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10. Smooth Varieties

Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C,X as a
way to study X locally around a (see Construction 9.20). It is a cone whose dimension is the local
dimension codimy {a} (Corollary 9.24), and we can think of it as the cone that best approximates X
around a. In an affine open chart where a is the origin, we can compute C,X by choosing an ideal
with zero locus X and replacing each polynomial in this ideal by its initial term (Exercise 9.22 (b)).

However, in practice one often wants to approximate a given variety by a linear space rather than
by a cone. We will therefore study now to what extent this is possible, and how the result compares
to the tangent cones that we already know. Of course, the idea to construct this is just to take the
linear terms instead of the initial terms of the defining polynomials when considering the origin
in an affine variety. For simplicity, let us therefore assume for a moment that we have chosen an
affine neighborhood of the point a such that a = 0 — we will see in Lemma 10.5 that the following
construction actually does not depend on this choice.

Definition 10.1 (Tangent spaces). Let a be a point on a variety X. By choosing an affine neighbor-
hood of a we assume that X C A" and that a = 0 is the origin. Then

T,X:=V(fi:felX)) CA"
is called the tangent space of X at a, where f] € K[xy,...,x,| denotes the linear term of a polynomial
f € K]xy,...,x,] as in Definition 6.6 (a).
As in the case of tangent cones, we can consider 7, X either as an abstract variety (leaving its dimen-
sion as the only invariant since it is a linear space) or as a subspace of A”.
Remark 10.2.

(a) In contrast to the case of tangent cones in Exercise 9.22 (c), it always suffices in Definition
10.1 to take the zero locus only of the linear parts of a set S of generators for I(X): if f,g € S
are polynomials such that f; and g; vanish at a point x € A" then

(f+8h(x) = filx) +gi(x) =0
and  (hf)1(x) = h(0) fi(x) + f(0) i (x) = h(0)-0+0- Ay (x) = 0
for an arbitrary polynomial & € K[xy,...,x,], and hence x € T, X.

(b) However, again in contrast to the case of tangent cones in Exercise 9.22 it is crucial in
Definition 10.1 that we take the radical ideal of X and not just any ideal with zero locus X:
the ideals (x) and (x?) in K[x] have the same zero locus {0} in A!, but the zero locus of the
linear term of x is the origin again, whereas the zero locus of the linear term of x? is all of
Al

(c) For polynomials vanishing at the origin, a non-vanishing linear term is clearly always
initial. Hence by Exercise 9.22 (b) it follows that C,X C T X, i.e. that the tangent
space always contains the tangent cone. In particular, this means by Corollary 9.24 that
dimT,X > codimy{a}.

Example 10.3. Consider again the three curves X;,X>,X3 of Example 9.21. By taking the initial
resp. linear term of the defining polynomials we can compute the tangent cones and spaces of these
curves at the origin:

o X =V(x2+x3): CoXi = ToX) =V (x);
e Xo =V} —x}—x}): CoXo =V (x5 —x3), TpXo =V (0) = A%,
o X3=V(x3—x}): CoX3=V(x3) =V (x2), ToX3 = V(0) = A2.
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The following picture shows these curves together with their tangent cones and spaces. Note that for
the curve X the tangent cone is already a linear space, and the notions of tangent space and tangent
cone agree. In contrast, the tangent cone of X, at the origin is not linear. By Remark 10.2 (c), the
tangent space TyX> must be a linear space containing CoX», and hence it is necessarily all of A%
However, the curve X3 shows that the tangent space is not always the linear space spanned by the
tangent cone.
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X = V()C2 —l—x%)

Before we study the relation between tangent spaces and cones in more detail, let us show first of all
that the (dimension of the) tangent space is actually an intrinsic local invariant of a variety around a
point, i. e. that it does not depend on a choice of affine open subset or coordinates around the point.
We will do this by establishing an alternative description of the tangent space that does not need any
such choices. The key observation needed for this is the isomorphism of the following lemma.

Lemma 10.4. Let X C A" be an affine variety containing the origin. Moreover, let us denote by
M = (x1,...,%;) = I1(0) <A(X) the ideal of the origin in X. Then there is a natural vector space
isomorphism

M/M?* = Homg(TpX,K).
In other words, the tangent space ToX is naturally the vector space dual to M /M?.

Proof. Consider the K-linear map
(8 M — HomK(TOXaK)? 7 = fl |T()X

sending the class of a polynomial modulo 7(X) to its linear term, regarded as a map restricted to
the tangent space. By definition of the tangent space, this map is well-defined. Moreover, note
that ¢ is surjective since any linear map on 75X can be extended to a linear map on A”. So by the
homomorphism theorem it suffices to prove that ker ¢ = M?:

“C” Consider the vector subspace W = {g; : g € I(X)} of K[xy,...,x,], and let k be its dimension.
Then its zero locus TpX has dimension n — k, and hence the space of linear forms vanishing
on TpX has dimension k again. As it clearly contains W, we conclude that W must be equal
to the space of linear forms vanishing on 7pX.

Soif f € ker @, i.e. the linear term of f vanishes on 7pX, we know that there is a  polynomial
g € I(X) with g; = f;. But then f — g has no constant or linear term, and hence f = f — g €
M2,

“>” If f,g € M then (fg); = £(0) g1 +g(0) fi =0-g1+0- f; =0, and hence ¢(fg) = 0. O

In order to make Lemma 10.4 into an intrinsic description of the tangent space we need to transfer
it from the affine coordinate ring A(X) (which for a general variety would require the choice of an
affine coordinate chart that sends the given point a to the origin) to the local ring Oy , (which is
independent of any choices). To do this, recall by Lemma 3.21 that with the notations from above
we have Oy , = ST'A(X), where S =A(X)\M = {f € A(X) : f(a) # 0} is the multiplicatively closed
subset of polynomial functions that are non-zero at the point a. In this ring

S~\M = {? L g, f € A(X) with g(a) = 0 and f(a) 0}
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is just the maximal ideal 1, of all local functions vanishing at a as in Definition 3.22. Using these
constructions we obtain the following result.

Lemma 10.5. With notations as above we have
M/M? = (S7'M)/(S~'M)2.

In particular, if a is a point on a variety X and I, = {@ € Ox 4 : ¢(a) = 0} is the maximal ideal of
local functions in Ox , vanishing at a, then T, X is naturally isomorphic to the vector space dual to
1, /Ia2 and thus independent of any choices.

Proof. This time we consider the vector space homomorphism

@M~ (STM)/(s7MP, g ()
where the bar denotes classes modulo (S~!M)2. In order to deduce the lemma from the homomor-
phism theorem we have to show the following three statements:

e ¢ is surjective: Let § € S~'M. Then % € M is an inverse image of the class of this fraction
under ¢ since

g & g flO)—f ~
R A U

(note that £(0) — f lies in M as it does not contain a constant term).

o kerg C M*: Letg € ker@, i.e. § € (S7'M)?. This means that

g hiki

0 Z 7 ()
for a finite sum with elements %;,k; € M and f; € S. By bringing this to a common denom-
inator we can assume that all f; are equal, say to f. The equation (x) in Oy , then means
f(fg—Y;hik)) = 0in A(X) for some f € S by Construction 3.12. This implies ffg € M>.
But ((££)(0) — 7f) g € M? as well, and hence (ff)(0) g € M?, which implies g € M since
(/1)(0) € K*.

o M? C ker ¢ is trivial. 0

Exercise 10.6. Let f: X — Y be a morphism of varieties, and let a € X. Show that f induces a linear
map 1,X — Ty, Y between tangent spaces.

We have now constructed two objects associated to the local structure of a variety X at a pointa € X:

e the tangent cone C,X, which is a cone of dimension codimy {a}, but in general not a linear
space; and

o the tangent space T,X, which is a linear space, but whose dimension might be bigger than

codimy {a}.

Of course, we should give special attention to the case when these two notions agree, i.e. when X
can be approximated around a by a linear space whose dimension is the local dimension of X at a.

Definition 10.7 (Smooth and singular varieties). Let X be a variety.

(a) A point a € X is called smooth, regular, or non-singular if 7, X = C,X. Otherwise it is
called a singular point of X.

(b) If X has a singular point we say that X is singular. Otherwise X is called smooth, regular, or
non-singular.
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Example 10.8. Of the three curves of Example 10.3, exactly the first one is smooth at the origin.
As in our original motivation for the definition of tangent spaces, this is just the statement that X;
can be approximated around the origin by a straight line — in contrast to X, and X3, which have a
“multiple point” resp. a “corner” there. A more precise geometric interpretation of smoothness can
be obtained by comparing our algebraic situation with the Implicit Function Theorem from analysis,
see Remark 10.14.

Lemma 10.9. Let X be a variety, and let a € X be a point. The following statements are equivalent:

(a) The point a is smooth on X.
(b) dim7,X = codimy{a}.
(¢) dimT,X < codimy{a}.

Proof. The implication (a) = (b) follows immediately from Corollary 9.24, and (b) = (c) is trivial.
To prove (c) = (a), note first that (c) together with Remark 10.2 (c) implies dim7,X = codimy{a}.
But again by Remark 10.2 (c), the tangent space T,X contains the tangent cone C,X, which is of
the same dimension by Corollary 9.24. As T,X is irreducible (since it is a linear space), this is only
possible if T,X = C,X, i.e. if a is a smooth point of X. 0

Remark 10.10 (Smoothness in commutative algebra). Let a be a point on a variety X.

(a) Let I, < Ox , be the maximal ideal of local functions vanishing at a as in Definition 3.22.
Combining Lemma 10.5 with Lemma 10.9 we see that a is a smooth point of X if and only
if the vector space dimension of 1,/I> is equal to the local dimension codimy {a} of X at a.
This is a property of the local ring Oy , alone, and one can therefore study it with methods
from commutative algebra. A ring with these properties is usually called a regular local ring
[G5, Definition 11.38], which is also the reason for the name “regular point” in Definition
10.7 (a).

(b) It is a result of commutative algebra that a regular local ring as in (a) is always an integral
domain [GS5, Proposition 11.40]. Translating this into geometry as in Proposition 2.9, this
yields the intuitively obvious statement that a variety is locally irreducible at every smooth
point a, i.e. that X has only one irreducible component meeting a. Equivalently, any point
on a variety at which two irreducible components meet is necessarily a singular point.

The good thing about smoothness is that it is very easy to check using (formal) partial derivatives:

Proposition 10.11 (Affine Jacobi criterion). Let X C A" be an affine variety with ideal 1(X) =
(fi,.--,fr), and let a € X be a point. Then X is smooth at a if and only if the rank of the r X n

Jacobian matrix
o (g
8x j ij

Proof. Let x = (xi,...,x,) be the coordinates of A", and let y := x — a be the shifted coordinates
in which the point a becomes the origin. By a formal Taylor expansion, the linear term of the

polynomial f; in these coordinates y is }.7_; % (a)-yj. Hence the tangent space T,X is by Definition
J

is at least n — codimy {a}.

10.1 and Remark 10.2 (a) the zero locus of these linear terms, i. e. the kernel of the Jacobian matrix

J = (%(3))1',1" So by Lemma 10.9 the point @ is smooth if and only if dimkerJ < codimy{a},

which is equivalent to rkJ > n — codimy {a}. O

To check smoothness for a point on a projective variety, we can of course restrict to an affine open
subset of the point. However, the following exercise shows that there is also a projective version of
the Jacobi criterion that does not need these affine patches and works directly with the homogeneous
coordinates instead.



86 Andreas Gathmann

Exercise 10.12.
(a) Show that

n af
Xi-=—=d-
igo 1 axl f
for any homogeneous polynomial f € K|x,...,x,] of degree d.

(b) (Projective Jacobi criterion) Let X C P" be a projective variety with homogeneous ideal
I(X)=(f1,.--,fr), and let a € X. Prove that X is smooth at « if and only if the rank of the

rx (n+ 1) Jacobian matrix (% (a)) is at least n — codimy {a}.
/ i.j

In this criterion, note that the entries %(a) of the Jacobian matrix are not well-defined:
J

multiplying the coordinates of a by a scalar A € K* will multiply g—){; (a) by A%~ where d;

is the degree of f;. However, these are just row transformations of the Jacobian matrix, which
do not affect its rank. Hence the condition in the projective Jacobi criterion is well-defined.

Remark 10.13 (Variants of the Jacobi criterion). There are a few ways to extend the Jacobi criterion
even further. For simplicity, we will discuss this here in the case of an affine variety X as in Propo-
sition 10.11, but it is easy to see that the corresponding statements hold in the projective setting of
Exercise 10.12 (b) as well.

(a) If X is irreducible then codimy{a} = dimX for all a € X by Proposition 2.25 (b). So in
this case a is a smooth point of X if and only if the rank of the Jacobian matrix is at least
n—dimX = codimX.

(b) Let fi,...,fr € K[x1,...,x,;] be polynomials such that X = V(fi,..., f;), but that do not
necessarily generate the ideal of X (as required in Proposition 10.11). Then the Jacobi cri-
9fi

terion still holds in one direction: assume that the rank of the Jacobian matrix (W(G))
J ij

is at least n — codimy {a}. The proof of the affine Jacobi criterion then shows that the zero
locus of all linear terms of the elements of (fi,..., f,) has dimension at most codimy {a}.
The same then necessarily holds for the zero locus of all linear terms of the elements of
V (f1,.-., fr) =I(X) (which might only be smaller). By Proposition 10.11 this means that
a is a smooth point of X.

The converse is in general false, as we have already seen in Remark 10.2 (b).

(c) Againlet fi,..., f, € K[x1,...,X,] be polynomials with X = V(f,..., f,). This time assume

that the Jacobian matrix (%(a)) has maximal row rank, i.e. that its rank is equal to
7 i,j

r. As every irreducible componentvof X has dimension at least n — r by Proposition 2.25
(c) we know moreover that codimy{a} > n— r. Hence the rank of the Jacobian matrix is
r > n—codimy{a}, so X is smooth at a by (b).

Remark 10.14 (Relation to the Implicit Function Theorem). The version of the Jacobi criterion of
Remark 10.13 (c) is closely related to the Implicit Function Theorem from analysis. Given real
polynomials f,..., f, € R[x,...,x,] (or more generally continuously differentiable functions on an
open subset of R") and a point a in their common zero locus X = V(fi, ..., f+) such that the Jacobian

matrix (%(a))l _has rank r, this theorem states roughly that X is locally around a the graph of a

continuously differentiable function [G2, Proposition 27.9] — so that in particular it does not have
any “corners”. It can be shown that the same result holds over the complex numbers as well. So in
the case K = C the statement of Remark 10.13 (c) that X is smooth at a can also be interpreted in
this geometric way.

Note however that there is no algebraic analogue of the Implicit Function Theorem itself: for exam-
ple, the polynomial equation f(xj,x;) :=xp fx% = 0 cannot be solved for x| by a regular function
locally around the point (1,1), although 57]:(1, 1) = —2 # 0 — it can only be solved by a continu-
ously differentiable function x; = |/x5.
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Example 10.15. Consider again the curve X3 =V (x3 —x}) C AZ of Examples 9.21 and 10.3. The

Jacobian matrix of the single polynomial f = x% - xi’ is

af Idf\ _ >
<3x1 ax2>—(—3.xl sz),

so it has rank (at least) 2 —dimX = 1 exactly if (x;,x2) € A?\{0}. Hence the Jacobi criterion as
in Remark 10.13 (a) does not only reprove our observation from Example 10.3 that the origin is a
singular point of X3, but also shows simultaneously that all other points of X3 are smooth.

In the picture on the right we have also drawn the blow-up X3 of X3
at its singular point again. We have seen already that its exceptional h

2
set consists of only one point @ € X3. Let us now check that this is a = A
smooth point of X3 — as we would expect from the picture. X3
In the coordinates ((x1,x2),(y1 : y2)) of X3 C A2C A2 x P!, the point a
a is given as ((0,0),(1:0)). So around @ we can use the affine open
chart Uy = {((x1,x2), (y1 : ¥2)) : y1 # 0} with affine coordinates x| and \
v as in Example 9.15. By Exercise 9.22 (a), the blow-up X3 is given }
in these coordinates by
2 3
X1y2)" —x .
(Y)721:07 i.e. g(xi,y2) =y —x; =0. l”
X A2
As the Jacobian matrix O
98 98 _ (—1 2y) Y
dxi Iy

of this polynomial has rank 1 at every point, the Jacobi criterion tells us that X3 is smooth. In
fact, from the defining equation y% —x; = 0 we see that on the open subset U; the curve X3 is just

the “standard parabola” tangent to the exceptional set of A2 (which is given on U, by the equation
x1 = 0 by the proof of Proposition 9.23).

It is actually a general statement that blowing up makes singular points “nicer”, and that successive
blow-ups will eventually make all singular points smooth. This process is called resolution of singu-
larities. We will not discuss this here in detail, but the following exercise shows an example of this
process.

Exercise 10.16. For k € N let X be the affine curve X} := V(x% —x%k“) C AZ2. Show that X}, is not
isomorphic to X; if k # 1.

(Hint: Consider the blow-up of X}, at the origin.)

Exercise 10.17. Let X C P3 be the degree-3 Veronese embedding of P! as in Exercise 7.32. Of
course, X must be smooth since it is isomorphic to P!. Verify this directly using the projective
Jacobi criterion of Exercise 10.12 (b).

Corollary 10.18. The set of singular points of a variety is closed.

Proof. Tt suffices to prove the statement in the case of an affine variety X. We show that the subset
U C X of smooth points is open. So let a € U. By possibly restricting to a smaller affine subset,
we may assume by Remark 10.10 (b) that X is irreducible. Then by Remark 10.13 (a) we know that
U is exactly the set of points at which the rank of the Jacobian matrix of generators of I(X) is at
least codim X. As this is an open condition (given by the non-vanishing of at least one minor of size
codimX), the result follows. O

As the set of smooth points of a variety is open in the Zariski topology by Corollary 10.18, it is very
“big” — unless it is empty, of course. Let us quickly study whether this might happen.



88 Andreas Gathmann

Remark 10.19 (Generic smoothness). Let f € K[x1,...,x,] be a non-constant irreducible polyno-
mial, and let X = V(f) C A". We claim that X has a smooth point, so that the set of smooth points
of X is a non-empty open subset by Corollary 10.18, and thus dense by Remark 2.18.

Assume the contrary, i. e. that all points of X are singular. Then by Remark 10.13 (a) the Jacobian
matrix of f must have rank O at every point, which means that % (a)=0forallae X andi=1,...,n.

Hence g—i e I(V(f)) = (f) by the Nullstellensatz. But since f is irreducible and the polynomial %
has smaller degree than f this is only possible if g—){[ =0 for all i.

In the case charK = O this is already a contradiction to f being non-constant. If charK = p is

positive, then f must be a polynomial in x,...,x, and so
p
=Y ay g, xlin = ( Y, biyoixy -xf;’) ;
1] yee0slp 1] 5eesip
for p-th roots b;, . ;, of a;, . ;,. This is a contradiction since f was assumed to be irreducible.

In fact, one can show this “generic smoothness” statement for any variety X: the set of smooth points
of X is dense in X. A proof of this result can be found in [H, Theorem 1.5.3].
Example 10.20 (Fermat hypersurfaces). For given n,d € N+ consider the Fermat hypersurface
X:=V,(xd+-+x8) P
‘We want to show that X is smooth for all choices of n, d, and K. For this we use the Jacobian matrix
(dxd~' ... dx4=") of the given polynomial:
(a) If charK ) d the Jacobian matrix has rank 1 at every point, so X is smooth by Exercise 10.12
(b).
(b) If p = charK|d we can write d = k p” for some r € N5 and p } k. Since
Xty = (g0’
we see again that X = V,,(x§ +--- +x%) is smooth by (a).
Exercise 10.21. Let X be a projective variety of dimension n. Prove:

(a) There is an injective morphism X — P?"+1,

(b) There is in general no such morphism that is an isomorphism onto its image.
Exercise 10.22. Let n > 2. Prove:

(a) Every smooth hypersurface in P" is irreducible.

(b) A general hypersurface in IP{: is smooth (and thus by (a) irreducible). More precisely, for a

given d € N the vector space Clxo,...,x,]s has dimension (”J;d), and so the space of all

homogeneous degree-d polynomials in xg,...,x, modulo scalars can be identified with the
n+d

projective space P("4)=1. Show that the subset of this projective space of all (classes of)
polynomials f such that f is irreducible and V),(f) is smooth is dense and open.

Exercise 10.23 (Dual curves). Assume that charK # 2, and let f € K[xo,x],x2] be a homogeneous
polynomial whose partial derivatives g—xf for i =0,1,2 do not vanish simultaneously at any point of
X =V,(f) C P2. Then the image of the morphism

d d d
F:X =P ams (a;;(a) : a—;(a) : a;;(01))

is called the dual curve to X.

(a) Find a geometric description of F. What does it mean geometrically if F'(a) = F(b) for two
distinct points a,b € X?

(b) If X is a conic, prove that its dual F(X) is also a conic.
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(c) For any five lines in P? in general position (what does this mean?) show that there is a unique
conic in P? that is tangent to all of them.



