We can therefore consider the incidence correspondence

$$
M:=\{(X, L): L \text { is a line contained in the smooth cubic } X\} \quad \subset U \times G(2,4) .
$$

Note that it comes with a natural projection map $\pi: M \rightarrow U$ sending a pair (X, L) to X, and that the number of lines in a cubic surface is just its number of inverse images under π.

To show that this number of inverse images is constant on U, we will pass from the algebraic to the analytic category and prove the following statement.

Lemma 11.4. With notations as in Construction 11.3, the incidence correspondence M is...
(a) closed in the Zariski topology of $U \times G(2,4)$;
(b) locally in the classical topology the graph of a continuously differentiable function $U \rightarrow G(2,4)$, as shown in the picture on the right.
 tions $x_{2}=x_{3}=0$. Locally around this point $L \in G(2,4)$ in the Zariski topology we can use the affine coordinates on the Grassmannian as in Construction 8.15, namely $a_{2}, a_{3}, b_{2}, b_{3} \in \mathbb{C}$ corresponding to the line in \mathbb{P}^{3} spanned by the rows of the matrix

$$
\left(\begin{array}{llll}
1 & 0 & a_{2} & a_{3} \\
0 & 1 & b_{2} & b_{3}
\end{array}\right)
$$

with the point $\left(a_{2}, a_{3}, b_{2}, b_{3}\right)=(0,0,0,0)$ corresponding to L. On the space U of smooth cubic surfaces we use the coordinates $\left(c_{\alpha}\right)_{\alpha}$ as in Construction 11.3. In these coordinates $(a, b, c)=$
$\left(a_{2}, a_{3}, b_{2}, b_{3}, c_{\alpha}\right)$ on $U \times G(2,4)$, the incidence correspondence M is then given by

$$
\begin{aligned}
(a, b, c) \in M & \Longleftrightarrow f_{c}\left(s\left(1,0, a_{2}, a_{3}\right)+t\left(0,1, b_{2}, b_{3}\right)\right)=0 \text { for all } s, t \\
& \Longleftrightarrow \sum_{\alpha} c_{\alpha} s^{\alpha_{0}} t^{\alpha_{1}}\left(s a_{2}+t b_{2}\right)^{\alpha_{2}}\left(s a_{3}+t b_{3}\right)^{\alpha_{3}}=0 \text { for all } s, t \\
& \Longleftrightarrow \sum_{i} s^{i} t^{3-i} F_{i}(a, b, c)=0 \text { for all } s, t \\
& \Longleftrightarrow F_{i}(a, b, c)=0 \text { for } 0 \leq i \leq 3 .
\end{aligned}
$$

This shows (a), since F_{0}, \ldots, F_{3} are polynomial functions in a, b, c. The claim of (b) is that these four equations determine $\left(a_{2}, a_{3}, b_{2}, b_{3}\right)$ locally around the origin in the classical topology in terms of c. Of course, we will prove this with (the complex version of) the Implicit Function Theorem [G2, Proposition 27.9]. All we have to show is therefore that the Jacobian matrix $J:=\frac{\partial\left(F_{0}, F_{1}, F_{2}, F_{3}\right)}{\partial\left(a_{2}, a_{3}, b_{2}, b_{3}\right)}$ is invertible at $a=b=0$.

So let us compute this Jacobian matrix. Note that

$$
\begin{aligned}
\left.\frac{\partial}{\partial a_{2}}\left(\sum_{i} s^{i} t^{3-i} F_{i}\right)\right|_{a=b=0} & =\left.\frac{\partial}{\partial a_{2}} f_{c}\left(s, t, s a_{2}+t b_{2}, s a_{3}+t b_{3}\right)\right|_{a=b=0} \\
& =s \frac{\partial f_{c}}{\partial x_{2}}(s, t, 0,0)
\end{aligned}
$$

The (s, t)-coefficients of this polynomial are the first column in the matrix J. Similarly, the other columns are obviously $s \frac{\partial f_{c}}{\partial x_{3}}(s, t, 0,0), t \frac{\partial f_{c}}{\partial x_{2}}(s, t, 0,0)$, and $t \frac{\partial f_{c}}{\partial x_{3}}(s, t, 0,0)$. Hence, if the matrix J was not invertible, there would be a relation

$$
\left(\lambda_{2} s+\mu_{2} t\right) \frac{\partial f_{c}}{\partial x_{2}}(s, t, 0,0)+\left(\lambda_{3} s+\mu_{3} t\right) \frac{\partial f_{c}}{\partial x_{3}}(s, t, 0,0)=0
$$

identically in s, t, with $\left(\lambda_{2}, \mu_{2}, \lambda_{3}, \mu_{3}\right) \in \mathbb{C}^{4} \backslash\{0\}$. As homogeneous polynomials in two variables always decompose into linear factors, this means that $\frac{\partial f_{c}}{\partial x_{2}}(s, t, 0,0)$ and $\frac{\partial f_{c}}{\partial x_{3}}(s, t, 0,0)$ must have a common linear factor, i. e. that there is a point $p=\left(p_{0}, p_{1}, 0,0\right) \in L$ with $\frac{\partial f_{c}}{\partial x_{2}}(p)=\frac{\partial f_{c}}{\partial x_{3}}(p)=0$.
But as the line L lies in the cubic $V_{p}\left(f_{c}\right)$, we also have $f_{c}(s, t, 0,0)=0$ for all s, t. Differentiating this with respect to s and t gives $\frac{\partial f_{c}}{\partial x_{0}}(p)=0$ and $\frac{\partial f_{c}}{\partial x_{1}}(p)=0$, respectively. Hence all partial derivatives of f_{c} vanish at $p \in L \subset X$. By the Jacobi criterion of Exercise 10.12 (b) this means that p would be a singular point of X, in contradiction to our assumption. Hence J must be invertible, and part (b) of the lemma follows.

Corollary 11.5. Every smooth cubic surface contains exactly 27 lines.

Proof. In this proof we will work with the classical topology throughout. Let $X \in U$ be a fixed smooth cubic, and let $L \subset \mathbb{P}^{3}$ be an arbitrary line. We distinguish two cases:
Case 1: If L lies in X, Lemma 11.4 (b) shows that there is an open neighborhood $V_{L} \times W_{L}$ of (X, L) in $U \times G(2,4)$ in which the incidence correspondence M is the graph of a continuously differentiable function. In particular, every cubic in V_{L} contains exactly one line in W_{L}.
Case 2: If L does not lie in X there is an open neighborhood $V_{L} \times W_{L}$ of (X, L) such that no cubic in V_{L} contains any line (since the incidence correspondence is closed by Lemma 11.4 (a)).
Now let L vary. As the Grassmannian $G(2,4)$ is projective, and hence compact, there are finitely many W_{L} that cover $G(2,4)$. Let V be the intersection of the corresponding V_{L}, which is then again an open neighborhood of X. By construction, in this neighborhood V all cubic surfaces have the same number of lines (namely the number of W_{L} coming from case 1). As this argument holds for any cubic, we conclude that the number of lines contained in a cubic surface is a locally constant function on U.

To see that this number is also globally constant, it therefore suffices to show that U is connected. But this follows from Exercise 10.22 (b): we know that U is the complement of a proper Zariskiclosed subset in \mathbb{P}^{19}. But as such a closed subset has complex codimension at least 1 and hence real codimension at least 2 , taking this subset away from the smooth and connected space \mathbb{P}^{19} leaves us again with a connected space.

Remark 11.6.

(a) In topological terms, the argument of the proof of Corollary 11.5 says that the map $\pi: M \rightarrow U$ of Construction 11.3 is a 27 -sheeted covering map.
(b) Applying the methods of Lemma 11.4 and Corollary 11.5 to suitable incidence correspondences involving two resp. three lines in cubic surfaces, one can show similarly that the statements of Corollary 11.2 hold for an arbitrary smooth cubic surface X as well: there are exactly 10 lines in X meeting any given one, and exactly 5 lines in X meeting any two disjoint given ones.

Note that a cubic surface X is clearly not isomorphic to \mathbb{P}^{2} : by Remark 11.6 (b) there are two disjoint lines on X, whereas in \mathbb{P}^{2} any two curves intersect by Exercise 6.32 (b). However, we will now see that X is birational to \mathbb{P}^{2}, and that it is in fact isomorphic to a blow-up of \mathbb{P}^{2} at six points.
Proposition 11.7. Any smooth cubic surface is birational to \mathbb{P}^{2}.
Proof. By Remark 11.6 (b) there are two disjoint lines $L_{1}, L_{2} \subset X$. The following mutually inverse rational maps $X \rightarrow L_{1} \times L_{2}$ and $L_{1} \times L_{2} \rightarrow X$ show that X is birational to $L_{1} \times L_{2} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, and hence to \mathbb{P}^{2} :
" $X \rightarrow L_{1} \times L_{2}$ ": By Exercise 6.30, for every point a not on L_{1} or L_{2} there is a unique line L in \mathbb{P}^{3} through L_{1}, L_{2}, and a. Take the rational map from X to $L_{1} \times L_{2}$ sending a to $\left(a_{1}, a_{2}\right):=\left(L_{1} \cap L, L_{2} \cap L\right)$, which is obviously well-defined away from $L_{1} \cup L_{2}$.

" $L_{1} \times L_{2} \longrightarrow X$ ": Map any pair of points $\left(a_{1}, a_{2}\right) \in L_{1} \times L_{2}$ to the third intersection point of X with the line L through a_{1} and a_{2}. This is well-defined whenever L is not contained in X.

Proposition 11.8. Any smooth cubic surface is isomorphic to \mathbb{P}^{2} blown up in 6 (suitably chosen) points.

Proof. We will only sketch the proof. Let X be a smooth cubic surface, and let $f: X \rightarrow L_{1} \times L_{2} \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$ be the rational map as in the proof of Proposition 11.7.
First of all we claim that f is actually a morphism. To see this, note that there is a different description for f : if $a \in X \backslash L_{1}$, let H be the unique plane in \mathbb{P}^{3} that contains L_{1} and a, and set $f_{2}(a)=H \cap L_{2}$. If one defines $f_{1}(a)$ similarly, then $f(a)=\left(f_{1}(a), f_{2}(a)\right)$. Now if the point a lies on L_{1}, let H be the tangent plane to X at a, and again set $f_{2}(a)=H \cap L_{2}$. Extending f_{1} similarly, one can show that this extends $f=\left(f_{1}, f_{2}\right)$ to a well-defined morphism $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ on all of X.
Now let us investigate where the inverse map $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow X$ is not well-defined. As already mentioned in the proof of Proposition 11.7, this is the case if the point $\left(a_{1}, a_{2}\right) \in L_{1} \times L_{2}$ is chosen so that $\overline{a_{1} a_{2}} \subset X$. In this case, the whole line $\overline{a_{1} a_{2}}$ will be mapped to $\left(a_{1}, a_{2}\right)$ by f, and it can be checked that f is actually locally the blow-up of this point. By Remark 11.6 (b) there are exactly 5 such lines $\overline{a_{1} a_{2}}$ on X. Hence X is the blow-up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in 5 points, i. e. by Lemma 9.28 the blow-up of \mathbb{P}^{2} in 6 suitably chosen points.

Remark 11.9. It is interesting to see the lines on a cubic surface X in the picture of Proposition 11.8 in which we think of X as a blow-up of \mathbb{P}^{2} in 6 points. It turns out that the 27 lines correspond to the following curves that we know already (and that are all isomorphic to \mathbb{P}^{1}):

- the 6 exceptional hypersurfaces,
- the strict transforms of the $\binom{6}{2}=15$ lines through two of the blown-up points,
- the strict transforms of the $\binom{6}{5}=6$ conics through five of the blown-up points (see Exercise 7.31 (c)).

In fact, it is easy to check by the above explicit description of the isomorphism of X with the blow-up of \mathbb{P}^{2} that these curves on the blow-up actually correspond to lines on the cubic surface.
It is also interesting to see again in this picture that every such "line" meets 10 of the other "lines", as mentioned in Remark 11.6 (b):

- Every exceptional hypersurface intersects the 5 lines and the 5 conics that pass through this blown-up point.
- Every line through two of the blown-up points meets
- the 2 exceptional hypersurfaces of the blown-up points,
- the $\binom{4}{2}=6$ lines through two of the four remaining points,
- the 2 conics through the four remaining points and one of the blown-up points.
- Every conic through five of the blown-up points meets the 5 exceptional hypersurfaces at these points, as well as the 5 lines through one of these five points and the remaining point.

Exercise 11.10. As in Exercise 10.22 (b) let $U \subset \mathbb{P}^{\binom{4+5}{4}-1}=\mathbb{P}^{125}$ be the set of smooth (3dimensional) hypersurfaces of degree 5 in \mathbb{P}^{4}. Prove:
(a) The incidence correspondence

$$
\{(X, L) \in U \times G(2,5): L \text { is a line contained in } X\}
$$ is smooth of dimension 125 , i. e. of the same dimension as U.

(b) Although (a) suggests that a smooth hypersurface of degree 5 in \mathbb{P}^{4} contains only finitely many lines, the Fermat hypersurface $V_{p}\left(x_{0}^{5}+\cdots+x_{4}^{5}\right) \subset \mathbb{P}^{4}$ contains infinitely many lines.

