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1. Affine Varieties

As explained in the introduction, the goal of algebraic geometry is to study solutions of polynomial
equations in several variables over a fixed ground field. So let us now make the corresponding
definitions.

Convention 1.1. Throughout these notes, K will always denote a fixed base field (which we will
require to be algebraically closed after our discussion of Hilbert’s Nullstellensatz in Proposition
1.17). Rings are always assumed to be commutative with a multiplicative unit 1. By K[x1, . . . ,xn] we
will denote the polynomial ring in n variables x1, . . . ,xn over K, i. e. the ring of finite formal sums

∑
i1,...,in∈N

ai1,...,in xi1
1 · · · · · x

in
n

with all ai1,...,in ∈ K (see e. g. [G1, Chapter 9] how this concept of “formal sums” can be defined in a
mathematically rigorous way).

Definition 1.2 (Affine varieties).
(a) We call

An := An
K := {(c1, . . . ,cn) : ci ∈ K for i = 1, . . . ,n}

the affine n-space over K.

Note that An
K is just Kn as a set. It is customary to use two different notations here since

Kn is also a K-vector space and a ring. We will usually use the notation An
K if we want to

ignore these additional structures: for example, addition and scalar multiplication are defined
on Kn, but not on An

K . The affine space An
K will be the ambient space for our zero loci of

polynomials below.

(b) For a polynomial

f = ∑
i1,...,in∈N

ai1,...,in xi1
1 · · · · · x

in
n ∈ K[x1, . . . ,xn]

and a point c = (c1, . . . ,cn) ∈ An we define the value of f at c to be

f (c) = ∑
i1,...,in∈N

ai1,...,in ci1
1 · · · · · c

in
n ∈ K.

If there is no risk of confusion we will often denote a point in An by the same letter x as we
used for the formal variables, writing f ∈ K[x1, . . . ,xn] for the polynomial and f (x) for its
value at a point x ∈ An

K .

(c) For a subset S⊂ K[x1, . . . ,xn] of polynomials we call

V (S) := {x ∈ An : f (x) = 0 for all f ∈ S} ⊂ An

the (affine) zero locus of S. Subsets of An of this form are called (affine) varieties. If
S = { f1, . . . , fk} is a finite set, we will write V (S) =V ({ f1, . . . , fk}) also as V ( f1, . . . , fk).

Remark 1.3. Some authors refer to zero loci of polynomials in An as in Definition 1.2 (c) as (affine)
algebraic sets, reserving the name “affine variety” for such zero loci that are in addition irreducible
(a concept that we will introduce in Definition 2.6 (a)).

Example 1.4. Here are some simple examples of affine varieties:

(a) Affine n-space itself is an affine variety, since An =V (0). Similarly, the empty set /0 =V (1)
is an affine variety.

(b) Any single point in An is an affine variety: we have (c1, . . . ,cn) =V (x1− c1, . . . ,xn− cn).
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(c) Linear subspaces of An = Kn are affine varieties.

(d) If X ⊂ An and Y ⊂ Am are affine varieties then so is the product X×Y ⊂ An×Am = An+m.

(e) All examples from the introduction in Chapter 0 are affine varieties: e. g. the curves of
Examples 0.1 and 0.3, and the cubic surface of Example 0.9.

Remark 1.5 (Affine varieties are zero loci of ideals). Let f and g be polynomials that vanish on a
certain subset X ⊂ An. Then f + g and h f for any polynomial h clearly vanish on X as well. This
means that the set S ⊂ K[x1, . . . ,xn] defining an affine variety X = V (S) is certainly not unique: for
any f ,g ∈ S and any polynomial h we can add f +g and h f to S without changing its zero locus. In
other words, if

I = (S) = {h1 f1 + · · ·+hm fm : m ∈ N, f1, . . . , fm ∈ S, h1, . . . ,hm ∈ K[x1, . . . ,xn]}
is the ideal generated by S, then V (I) = V (S). Hence any affine variety in An can be written as the
zero locus of an ideal in K[x1, . . . ,xn].

Example 1.6 (Affine varieties in A1). Let X be an affine variety in A1. By Remark 1.5 we can then
write X =V (I) for an ideal IEK[x]. But K[x] is a principal ideal domain [G1, Example 10.33 (a)].
Hence we have I = ( f ) for some polynomial f ∈ K[x], and thus X =V ( f ).

As zero loci of non-zero polynomials in one variable are always finite, this means that any affine
variety in A1 not equal to A1 itself must be a finite set. Conversely, any finite subset {a1, . . . ,an}=
V ((x− a1) · · · (x− an)) of A1 is an affine variety, and thus we conclude that the affine varieties in
A1 are exactly the finite sets and A1 itself.

Unfortunately, for more than one variable we cannot use a similar argument to classify the affine
varieties in An as the multivariate polynomial rings K[x1, . . . ,xn] are not principal ideal domains.
However, we still have the following result that we will borrow from commutative algebra.

Proposition 1.7 (Hilbert’s Basis Theorem [G5, Proposition 7.13 and Remark 7.15]). Every ideal
in the polynomial ring K[x1, . . . ,xn] can be generated by finitely many elements.

Remark 1.8 (Affine varieties are zero loci of finitely many polynomials). Let X =V (S) be an affine
variety. Then the ideal generated by S can be written as (S) = ( f1, . . . , fm) for some f1, . . . , fm ∈ S
by Proposition 1.7, and hence X = V (S) = V ( f1, . . . , fm) by Remark 1.5. So every affine variety is
the zero locus of finitely many polynomials.

Exercise 1.9. Prove that every affine variety X ⊂ An consisting of only finitely many points can be
written as the zero locus of n polynomials.

(Hint: interpolation.)

There is another reason why Remark 1.5 is important: it is in some sense the basis of algebraic
geometry since it relates geometric objects (affine varieties) to algebraic objects (ideals). In fact,
it will be the main goal of this first chapter to make this correspondence precise. We have already
assigned affine varieties to ideals in Definition 1.2 (c) and Remark 1.5, so let us now introduce an
operation that does the opposite job.

Definition 1.10 (Ideal of a subset of An). Let X ⊂ An be any subset. Then

I(X) := { f ∈ K[x1, . . . ,xn] : f (x) = 0 for all x ∈ X}
is called the ideal of X (note that this is indeed an ideal by Remark 1.5).

Example 1.11 (Ideal of a point). Let a=(a1, . . . ,an)∈An
K be a point. Then the ideal of the one-point

set {a} is I(a) := I({a}) = (x1−a1, . . . ,xn−an):

“⊂” If f ∈ I(a) then f (a) = 0. This means that replacing each xi by ai in f gives zero, i. e. that f
is zero modulo (x1−a1, . . . ,xn−an). Hence f ∈ (x1−a1, . . . ,xn−an).

“⊃” If f ∈ (x1−a1, . . . ,xn−an) then f = ∑
n
i=1(xi−ai) fi for some f1, . . . , fn ∈ K[x1, . . . ,xn], and

so certainly f (a) = 0, i. e. f ∈ I(a).
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We have now constructed operations

{affine varieties in An} ←→ {ideals in K[x1, . . . ,xn]}

X 7−→ I(X)

V (J) ←−7 J

and should check whether they actually give a bijective correspondence between ideals and affine
varieties. The following lemma tells us the positive results in this direction. 01

Lemma 1.12. Let S and S′ be subsets of K[x1, . . . ,xn], and let X and X ′ be subsets of An.

(a) If X ⊂ X ′ then I(X ′)⊂ I(X).

If S⊂ S′ then V (S′)⊂V (S).

We say that the operations V ( ·) and I( ·) reverse inclusions.

(b) X ⊂V (I(X)) and S⊂ I(V (S)).

(c) If X is an affine variety then V (I(X)) = X.

Proof.

(a) Let X ⊂ X ′. If f ∈ I(X ′), i. e. f (x) = 0 for all x ∈ X ′, then certainly also f (x) = 0 for all
x ∈ X , and hence f ∈ I(X). The second statement follows analogously.

(b) Let x ∈ X . Then f (x) = 0 for every f ∈ I(X), and thus by definition we have x ∈ V (I(X)).
Again, the second inclusion follows in the same way.

(c) By (b) it suffices to prove “⊂”. As X is an affine variety we can write X = V (S) for some
S ⊂ K[x1, . . . ,xn]. Then S ⊂ I(V (S)) by (b), and thus V (S) ⊃ V (I(V (S))) by (a). Replacing
V (S) by X again now gives the required inclusion. �

By this lemma, the only thing left that would be needed for a bijective correspondence between
ideals and affine varieties would be I(V (J)) ⊂ J for any ideal J (so that then I(V (J)) = J by part
(b)). Unfortunately, the following example shows that there are two reasons why this is not true in
general.

Example 1.13 (The inclusion J ⊂ I(V (J)) is strict in general).
(a) Let JEC[x] be a non-zero ideal. As C[x] is a principal ideal domain [G1, Example 10.33

(a)] and C is algebraically closed, we must have

J =
(
(x−a1)

k1 · · · · · (x−an)
kn
)

for some n ∈ N, distinct a1, . . . ,an ∈ C, and k1, . . . ,kn ∈ N>0. Obviously, the zero locus of
this ideal in A1 is V (J) = {a1, . . . ,an}. The polynomials vanishing on this set are precisely
those that contain each factor x−ai for i = 1, . . . ,n at least once, i. e. we have

I(V (J)) =
(
(x−a1) · · · · · (x−an)

)
.

If at least one of the numbers k1, . . . ,kn is greater than 1, this is a bigger ideal than J. In
other words, the zero locus of an ideal does not see powers of polynomials: as a power f k of
a polynomial f has the same zero locus as f itself, the information about this power is lost
when applying the operation I(V ( ·)).

(b) The situation is even worse for ground fields that are not algebraically closed: the ideal
J = (x2 + 1)ER[x] has an empty zero locus in A1, and so we get I(V (J)) = I( /0) = R[x].
So in this case the complete information on the ideal J is lost when applying the operation
I(V ( ·)).

To overcome the first of these problems, we just have to restrict our attention to ideals with the
property that they contain a polynomial f whenever they contain a power f k of it. The following
definition accomplishes this.

Definition 1.14 (Radicals and radical ideals). Let I be an ideal in a ring R.
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(a) We call √
I := { f ∈ R : f n ∈ I for some n ∈ N}

the radical of I.

(b) The ideal I is said to be a radical ideal if
√

I = I.

Remark 1.15. Again let I be an ideal in a ring R.

(a) The radical
√

I of I is always an ideal:

• We have 0 ∈
√

I, since 0 ∈ I.

• If f ,g ∈
√

I, i. e. f n ∈ I and gm ∈ I for some n,m ∈ N, then

( f +g)n+m =
n+m

∑
k=0

(
n+m

k

)
f k gn+m−k

is again an element of I, since in each summand we must have that the power of f is at
least n (in which case f k ∈ I) or the power of g is at least m (in which case gn+m−k ∈ I).
Hence f +g ∈

√
I.

• If h ∈ R and f ∈
√

I, i. e. f n ∈ I for some n ∈ N, then (h f )n = hn f n ∈ I, and hence
h f ∈

√
I.

Moreover, it is obvious that I ⊂
√

I (we can always take n = 1 in Definition 1.14 (a)). Hence
I is radical if and only if

√
I ⊂ I, i. e. if f n ∈ I for some n ∈ N implies f ∈ I.

(b) As expected from the terminology, the radical of I is a radical ideal: if f n ∈
√

I for some
f ∈ R and n ∈ N then ( f n)m = f nm ∈ I for some m ∈ N, and hence f ∈

√
I.

(c) If I is the ideal of an affine variety X then I is radical: if f ∈
√

I then f k vanishes on X , hence
f vanishes on X and we also have f ∈ I.

Example 1.16. Continuing Example 1.13 (a), the radical of the ideal

J =
(
(x−a1)

k1 · · · · · (x−an)
kn
)
EC[x]

consists of all polynomials f ∈C[x] such that (x−a1)
k1 · · · · · (x−an)

kn divides f k for large enough
k. This is obviously the set of all polynomials containing each factor x− ai for i = 1, . . . ,n at least
once, i. e. we have √

J =
(
(x−a1) · · · · · (x−an)

)
.

One should note however that the explicit computation of radicals is in general hard and requires
algorithms of computer algebra.

In our example at hand we therefore see that I(V (J)) =
√

J, resp. that I(V (J)) = J if J is radical.
In fact, this holds in general for ideals in polynomial rings over algebraically closed fields. This
statement is usually referred to as Hilbert’s Nullstellensatz (“theorem of the zeroes”); it is another
fact that we will quote here from commutative algebra.

Proposition 1.17 (Hilbert’s Nullstellensatz [G5, Corollary 10.14]). Let K be an algebraically
closed field. Then for every ideal JEK[x1, . . . ,xn] we have I(V (J)) =

√
J. In particular, there is

an inclusion-reversing one-to-one correspondence

{affine varieties in An} ←→ {radical ideals in K[x1, . . . ,xn]}

X 7−→ I(X)

V (J) ←−7 J.

Proof. The main statement I(V (J)) =
√

J is proven in [G5, Corollary 10.14]. The correspondence
then follows from what we have already seen:

• I( ·) maps affine varieties to radical ideals by Remark 1.15 (c);

• we have V (I(X)) = X for any affine variety X by Lemma 1.12 (c) and I(V (J)) = J for any
radical ideal J by our main statement;
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• the correspondence reverses inclusions by Lemma 1.12 (a). �

As we have already mentioned, this result is absolutely central for algebraic geometry since it allows
us to translate geometric objects into algebraic ones. Note however that the introduction of radical
ideals allowed us to solve Problem (a) in Example 1.13, but not Problem (b): for ground fields that
are not algebraically closed the statement of Proposition 1.17 is clearly false since e. g. the ideal
J = (x2 +1)ER[x] is radical but has an empty zero locus, so that I(V (J)) = R[x] 6= (x2 +1) =

√
J.

Let us therefore agree:

From now on, our ground field K will always be assumed to be algebraically closed.

Remark 1.18.
(a) Let JEK[x1, . . . ,xn] be an ideal in the polynomial ring (over an algebraically closed field).

If J 6= K[x1, . . . ,xn] then J has a zero, i. e. V (J) is non-empty: otherwise we would have√
J = I(V (J)) = I( /0) = K[x1, . . . ,xn] by Proposition 1.17, which means 1 ∈

√
J and gives us

the contradiction 1 ∈ J. This statement can be thought of as a generalization of the algebraic
closure property that a non-constant univariate polynomial has a zero. It is the origin of the
name “Nullstellensatz” for Proposition 1.17.

(b) Another easy consequence of Proposition 1.17 is that polynomials and polynomial functions
on An agree: if f ,g ∈ K[x1, . . . ,xn] are two polynomials defining the same function on An,
i. e. such that f (x) = g(x) for all x ∈ An, then

f −g ∈ I(An) = I(V (0)) =
√
(0) = (0)

and hence f = g in K[x1, . . . ,xn]. So K[x1, . . . ,xn] can be thought of as the ring of polynomial
functions on An. Note that this is false for general fields, since e. g. the polynomial x2 + x ∈
Z2[x] defines the zero function on A1

Z2
, although it is not the zero polynomial.

More generally, if X is an affine variety then two polynomials f ,g ∈ K[x1, . . . ,xn] define the
same polynomial function on X , i. e. f (x) = g(x) for all x ∈ X , if and only if f − g ∈ I(X).
So the quotient ring K[x1, . . . ,xn]/I(X) can be thought of as the ring of polynomial functions
on X . Let us make this into a precise definition.

Definition 1.19 (Polynomial functions and coordinate rings). Let X ⊂ An be an affine variety. A
polynomial function on X is a map X → K that is of the form x 7→ f (x) for some f ∈ K[x1, . . . ,xn].
By Remark 1.18 (b) the ring of all polynomial functions on X is just the quotient ring

A(X) := K[x1, . . . ,xn]/I(X).

It is usually called the coordinate ring of the affine variety X .

According to this definition, we can think of the elements of A(X) in the following both as functions
on X and as elements of the quotient ring K[x1, . . . ,xn]/I(X). We can use this ring to define the
concepts introduced so far in a relative setting, i. e. consider zero loci of ideals in A(Y ) and varieties
contained in Y for a fixed ambient affine variety Y that is not necessarily An:

Construction 1.20 (Relative version of the correspondence between varieties and radical ideals).
Let Y ⊂ An be an affine variety. The following two constructions are then completely analogous to
those in Definitions 1.2 (c) and 1.10:

(a) For a subset S⊂ A(Y ) of polynomial functions on Y we define its zero locus as

V (S) :=VY (S) := {x ∈ Y : f (x) = 0 for all f ∈ S} ⊂ Y.

The subsets that are of this form are obviously precisely the affine varieties contained in X .
They are called affine subvarieties of Y .

(b) For a subset X ⊂ Y the ideal of X in Y is defined to be

I(X) := IY (X) := { f ∈ A(Y ) : f (x) = 0 for all x ∈ X} EA(Y ).
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With the same arguments as above, all results considered so far then hold in this relative setting as
well. Let us summarize them here again:

Proposition 1.21. Let Y be an affine variety in An.

(a) (Hilbert’s Basis Theorem) Every ideal in A(Y ) can be generated by finitely many elements.

(b) (Hilbert’s Nullstellensatz) For any ideal JEA(Y ) we have IY (VY (J)) =
√

J. In particular,
there is an inclusion-reversing one-to-one correspondence

{affine subvarieties of Y} ←→ {radical ideals in A(Y )}

X 7−→ IY (X)

VY (J) ←−7 J.

(c) For a subvariety X of Y we have A(X)∼= A(Y )/IY (X).

Proof. As in our earlier version, the proof of (a) is covered by [G5, Proposition 7.13 and Remark
7.15], the proof of (b) by [G5, Corollary 10.14] and Proposition 1.17. The statement (c) follows in
the same way as in Remark 1.18 (b). �

Exercise 1.22. Determine the radical of the ideal (x3
1− x6

2,x1x2− x3
2)EC[x1,x2].

Exercise 1.23. Let X be an affine variety. Show that the coordinate ring A(X) is a field if and only
if X is a single point.

In the rest of this chapter we want to study the basic properties of the operations V ( ·) and I( ·).

Lemma 1.24 (Properties of V ( ·)). Let X be an affine variety.

(a) If J is any index set and {Si : i ∈ J} a family of subsets of A(X) then
⋂

i∈J V (Si) =V (
⋃

i∈J Si)
in X.

(b) For S1,S2 ⊂ A(X) we have V (S1)∪V (S2) = V (S1S2) in X, where as usual we set S1S2 :=
{ f g : f ∈ S1,g ∈ S2}.

In particular, arbitrary intersections and finite unions of affine subvarieties of X are again affine
subvarieties of X.

Proof.

(a) We have x ∈
⋂

i∈J V (Si) if and only if f (x) = 0 for all f ∈ Si for all i ∈ J, which is the case if
and only if x ∈V (

⋃
i∈J Si).

(b) “⊂” If x ∈V (S1)∪V (S2) then f (x) = 0 for all f ∈ S1 or g(x) = 0 for all g ∈ S2. In any case
this means that ( f g)(x) = 0 for all f ∈ S1 and g ∈ S2, i. e. that x ∈V (S1S2).

“⊃” If x /∈ V (S1)∪V (S2), i. e. x /∈ V (S1) and x /∈ V (S2), then there are f ∈ S1 and g ∈ S2
with f (x) 6= 0 and g(x) 6= 0. Then ( f g)(x) 6= 0, and hence x /∈V (S1S2). �

Remark 1.25 (Ideal-theoretic version of the properties of V ( ·)). If we want to consider zero loci
of ideals rather than of general subsets of A(X), then the properties of Lemma 1.24 take a slightly
different form. To see this, let J1 and J2 be any ideals in A(X).

(a) The ideal generated by J1∪ J2 is just the sum of ideals J1 + J2 = { f +g : f ∈ J1,g ∈ J2}. So
with Remark 1.5 the result of Lemma 1.24 (a) translates into

V (J1)∩V (J2) =V (J1 + J2).

(b) In the same way as in (a), Lemma 1.24 (b) implies that V (J1)∪V (J2) is equal to the zero
locus of the ideal generated by J1J2. Unfortunately, the usual convention is that for two
ideals J1 and J2 (instead of arbitrary sets) the notation J1J2 denotes the ideal generated by
all products f g with f ∈ J1 and g ∈ J2, which is called the product of the ideals J1 and J2 —
rather than the set of all such products f g itself. So we get

V (J1)∪V (J2) =V (J1J2)
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with this modified definition of the product J1J2.

(c) Another common operation on ideals is the intersection J1 ∩ J2. In general, this ideal is
different from the ones considered above, but we can show that there is always the relation

√
J1∩ J2 =

√
J1J2 :

“⊂” If f ∈
√

J1∩ J2 then f n ∈ J1∩J2 for some n. This means that f 2n = f n · f n ∈ J1J2, and
hence that f ∈

√
J1J2.

“⊃” For f ∈
√

J1J2 we have f n ∈ J1J2 for some n. Then f n ∈ J1∩J2, and thus f ∈
√

J1∩ J2.

By Proposition 1.21 (b) this means that I(V (J1 ∩ J2)) = I(V (J1J2)), and hence by applying
V ( ·) that

V (J1∩ J2) =V (J1J2) =V (J1)∪V (J2)

by (b).

Finally, for completeness let us also formulate the properties of Lemma 1.24 and Remark 1.25 in
terms of the operation I( ·) rather than V ( ·).

Lemma 1.26 (Properties of I( ·)). Let X be an affine variety, and let Y1 and Y2 be affine subvarieties
of X. Then:

(a) I(Y1∩Y2) =
√

I(Y1)+ I(Y2);

(b) I(Y1∪Y2) = I(Y1)∩ I(Y2).

Proof.

(a) We have

I(Y1∩Y2) = I(V (I(Y1))∩V (I(Y2))) (Proposition 1.21 (b))

= I(V (I(Y1)+ I(Y2))) (Remark 1.25 (a))

=
√

I(Y1)+ I(Y2). (Proposition 1.21 (b))

(b) A polynomial function f ∈ A(X) is contained in I(Y1 ∪Y2) if and only if f (x) = 0 for all
x ∈ Y1 and all x ∈ Y2, which is the case if and only if f ∈ I(Y1)∩ I(Y2). �

02

Remark 1.27. Recall from Remark 1.15 (c) that ideals of affine varieties are always radical. So in
particular, Lemma 1.26 (b) shows that intersections of radical ideals in A(X) are again radical —
which could of course also be checked directly. In contrast, sums of radical ideals are in general not
radical, and hence taking the radical in Lemma 1.26 (a) is really necessary.

In fact, there is also a geometric interpretation behind this fact. Consider
for example the affine varieties Y1,Y2 ⊂ A1

C with ideals I(Y1) = (x2− x2
1)

and I(Y2) = (x2) whose real points are shown in the picture on the right.
Their intersection Y1 ∩Y2 is obviously the origin with ideal I(Y1 ∩Y2) =
(x1,x2). But

I(Y1)+ I(Y2) = (x2− x2
1,x2) = (x2

1,x2)

is not a radical ideal; only its radical is equal to I(Y1∩Y2) = (x1,x2). Y1∩Y2

Y2

Y1

The geometric meaning of the non-radical ideal I(Y1)+ I(Y2) = (x2
1,x2) is that Y1 and Y2 are tangent

at the intersection point: if we consider the function x2−x2
1 defining Y1 on the x1-axis Y2 (where it is

equal to −x2
1) we see that it vanishes to order 2 at the origin. This means that Y1 and Y2 share the x1-

axis as common tangent direction, so that the intersection Y1∩Y2 can be thought of as “extending to
an infinitesimally small amount in the x1-direction”, and we can consider Y1 and Y2 as “intersecting
with multiplicity 2” at the origin. We will see later in Definition 12.23 (b) how such intersection
multiplicities can be defined rigorously.


