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9. INTERSECTION THEORY

A k-cycle on a scheme X (that is always assumed to be separated and of finite type
over an algebraically closed field in this section) is a finite formal linear combination
∑i ni[Vi] with ni ∈ Z, where the Vi are k-dimensional subvarieties of X . The group of
k-cycles is denoted Zk(X). A rational function ϕ on any subvariety Y ⊂ X of dimen-
sion k+1 determines a cycle div(ϕ) ∈ Zk(X), which is just the zeroes of ϕ minus the
poles of ϕ, counted with appropriate multiplicities. The subgroup Bk(X) ⊂ Zk(X)
generated by cycles of this form is called the group of k-cycles that are rationally
equivalent to zero. The quotient groups Ak(X) = Zk(X)/Bk(X) are the groups of
cycle classes or Chow groups. They are the main objects of study in intersection
theory. The Chow groups of a scheme should be thought of as being analogous to
the homology groups of a topological space.

A morphism f : X → Y is called proper if inverse images of compact sets (in the
classical topology) are compact. Any proper morphism f gives rise to push-forward
homomorphisms f∗ : A∗(X)→ A∗(Y ) between the Chow groups. On the other hand,
some other morphisms f : X→Y (e. g. inclusions of open subsets or projections from
vector bundles) admit pull-back maps f ∗ : A∗(Y )→ A∗(X).

If X is a purely n-dimensional scheme, a Weil divisor is an element of Zn−1(X).
In contrast, a Cartier divisor is a global section of the sheaf K ∗X /O∗X . Every Cartier
divisor determines a Weil divisor. On smooth schemes, Cartier and Weil divisors
agree. On almost any scheme, Cartier divisors modulo linear equivalence correspond
exactly to line bundles.

We construct bilinear maps PicX ×Ak(X)→ Ak−1(X) that correspond geomet-
rically to taking intersections of the divisor (a codimension-1 subset of X) with the
k-dimensional subvariety. If one knows the Chow groups of a space and the above
intersection products, one arrives at Bézout style theorems that allow to compute the
number of intersection points of k divisors on X with a k-dimensional subspace.

9.1. Chow groups. Having discussed the basics of scheme theory, we will now start with
the foundations of intersection theory. The idea of intersection theory is the same as that of
homology in algebraic topology. Roughly speaking, what one does in algebraic topology is
to take e. g. a real differentiable manifold X of dimension n and an integer k ≥ 0, and con-
sider formal linear combinations of real k-dimensional submanifolds (with boundary) on X
with integer coefficients, called cycles. If Zk(X) is the group of closed cycles (those having
no boundary) and Bk(X)⊂ Zk(X) is the group of those cycles that are boundaries of (k+1)-
dimensional cycles, then the homology group Hk(X ,Z) is the quotient Zk(X)/Bk(X).

There are (at least) two main applications of this. First of all, the groups Hk(X ,Z) are
(in contrast to the Zk(X) and Bk(X)) often finitely generated groups and provide invariants
of the manifold X that can be used for classification purposes. Secondly, there are inter-
section products: homology classes in Hn−k(X ,Z) and Hn−l(X ,Z) can be “multiplied” to
give a class in Hn−k−l(X ,Z) that geometrically corresponds to taking intersections of sub-
manifolds. Hence if we are for example given submanifolds Vi of X whose codimensions
sum up to n (so that we expect a finite number of points in the intersection

⋂
i Vi), then this

number can often be computed easily by taking the corresponding products in homology.
Our goal is to establish a similar theory for schemes. For any scheme of finite type

over a ground field and any integer k ≥ 0 we will define the so-called Chow groups Ak(X)
whose elements are formal linear combinations of k-dimensional closed subvarieties of X ,
modulo “boundaries” in a suitable sense. The formal properties of these groups Ak(X) will
be similar to those of homology groups; if the ground field is C you might even want to
think of the Ak(X) as being “something like” H2k(X ,Z), although these groups are usually
different. But there is always a map Ak(X)→ H2k(X ,Z) (at least if one uses the “right”
homology theory, see [F] chapter 19 for details), so you can think of elements in the Chow
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groups as something that determines a homology class, but this map is in general neither
injective nor surjective.

Another motivation for the Chow groups Ak(X) is that they generalize our notions of
divisors and divisor classes. In fact, if X is a smooth projective curve then A0(X) will be by
definition the same as PicX . In general, the definition of the groups Ak(X) is very similar
to our definition of divisors: we consider the free Abelian groups Zk(X) generated by the
k-dimensional subvarieties of X . There is then a subgroup Bk(X)⊂ Zk(X) that corresponds
to those linear combinations of subvarieties that are zeros minus poles of rational functions.
The Chow groups are then the quotients Ak(X) = Zk(X)/Bk(X).

To make sense of this definition, the first thing we have to do is to define the divisor of a
rational function (see definition 6.3.4) in the higher-dimensional case. This is essentially a
problem of commutative algebra, so we will only sketch it here. The important ingredient
is the notion of the length of a module.

Remark 9.1.1. (For the following facts we refer to [AM] chapter 6 and [F] section A.1.)
Let M be a finitely generated module over a Noetherian ring R. Then there is a so-called
composition series, i. e. a finite chain of submodules

0 = M0 (M1 ( · · ·(Mr = M (∗)

such that Mi/Mi−1 ∼= R/pi for some prime ideals pi ∈ R. The series is not unique, but for
any prime ideal p ⊂ R the number of times p occurs among the pi does not depend on the
series.

The geometric meaning of this composition series is easiest explained in the case where
R is an integral domain and M = R/I for some ideal I ⊂ R. In this case SpecM is a closed
subscheme of the irreducible scheme SpecR (see examples 5.2.3 and 7.2.10). The prime
ideals pi are then precisely the ideals of the irreducible (and maybe embedded) components
of SpecM, or in other words the prime ideals associated to all primary ideals in the primary
decomposition of I. The number of times p occurs among the pi can be thought of as
the “multiplicity” of the corresponding component in the scheme. For example, if I is a
radical ideal (so SpecM is reduced) then the pi are precisely the ideals of the irreducible
components of SpecM, all occurring once.

We will need this construction mainly in the case where I = ( f )⊂ R is the ideal gener-
ated by a single (non-zero) function. In this case all irreducible components of SpecM have
codimension 1. If p ⊂ R is a prime ideal corresponding to any codimension-1 subvariety
of SpecR we can consider a composition series as above for the localized module Mp over
Rp. As the only prime ideals in Rp are (0) and pRp (corresponding geometrically to SpecR
and SpecM, respectively) and f does not vanish identically on SpecM, the only prime
ideal that can occur in the composition series of Mp is pRp. The number of times it occurs,
i. e. the length r of the composition series, is then called the length of the module Mp over
Rp, denoted lRp(Mp). It is equal to the number of times p occurs in the composition series
of M over R. By what we have said above, we can interpret this number geometrically as
the multiplicity of the subvariety corresponding to p in the scheme SpecR/( f ), or in other
words as the order of vanishing of f at this codimension-1 subvariety.

We should rephrase these ideas in terms of general (not necessarily affine) schemes.
So let X be a scheme, and let V ⊂ X be a subvariety of codimension 1. Note that V can
be considered as a point in the scheme X , so it makes sense to talk about the stalk OX ,V
of the structure sheaf OX at V . If U = SpecR ⊂ X is any affine open subset with non-
empty intersection with V then OX ,V is just the localized ring Rp where p is the prime ideal
corresponding to the subvariety V ∩U of U (see proposition 5.1.12 (i)). So if f ∈ OX ,V is
a local function around V then its order of vanishing at the codimension-1 subvariety V is
simply the length lOX ,V (OX ,V/( f )). To define the order of a possibly rational function ϕ on
X we just have to observe that the field of fractions of the ring OX ,V is equal to the field of
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rational functions on X . So we can write ϕ as f
g for some f ,g ∈ OX ,V and simply define

the order of ϕ at V to be the difference of the orders of f and g at V .

With these prerequisites we can now define the Chow groups in complete analogy to the
Picard group of divisor classes in section 6.3. For the rest of this section by a scheme we
will always mean a scheme of finite type over some algebraically closed field (that is not
necessarily smooth, irreducible, or reduced). A variety is a reduced and irreducible (but
not necessarily smooth) scheme.

Definition 9.1.2. Let X be a variety, and let V ⊂ X be a subvariety of codimension 1, and
set R = OX ,V . For every non-zero f ∈ R ⊂ K(X) we define the order of f at V to be the
integer ordV ( f ) := lR(R/( f )). If ϕ ∈ K(X) is a non-zero rational function we write ϕ = f

g
with f ,g ∈ R and define the order of ϕ at V to be

ordV (ϕ) := ordV ( f )−ordV (g).

To show that this is well-defined, i. e. that ordV
f
g = ordV

f ′
g′ whenever f g′ = g f ′, one uses

the exact sequence

0→ R/(a) ·b→ R/(ab)→ R/(b)→ 0
and the fact that the length of modules is additive on exact sequences. From this it also
follows that the order function is a homomorphism of groups ordV : K(X)∗ :=K(X)\{0}→
Z.

Example 9.1.3. Let X = A1 = Speck[x] and let V = {0} ⊂ X be the origin. Consider the
function ϕ = xr for r ≥ 0. Then R = OX ,V = k[x](x), and R/(x)∼= k. So as R/(xr) = {a0 +

a1x+ · · ·+ar−1xr−1} has vector space dimension r over k we conclude that ord0(xr) = r,
as expected. By definition, we then have the equality ord0(xr) = r for all r ∈ Z.

Definition 9.1.4. Let X be a scheme. For k ≥ 0 denote by Zk(X) the free Abelian group
generated by the k-dimensional subvarieties of X . In other words, the elements of Zk(X) are
finite formal sums ∑i ni[Vi], where ni ∈Z and the Vi are k-dimensional (closed) subvarieties
of X . The elements of Zk(X) are called cycles of dimension k.

For any (k+1)-dimensional subvariety W of X and any non-zero rational function ϕ on
W we define a cycle of dimension k on X by

div(ϕ) = ∑
V

ordV (ϕ)[V ] ∈ Zk(X),

called the divisor of ϕ, where the sum is taken over all codimension-1 subvarieties V of
W . Note that this sum is always finite: it suffices to check this on a finite affine open cover
{Ui} of W and for ϕ ∈ OUi(Ui), where it is obvious as Z(ϕ) is closed and Ui is Noetherian.

Let Bk(X) ⊂ Zk(X) be the subgroup generated by all cycles of the form div(ϕ) for all
W ⊂ X and ϕ ∈ K(W )∗ as above. We define the group of k-dimensional cycle classes to be
the quotient Ak(X) = Zk(X)/Bk(X). These groups are usually called the Chow groups of
X . Two cycles in Zk(X) that determine the same element in Ak(X) are said to be rationally
equivalent.

We set Z∗(X) =
⊕

k≥0 Zk(X) and A∗(X) =
⊕

k≥0 Ak(X).

Example 9.1.5. Let X be a scheme of pure dimension n. Then Bn(X) is trivially zero, and
thus An(X) = Zn(X) is the free Abelian group generated by the irreducible components of
X . In particular, if X is an n-dimensional variety then An(X) ∼= Z with [X ] as a generator.
In the same way, Zk(X) and Ak(X) are trivially zero if k > n.

Example 9.1.6. Let X be a smooth projective curve. Then Z0(X) = DivX and A0(X) =
PicX by definition. In fact, the 1-dimensional subvariety W of X in definition 9.1.4 can
only be X itself, so we arrive at precisely the same definition as in section 6.3.
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Example 9.1.7. Let X = {x1x2 = 0} ⊂ P2 be the union of two projective lines X = X1∪X2
that meet in a point. Then A1(X) = Z[X1]⊕Z[X2] by example 9.1.5. Moreover, A0(X)∼= Z
is generated by the class of any point in X . In fact, any two points on X1 are rationally
equivalent by example 9.1.6, and the same is true for X2. As both X1 and X2 contain the
intersection point X1 ∩X2 we conclude that all points in X are rationally equivalent. So
A0(X)∼= Z.

Now let P1 ∈ X1\X2 and P2 ∈ X2\X1 be two points. Note that the line bundles OX (P1)
and OX (P2) (defined in the obvious way: OX (Pi) is the sheaf of rational functions that
are regular away from Pi and have at most a simple pole at Pi) are not isomorphic: if
i : X1→ X is the inclusion map of the first component, then i∗OX (P1) ∼= OP1(1), whereas
i∗OX (P2)∼=OP1 . So we see that for singular curves the one-to-one correspondence between
A0(X) and line bundles no longer holds.

Example 9.1.8. Let X = An. We claim that A0(X) = 0. In fact, if P ∈ X is any point,
pick a line W ∼= A1 ⊂ An through P and a linear function ϕ on W that vanishes precisely
at P. Then div(ϕ) = [P]. It follows that the class of any point is zero in A0(X). Therefore
A0(X) = 0.

Example 9.1.9. Now let X = Pn; we claim that A0(X)∼= Z. In fact, if P and Q are any two
distinct points in X let W ∼= P1 ⊂ Pn be the line through P and Q, and let ϕ be a rational
function on W that has a simple zero at P and a simple pole at Q. Then div(ϕ) = [P]− [Q],
i. e. the classes in A0(X) of any two points in X are the same. It follows that A0(X) is
generated by the class [P] of any point in X .

On the other hand, if W ⊂ X = Pn is any curve and ϕ a rational function on W then we
have seen in remark 6.3.5 that the degree of the divisor of ϕ is always zero. It follows that
the class n · [P] ∈ A0(X) for n ∈ Z can only be zero if n = 0. We conclude that A0(X)∼= Z
with the class of any point as a generator.

Example 9.1.10. Let X be a scheme, and let Y ⊂ X be a closed subscheme with inclusion
morphism i : Y → X . Then there are canonical push-forward maps i∗ : Ak(Y )→ Ak(X) for
any k, given by [Z] 7→ [Z] for any k-dimensional subvariety Z ⊂ Y . It is obvious from the
definitions that this respects rational equivalence.

Example 9.1.11. Let X be a scheme, and let U ⊂ X be an open subset with inclusion
morphism i : U → X . Then there are canonical pull-back maps i∗ : Ak(X)→ Ak(U) for
any k, given by [Z] 7→ [Z ∩U ] for any k-dimensional subvariety Z ⊂ X . This respects
rational equivalence as i∗ div(ϕ) = div(ϕ|U ) for any rational function ϕ on a subvariety of
X .

Remark 9.1.12. If f : X → Y is any morphism of schemes it is an important part of in-
tersection theory to study whether there are push-forward maps f∗ : A∗(X)→ A∗(Y ) or
pull-back maps f ∗ : A∗(Y )→ A∗(X) and which properties they have. We have just seen
two easy examples of this. Note that neither example can be reversed (at least not in an
obvious way):

(i) if Y ⊂ X is a closed subset, then a subvariety of X is in general not a subvariety of
Y , so there is no pull-back morphism A∗(X)→ A∗(Y ) sending [V ] to [V ] for any
subvariety V ⊂ X .

(ii) if U ⊂ X is an open subset, there are no push-forward maps A∗(U)→ A∗(X): if
U = A1 and X = P1 then the class of a point is zero in A∗(U) but non-zero in
A∗(P1) by examples 9.1.8 and 9.1.9.

We will construct more general examples of push-forward maps in section 9.2, and more
general examples of pull-back maps in proposition 9.1.14.
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Lemma 9.1.13. Let X be a scheme, let Y ⊂ X be a closed subset, and let U = X\Y . Denote
the inclusion maps by i : Y → X and j : U → X. Then the sequence

Ak(Y )
i∗→ Ak(X)

j∗→ Ak(U)→ 0

is exact for all k ≥ 0. The homomorphism i∗ is in general not injective however.

Proof. This follows more or less from the definitions. If Z ⊂ U is any k-dimensional
subvariety then the closure Z̄ of Z in X is a k-dimensional subvariety of X with j∗[Z̄] = [Z].
So j∗ is surjective.

If Z ⊂ Y then Z ∩U = 0, so j∗ ◦ i∗ = 0. Conversely, assume that we have a cycle
∑ar[Vr]∈Ak(X) whose image in Ak(U) is zero. This means that there are rational functions
ϕs on (k+ 1)-dimensional subvarieties Ws of U such that ∑div(ϕs) = ∑ar[Vr ∩U ] on U .
Now the ϕs are also rational functions on the closures of Ws in X , and as such their divisors
can only differ from the old ones by subvarieties V ′r that are contained in X\U = Y . We
conclude that ∑div(ϕs) = ∑ar[Vr]−∑br[V ′r ] on X for some br. So ∑ar[Vr] = i∗∑br[V ′r ].

As an example that i∗ is in general not injective let Y be a smooth cubic curve in X = P2.
If P and Q are two distinct points on Y then [P]− [Q] 6= 0 ∈ A0(Y ) = PicX by proposition
6.3.13, but [P]− [Q] = 0 ∈ A0(X)∼= Z by example 9.1.9. �

Proposition 9.1.14. Let X be a scheme, and let π : E → X be a vector bundle of rank r
on X (see remark 7.3.2). Then for all k ≥ 0 there is a well-defined surjective pull-back
homomorphism π∗ : Ak(X)→ Ak+r(E) given on cycles by π∗[V ] = [π−1(V )].

Proof. It is clear that π∗ is well-defined: it obviously maps k-dimensional cycles to (k+r)-
dimensional cycles, and π∗ div(ϕ) = div(π∗ϕ) for any rational function ϕ on a (k + 1)-
dimensional subvariety of X .

We will prove the surjectivity by induction on dimX . Let U ⊂ X be an affine open
subset over which E is of the form U ×Ar, and let Y = X\U . By lemma 9.1.13 there is a
commutative diagram

Ak(Y ) //

��

Ak(X) //

π∗

��

Ak(U) //

��

0

Ak+r(E|Y ) // Ak+r(E) // Ak+r(U×Ar) // 0

with exact rows. A diagram chase (similar to that of the proof of lemma 8.2.2) shows that
in order for π∗ to be surjective it suffices to prove that the left and right vertical arrows
are surjective. But the left vertical arrow is surjective by the induction assumption since
dimY < dimX . So we only have to show that the right vertical arrow is surjective. In other
words, we have reduced to the case where X = SpecR is affine and E = X×Ar is the trivial
bundle. As π then factors as a sequence

E = X×Ar→ X×Ar−1→ ··· → X×A1→ X

we can furthermore assume that r = 1, so that E = X×A1 = SpecR[t].
We have to show that π∗ : Ak(X)→ Ak(X ×A1) is surjective. So let V ⊂ X ×A1 be a

(k+1)-dimensional subvariety, and let W = π(V ). There are now two cases to consider:

• dimW = k. Then V =W ×A1, so [V ] = π∗[W ].
• dimW = k+ 1. As it suffices to show that [V ] is in the image of the pull-back

map Ak(W )→ Ak+r(W ×A1) we can assume that W = X . Consider the ideal
I(V )⊗R K ⊂ K[t], where K = K(W ) denotes the quotient field of R. It is not
the unit ideal as otherwise we would be in case (i). On the other hand K[t] is a
principal ideal domain, so I(V )⊗R K is generated by a single polynomial ϕ∈K[t].
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Considering ϕ as a rational function on X ×A1 we see that the divisor of ϕ is
precisely [V ] by construction, plus maybe terms of the form ∑aiπ

∗[Wi] for some
Wi ⊂ X corresponding to our tensoring with the field of rational functions K(X).
So [V ] = π∗(∑ai[Wi]) (plus the divisor of a rational function), i. e. [V ] is in the
image of π∗.

�

Remark 9.1.15. Note that the surjectivity part of proposition 9.1.14 is obviously false on
the cycle level, i. e. for the pull-back maps Zk(X)→ Zk(E): not every subvariety of a
vector bundle E over X is the inverse image of a subvariety in X . So this proposition is
an example of the fact that working with Chow groups (instead of with the subvarieties
themselves) often makes life a little easier. In fact one can show (see [F] theorem 3.3 (a))
that the pull-back maps π∗ : Ak(X)→ Ak+r(E) are always isomorphisms.

Corollary 9.1.16. The Chow groups of affine spaces are given by

Ak(An) =

{
Z for k = n,
0 otherwise.

Proof. The statement for k≥ n follows from example 9.1.5. For k < n note that the homo-
morphism A0(An−k)→ Ak(An) is surjective by proposition 9.1.14, so the statement of the
corollary follows from example 9.1.8. �

Corollary 9.1.17. The Chow groups of projective spaces are Ak(Pn)∼=Z for all 0≤ k≤ n,
with an isomorphism given by [V ] 7→ degV for all k-dimensional subvarieties V ⊂ Pn.

Proof. The statement for k ≥ n follows again from example 9.1.5, so let us assume that
k < n. We prove the statement by induction on n. By lemma 9.1.13 there is an exact
sequence

Ak(Pn−1)→ Ak(Pn)→ Ak(An)→ 0.
We have Ak(An) = 0 by corollary 9.1.16, so we conclude that Ak(Pn−1)→ Ak(Pn) is sur-
jective. By the induction hypothesis this means that Ak(Pn) is generated by the class of
a k-dimensional linear subspace. As the morphism Zk(Pn−1)→ Zk(Pn) trivially preserves
degrees it only remains to be shown that any cycle ∑ai[Vi] that is zero in Ak(Pn) must
satisfy ∑ai degVi = 0. But this is clear from Bézouts theorem, as degdiv(ϕ) = 0 for all
rational functions on any subvariety of Pn. �

Remark 9.1.18. There is a generalization of corollary 9.1.17 as follows. Let X be a scheme
that has a stratification by affine spaces, i. e. X has a filtration by closed subschemes /0 =
X−1 ⊂ X0 ⊂ ·· · ⊂ Xn = X such that Xk\Xk−1 is a disjoint union of ak affine spaces Ak for
all k. For example, X = Pn has such a stratification with ak = 1 for 0 ≤ k ≤ n, namely
/0⊂ P0 ⊂ P1 ⊂ ·· · ⊂ Pn = X .

We claim that then Ak(X) is isomorphic to Zak modulo some (possibly trivial) subgroup,
where Zak is generated by the classes of the closures of the ak copies of Ak mentioned
above. We will prove this by induction on dimX , the case of dimension 0 being obvious.
In fact, consider the exact sequence of lemma 9.1.13

Ak(Xn−1)→ Ak(X)→⊕an
i=1Ak(An)→ 0.

Note that Xn−1 itself is a scheme with a filtration /0 = X−1 ⊂ X0 ⊂ ·· · ⊂ Xn−1 as above. So
it follows that:

(i) For k < n we have Ak(An) = 0, so Ak(X) is generated by Ak(Xn−1). Hence the
claim follows from the induction hypothesis.

(ii) For k ≥ n we have Ak(Xn−1) = 0, so An(X) ∼= ⊕an
i=1Ak(An) is generated by the

classes of the closures of the an copies of An in X\Xn−1.
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This proves the claim. In fact, one can show that Ak(X) is always isomorphic to Zak if X
has a stratification by affine spaces as above (see [F] example 1.9.1).

In particular, this construction can be applied to compute the Chow groups of products
of projective spaces and Grassmannian varieties (see exercise 3.5.4).

Remark 9.1.19. Using Chow groups, Bézout’s theorem can obviously be restated as fol-
lows: we have seen in corollary 9.1.17 that Ak(Pn) ∼= Z for all k ≤ n, with the class of a
k-dimensional linear subspace as a generator. Using this isomorphism, define a product
map

An−k(Pn)×An−l(Pn)→ An−k−l(Pn), (a,b) 7→ ab
for k + l ≤ n. This “intersection pairing” has the following property: if X ,Y ⊂ Pn are
two subvarieties that intersect in the expected dimension (i. e. codim(X ∩Y ) = codimX +
codimY ) then [X ∩Y ] = [X ] · [Y ]. So “intersections of subvarieties can be performed on
the level of cycle classes”. As we have mentioned in the introduction to this section, the
existence of such intersection pairing maps between the Chow groups will generalize to
arbitrary smooth varieties. It is one of the most important properties of the Chow groups.

9.2. Proper push-forward of cycles. We now want to generalize the push-forward maps
of example 9.1.10 to more general morphisms, i. e. given a morphism f : X→Y of schemes
we will study the question under which conditions there are induced push-forward maps
f∗ : Ak(X)→ Ak(Y ) for all k that are (roughly) given by f∗[V ] = [ f (V )] for a k-dimensional
subvariety V of X .

Remark 9.2.1. We have seen already in remark 9.1.12 (ii) that there are no such push-
forward maps for the open inclusion A1 → P1. The reason for this is precisely that the
point P = P1\A1 is “missing” in the domain of the morphism: a rational function on A1

(which is then also a rational function on P1) may have a zero and / or pole at the point P
which is then present on P1 but not onA1. As the class of P is not trivial in the Chow group
of P1, this will change the rational equivalence class. Therefore there is no well-defined
push-forward map between the Chow groups.

Another example of a morphism for which there is no push-forward for Chow groups
is the trivial morphism f : A1→ pt: again the class of a point is trivial in A0(A1) but not
in A0(pt). In contrast, the morphism f : P1→ pt admits a well-defined push-forward map
f∗ : A0(P1) ∼= Z→ A0(pt) ∼= Z sending the class of a point in P1 to the class of a point in
pt.

These counterexamples can be generalized by saying that in general there should be no
points “missing” in the domain of the morphism f : X → Y for which we are looking for
a push-forward f∗. For example, if Y is the one-pointed space, by “no points missing”
we mean exactly that X should be compact (in the classical topology), i. e. complete in the
sense of remark 3.4.5. For general Y we need a “relative version” of this compactness (resp.
completeness) condition. Morphisms satisfying this condition are called proper. We will
give both the topological definition (corresponding to “compactness”) and the algebraic
definition (corresponding to “completeness”).

Definition 9.2.2. (Topological definition:) A continuous map f : X → Y of topological
spaces is called proper if f−1(Z) is compact for every compact set Z ⊂ Y .

(Algebraic definition:) Let f : X → Y be a morphism of “nice” schemes (separated, of
finite type over a field). For every morphism g : Z → Y from a third scheme Z form the
fiber diagram

X×Y Z //

f ′

��

X

f
��

Z
g // Y.
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The morphism f is said to be proper if the induced morphism f ′ is closed for every such
g : Z→ Y , i. e. if f ′ maps closed subsets of X ×Y Z to closed subsets of Z. This condition
is sometimes expressed by saying that f is required to be “universally closed”.

Remark 9.2.3. Note that the two definitions look quite different: whereas the topological
definition places a condition on inverse images of (compact) subsets by some morphism,
the algebraic definition places a condition on images of (closed) subsets by some mor-
phism. Yet one can show that for varieties over the complex numbers the two definitions
agree if we apply the topological definition to the classical (not the Zariski) topology. We
will only illustrate this by some examples below. Note however that both definitions are
“obvious” generalizations of their absolute versions, i. e. properness of a map in topology is
a straightforward generalization of compactness of a space, whereas properness of a mor-
phism in algebraic geometry is the expected generalization of completeness of a variety
(see remark 3.4.5). In particular, if Y = pt is a point then the (trivial) morphism f : X → pt
is proper if and only if X is complete (resp. compact).

Example 9.2.4. If X is complete (resp. compact) then any morphism f : X → Y is proper.
We will prove this both in the topological and the algebraic setting:

(i) In topology, let Z ⊂ Y be a compact subset of Y . In particular Z is closed, hence
so is the inverse image f−1(Z) as f is continuous. It follows that f−1(Z) is a
closed subset of a compact space X , hence compact.

(ii) In algebra, the fiber product X×Y Z in definition 9.2.2 is isomorphic to the closed
subscheme p−1(∆Y ) of X×Z, where p = ( f ,g) : X×Z→Y ×Y and ∆Y ⊂Y ×Y
is the diagonal. So if V ⊂ X ×Y Z is any closed subset, then V is also closed in
X×Z, and hence its image in Z is closed as X is complete.

This is the easiest criterion to determine that a morphism is proper. Some more can be
found in exercise 9.5.5.

Example 9.2.5. Let U ⊂ X be a non-empty open subset of a (connected) scheme X . Then
the inclusion morphism i : U→ X is not proper. This is obvious for the algebraic definition,
as i is not even closed itself (it maps the closed subset U ⊂ U to the non-closed subset
U ⊂ X). In the topological definition, let Z ⊂ X be a small closed disc around a point
P ∈ X\U . Its inverse image i−1(Z) = Z∩U is Z minus a closed non-empty subset, so it is
not compact.

Example 9.2.6. If f : X→Y is proper then every fiber f−1(P) is complete (resp. compact).
Again this is obvious for the topological definition, as {P}⊂Y is compact. In the algebraic
definition let P ∈ Y be a point, let Z be any scheme, and form the fiber diagram

Z× f−1(P) //

f ′

��

f−1(P) //

��

X

f
��

Z // P // Y.

If f is proper then by definition the morphism f ′ is closed for all choices of P and Z. By
definition this means exactly that all fibers f−1(P) of f are complete.

The converse is not true however: every fiber of the morphism A1 → P1 is complete
(resp. compact), but the morphism is not proper.

Remark 9.2.7. It turns out that the condition of properness of a morphism f : X → Y is
enough to guarantee the existence of well-defined push-forward maps f∗ : Ak(X)→ Ak(Y ).
To construct them rigorously however we have to elaborate further on our idea that f∗
should map any k-dimensional cycle [V ] to [ f (V )], as the following two complications can
occur:
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(i) The image f (V ) of V may have dimension smaller than k, so that f (V ) does not
define a k-dimensional cycle. It turns out that we can consistently define f∗[V ] to
be zero in this case.

(ii) It may happen that dim f (V ) = dimV and the morphism f is a multiple covering
map, i. e. that a general point in f (V ) has d > 1 inverse image points. In this case
the image f (V ) is “covered d times by V ”, so we would expect that we have to
set f∗[V ] = d · [ f (V )]. Let us define this “order of the covering” d rigorously:

Proposition 9.2.8. Let f : X → Y be a morphism of varieties of the same dimension such
that f (X) is dense in Y . Then:

(i) K(X) is a finite-dimensional vector space over K(Y ). Its dimension is called the
degree of the morphism f , denoted deg f . (One also says that K(X) : K(Y ) is a
field extension of dimension [K(X) : K(Y )] = deg f .)

(ii) The degree of f is equal to the number of points in a general fiber of f . (This
means: there is a non-empty open set U ⊂ Y such that the fibers of f over U
consist of exactly deg f points.)

(iii) If moreover f is proper then every zero-dimensional fiber of f consists of exactly
deg f points if the points are counted with their scheme-theoretic multiplicities.

Proof. (i): We begin with a few reduction steps. As the fields of rational functions do
not change when we pass to an open subset, we can assume that X ⊂ An and Y ⊂ Am are
affine. Next, we factor the morphism f : X → Y as f = π ◦ γ with γ : X → Γ ⊂ X ×Y the
graph morphism and π : X ×Y → Y the projection. As γ is an isomorphism it is sufficient
to show the statement of the proposition for the projection map π. Finally, we can factor
the projection π (which is the restriction of the obvious projection map An+m → Am to
X ×Y ) into n projections that are given by dropping one coordinate at a time. Hence we
can assume that X ⊂An+1 and Y ⊂An, and prove the statement for the map π : X→Y that
is the restriction of the projection map (x0, . . . ,xn) 7→ (x1, . . . ,xn) to X .

In this case the field K(X) is generated over K(Y ) by the single element x0. Assume
that x0 ∈K(X) is transcendental over K(Y ), i. e. there is no polynomial relation of the form

Fd xd
0 +Fd−1 xd−1

0 · · ·+F0 = 0, (∗)

for Fi ∈ K(Y ) and Fd 6= 0. Then for every choice of (x1, . . . ,xn) ∈ Y the value of x0 in
X is not restricted, i. e. the general fiber of f is not finite. But then dimX > dimY in
contradiction to our assumption. So x0 ∈ K(X) is algebraic over K(Y ), i. e. there is a
relation (∗). It follows that K(X) is a vector space over K(Y ) with basis {1,x0, . . . ,xd−1

0 }.
(ii): Continuing the proof of (i), note that on the non-empty open subset of Y where

all Fi are regular and Fd is non-zero every point in the target has exactly d inverse image
points (counted with multiplicity). Restricting the open subset further to the open subset
where the discriminant of the polynomial (∗) is non-zero, we can in fact show that there is
an open subset of Y on which the inverse images of f consist set-theoretically of exactly d
points that all count with multiplicity 1.

(iii): We will only sketch this part, using the topological definition of properness. By
(ii) there is an open subset U ⊂ Y on which all fibers of f consist of exactly n points. Let
P ∈ Y be any point, and choose a small closed disc ∆ ⊂U ∪{P} around P. If ∆ is small
enough then the inverse image f−1(∆\{P}) will be a union of d copies of ∆\{P}. As f
is proper, the inverse image f−1(∆) has to be compact, i. e. all the holes in the d copies of
∆\{P} have to be filled in by inverse image points of P. So the fiber f−1(P) must contain
at least d points (counted with multiplicities). But we see from (∗) above that every fiber
contains at most d points unless it is infinite (i. e. all Fi are zero at P). This shows part
(iii). �
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We are now ready to construct the push-forward maps f∗ : Ak(X)→ Ak(Y ) for proper
morphisms f : X → Y .

Construction 9.2.9. Let f : X → Y be a proper morphism of schemes. Then for every
subvariety Z ⊂ X the image f (Z) is a closed subvariety of dimension at most dimZ. On
the cycle level we define homomorphisms f∗ : Zk(X)→ Zk(Y ) by

f∗[Z] =

{
[K(Z) : K( f (Z))] · [ f (Z)] if dim f (Z) = dimZ,
0 if dim f (Z)< dimZ.

By proposition 9.2.8 this is well-defined and corresponds to the ideas mentioned in remark
9.2.7.

Remark 9.2.10. By the multiplicativity of degrees of field extensions it follows that the
push-forwards are functorial, i. e. (g ◦ f )∗ = g∗ f∗ for any two morphisms f : X → Y and
g : Y → Z.

Of course we want to show that these homomorphisms pass to the Chow groups, i. e.
give rise to well-defined homomorphisms f∗ : Ak(X)→ Ak(Y ). For this we have to show
by definition that divisors of rational functions are pushed forward to divisors of rational
functions.

Theorem 9.2.11. Let f : X → Y be a proper surjective morphism of varieties, and let
ϕ ∈ K(X)∗ be a non-zero rational function on X. Then

f∗ div(ϕ) =

{
0 if dimY < dimX
div(N(ϕ)) if dimY = dimX

in Z∗(Y ), where N(ϕ) ∈ K(Y ) denotes the determinant of the endomorphism of the K(Y )-
vector space K(X) given by multiplication by ϕ (this is usually called the norm of ϕ).

Proof. The complete proof of the theorem with all algebraic details is beyond the scope
of these notes; it can be found in [F] proposition 1.4. We will only sketch the idea of the
proof here.

Case 1: dimY < dimX (see the picture below). We can assume that dimY = dimX−1,
as otherwise the statement is trivial for dimensional reasons. Note that we must have
f∗ div(ϕ) = n · [Y ] for some n ∈ Z by example 9.1.5. So it only remains to determine the
number n. By our interpretation of remark 9.2.7 (ii) we can compute this number on a gen-
eral fiber of f by counting all points in this fiber with the multiplicity with which they occur
in the restriction of ϕ to this fiber. In other words, we have n = ∑P: f (P)=Q ordP(ϕ| f−1(Q))
for any point Q ∈ Y over which the fiber of f is finite. But this number is precisely the
degree of ϕ| f−1(Q) on the complete curve f−1(Q), which must be zero. (Strictly speaking
we have only shown this for smooth projective curves in remark 6.3.5, but it is true in the
general case as well. The important ingredient is here that the fiber is complete.)

Case 2: dimY = dimX (see the picture below). We will restrict ourselves here to show-
ing the stated equation set-theoretically, i. e. we will assume that ϕ is (locally around a
fiber) a regular function and show that f (Z(ϕ)) = Z(N(ϕ)), where Z(·) denotes as usual
the zero locus of a function.

Note first that we can neglect the fibers of f that are not finite: these fibers can only
lie over a subset of Y of codimension at least 2 (otherwise the non-zero-dimensional fibers
would form a component of X for dimensional reasons, in contrast to X being irreducible).
So as f∗ div(ϕ) is a cycle of codimension 1 in Y these higher-dimensional fibers cannot
contribute to the push-forward.
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ord φ =−1

ord φ =2

X

Y
Q

2

−1

−1

n=2−1−1=0

Case 1

f
f

X

Y
Q

1
P

P
2

P
3

Case 2

Now let Q ∈ Y be any point such that the fiber f−1(Q) is finite. Then f−1(Q) consists of
exactly d = [K(X) : K(Y )] points by proposition 9.2.8 (iii). Let us assume for simplicity that
all these points are distinct (although this is not essential), so f−1(Q) = {P1, . . . ,Pd}. The
space of functions on this fiber is then just kd , corresponding to the value at the d points.
In this basis, the restriction of the function ϕ to this fiber is then obviously given by the
diagonal matrix with entries ϕ(P1), . . . ,ϕ(Pd), so its determinant is N(ϕ)(Q) = ∏

d
i=1 ϕ(Pi).

Now it is clear that

Q ∈ f (Z(ϕ)) ⇐⇒ there is a Pi over Q with ϕ(Pi) = 0

⇐⇒ Q ∈ Z(N(ϕ)).

We can actually see the multiplicities arising as well: if there are k points among the Pi
where ϕ vanishes, then the diagonal matrix ϕ| f 1(Q) contains k zeros on the diagonal, hence
its determinant is a product that contains k zeros, so it should give rise to a zero of order k,
in accordance with our interpretation of remark 9.2.7 (ii). �

Corollary 9.2.12. Let f : X → Y be a proper morphism of schemes. Then there are well-
defined push-forward maps f∗ : Ak(X)→ Ak(Y ) for all k ≥ 0 given by the definition of
construction 9.2.9.

Proof. This follows immediately from theorem 9.2.11 applied to the morphism from a
(k+1)-dimensional subvariety of X to its image in Y . �

Example 9.2.13. Let X be a complete scheme, and let f : X → pt be the natural (proper)
map. For any 0-dimensional cycle class α ∈ A0(X) we define the degree of α to be the
integer f∗α ∈ A0(pt) ∼= Z. This is well-defined by corollary 9.2.12. More explicitly, if
α = ∑i ni[Pi] for some points Pi ∈ X then degα = ∑i ni.

Example 9.2.14. Let X = P̃2 be the blow-up of P2 with coordinates (x0 : x1 : x2) in the
point P = (1 : 0 : 0), and denote by E ⊂ X the exceptional hypersurface. In this example
we will compute the Chow groups of X using remark 9.1.18.

Note that P2 has a stratification by affine spaces as A2 ∪A1 ∪A0. Identifying A0 with
P and recalling that the blow-up P̃2 is obtained from P2 by “replacing the point P with a
line P1” we see that X has a stratification A2∪A1∪A1∪A0. By remark 9.1.18 it follows
that the closures of these four strata generate A∗(X). More precisely, these four classes
are [X ] ∈ A2(X), [L] ∈ A1(X) where L is the strict transform of a line in P2 through P,
the exceptional hypersurface [E] ∈ A1(X), and the class of a point in A0(X). It follows
immediately that A2(X)∼= Z and A0(X)∼= Z. Moreover we see that A1(X) is generated by
[L] and [E].

We have already stated without proof in remark 9.1.18 that [L] and [E] form in fact a
basis of A1(X). Let us now prove this in our special case at hand. So assume that there is
a relation n[L]+m[E] = 0 in A1(X). Consider the following two morphisms:



176 Andreas Gathmann

(i) Let π : X→ P2 be the projection to the base of the blow-up. This is a proper map,
and we have π∗[L] = [H] and π∗[E] = 0 where [H] ∈ A1(P2) is the class of a line.
So we see that

0 = π∗(0) = π∗(n[L]+m[E]) = n[H] ∈ A1(P2),

from which we conclude that n = 0.
(ii) Now let p : X → P1 be the morphism that is the identity on E, and sends every

point Q ∈ X\E to the unique intersection point of E with the strict transform of
the line through P and Q. Again this is a proper map, and we have p∗[L] = 0 and
p∗[E] = [P1]. So again we see that

0 = p∗(0) = p∗(n[L]+m[E]) = m[P1] ∈ A1(P1),

from which we conclude that m = 0 as well.

Combining both parts we see that there is no non-trivial relation of the form n[L]+m[E] = 0
in A1(X).

Now let [H] be the class of a line in X that does not intersect the exceptional hypersur-
face. We have just shown that [H] must be a linear combination of [L] and [E]. To compute
which one it is, consider the rational function x1

x0
on X . It has simple zeros along L and E,

and a simple pole along H (with coordinates for L and H chosen appropriately). So we
conclude that [H] = [L]+ [E] in A1(X).

9.3. Weil and Cartier divisors. Our next goal is to describe intersections on the level of
Chow groups as motivated in the beginning of section 9.1. We will start with the easiest
case, namely with the intersection of a variety with a subset of codimension 1. To put
it more precisely, given a subvariety V ⊂ X of dimension k and another one D ⊂ X of
codimension 1, we want to construct an intersection cycle [V ] · [D] ∈ Ak−1(X) with the
property that [V ] · [D] = [V ∩D] if this intersection V ∩D actually has dimension k− 1.
Of course these intersection cycles should be well-defined on the Chow groups, i. e. the
product cycle [V ] · [D] ∈ Ak−1(X) should only depend on the classes of V and D in A∗(X).

Example 9.3.1. Here is an example showing that this is too much to hope for in the gener-
ality as we stated it. Let X = P2∪P1 P2 be the union of two projective planes glued together
along a common line. Let L1,L2,L3 ⊂ X be the lines as in the following picture.

L
1

L
2

L
3

P

Q

Their classes in A1(X) are all the same since A1(X) ∼= Z by remark 9.1.18. But note that
L1∩L2 is empty, whereas L1∩L3 is a single point P. But 0 6= [P] ∈ A0(X), so there can be
no well-defined product map A1(X)×A1(X)→ A0(X) that describes intersections on this
space X .

The reason why this construction failed is quite a subtle one: we have to distinguish
between codimension-1 subspaces and spaces that can locally be written as the zero locus
of a single function. In general the intersection product exists only for intersections with
spaces that are locally the zero locus of a single function. For most spaces this is the
same thing as codimension-1 subspaces, but notably not in example 9.3.1 above: neither
of the three lines Li can be written as the zero locus of a single function on X : there is a
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(linear) function on the vertical P2 that vanishes precisely on L1, but we cannot extend it
to a function on all of X that vanishes at the point Q but nowhere else on the horizontal P2.
(We can write the Li as the zero locus of a single function on a component of X , but this is
not what we need.)

So for intersection-theoretic purposes we have to make a clear distinction between
codimension-1 subspaces and spaces that are locally the zero locus of a single function.
Let us make the corresponding definitions.

Definition 9.3.2. Let X be a scheme.

(i) If X has pure dimension n a Weil divisor on X is an element of Zn−1(X). Ob-
viously, the Weil divisors form an Abelian group. Two Weil divisors are called
linearly equivalent if they define the same class in An−1(X). The quotient group
An−1(X) is called the group of Weil divisor classes.

(ii) Let KX be the sheaf of rational functions on X , and denote by K ∗X the subsheaf
of invertible elements (i. e. of those functions that are not identically zero on any
component of X). Note that K ∗X is a sheaf of Abelian groups, with the group
structure given by multiplication of rational functions. Similarly, let O∗X be the
sheaf of invertible elements of OX (i. e. of the regular functions that are nowhere
zero). Note that O∗X is a sheaf of Abelian groups under multiplication as well. In
fact, O∗X is a subsheaf of K ∗X .

A Cartier divisor on X is a global section of the sheaf K ∗X /O∗X . Obviously, the
Cartier divisors form an Abelian group under multiplication, denoted DivX . In
analogy to Weil divisors the group structure on DivX is usually written additively
however. A Cartier divisor is called linearly equivalent to zero if it is induced
by a global section of K ∗X . Two Cartier divisors are linearly equivalent if their
difference (i. e. quotient, see above) is linearly equivalent to zero. The quotient
group PicX := Γ(K ∗X /O∗X )/Γ(K ∗X ) is called the group of Cartier divisor classes.

Remark 9.3.3. Let us analyze the definition of Cartier divisors. There is an obvious exact
sequence of sheaves on X

0→ O∗X →K ∗X →K ∗X /O∗X → 0.

Note that these are not sheaves of OX -modules, so their flavor is slightly different from the
ones we have considered so far. But it is still true that we get an exact sequence of global
sections

0→ Γ(O∗X )→ Γ(K ∗X )→ Γ(K ∗X /O∗X )
that is in general not exact on the right. More precisely, recall that the quotient sheaf
K ∗X /O∗X is not just the sheaf that is K ∗X (U)/O∗X (U) for all open subsets U ⊂X , but rather the
sheaf associated to this presheaf. Therefore Γ(K ∗X /O∗X ) is in general not just the quotient
Γ(K ∗X )/Γ(O∗X ).

To unwind the definition of sheafification, an element of DivX = Γ(K ∗X /O∗X ) can be
given by a (sufficiently fine) open covering {Ui} and elements of K ∗X (Ui)/O∗X (Ui) repre-
sented by rational functions ϕi for all i such that their quotients ϕi

ϕ j
are in O∗X (Ui∩U j) for

all i, j. So a Cartier divisor is an object that is locally a (non-zero) rational function mod-
ulo a nowhere-zero regular function. Intuitively speaking, the only data left from a rational
function if we mod out locally by nowhere-zero regular functions is the locus of its zeros
and poles together with their multiplicities. So one can think of Cartier divisors as objects
that are (linear combinations of) zero loci of functions.

A Cartier divisor is linearly equivalent to zero if it is globally a rational function, just the
same as for Weil divisors. From cohomology one would expect that one can think of the
quotient group PicX as the cohomology group H1(X ,O∗X ). We cannot say this rigorously
because we have only defined cohomology for quasi-coherent sheaves (which O∗X is not).
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But there is a more general theory of cohomology of arbitrary sheaves of Abelian groups
on schemes, and in this theory the statement that PicX = H1(X ,O∗X ) is correct.

Lemma 9.3.4. Let X be a purely n-dimensional scheme. Then there is a natural homo-
morphism DivX → Zn−1(X) that passes to linear equivalence to give a homomorphism
PicX → An−1(X). In other words, every Cartier divisor (class) determines a Weil divisor
(class).

Proof. Let D ∈ DivX be a Cartier divisor on X , represented by an open covering {Ui} of
X and rational functions ϕi on Ui. For any (n− 1)-dimensional subvariety V of X define
the order of D at V to be ordV D := ordV∩Ui ϕi, where i is an index such that Ui ∩V 6=
/0. This does not depend on the choice of i as the quotients ϕi

ϕ j
are nowhere-zero regular

functions, so the orders of ϕi and ϕ j are the same where they are both defined. So we get
a well-defined map DivX → Zn−1(X) defined by D 7→ ∑V ordV D · [V ]. It is obviously a
homomorphism as ordV (ϕi ·ϕ′i) = ordV ϕi +ordV ϕ′i.

It is clear from the definition that a Cartier divisor that is linearly equivalent to zero,
i. e. a global rational function, determines a Weil divisor in Bn−1(X). Hence the homomor-
phism passes to linear equivalence. �

Lemma 9.3.5. Let X be a smooth projective curve. Then Cartier divisors (resp. Cartier
divisor classes) on X are the same as Weil divisors (resp. Weil divisor classes). In partic-
ular, our definition 9.3.2 (ii) of DivX and PicX agrees with our earlier one from section
6.3.

Proof. The idea of the proof is lemma 7.5.6 which tells us that every point of X is locally
the scheme-theoretic zero locus of a single function, hence a Cartier divisor.

To be more precise, let ∑
n
i=1 aiPi ∈ Z0(X) be a Weil divisor. We will construct a Cartier

divisor D ∈ DivX that maps to the given Weil divisor under the correspondence of lemma
9.3.4. To do so, pick an open neighborhood Ui of Pi for all i = 1, . . . ,n such that

(i) Pj /∈Ui for j 6= i, and
(ii) there is a function ϕPi on Ui such that divϕPi = 1 ·Pi on Ui (see lemma 7.5.6).

Moreover, set U = X\{P1, . . . ,Pn}. Then we define a Cartier divisor D by the open cover
{U,U1, . . . ,Un} and the rational functions

(i) 1 on U ,
(ii) ϕ

ai
Pi

on Ui.

Note that these data define a Cartier divisor: no intersection of two elements of the open
cover contains one of the points Pi, and the functions given on the elements of the open
cover are regular and non-vanishing away from the Pi. By construction, the Weil divisor
associated to D is precisely ∑

n
i=1 aiPi, as desired. �

Example 9.3.6. In general, the map from Cartier divisors (resp. Cartier divisor classes)
to Weil divisors (resp. Cartier divisor classes) is neither injective nor surjective. Here are
examples of this:

(i) not injective: This is essentially example 9.1.7. Let X = X1 ∪X2 be the union
of two lines Xi ∼= P1 glued together at a point P ∈ X1 ∩X2. Let Q be a point on
X1\X2. Consider the open cover X =U ∪V with U = X\Q and V = X1\P.

We define a Cartier divisor D on X by choosing the following rational functions
on U and V : the constant function 1 on U , and the linear function on V ∼=A1 that
has a simple zero at Q. Note that the quotient of these two functions is regular
and nowhere zero on U ∩V , so D is well-defined. Its associated Weil divisor [D]
is [Q].
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By symmetry, we can construct a similar Cartier divisor D′ whose associated
Weil divisor is the class of a point Q′ ∈ X2\X1.

Now note that the Cartier divisor classes of D and D′ are different (because
D−D′ is not the divisor of a rational function), but their associated Weil divisors
[Q] and [Q′] are the same by example 9.1.7.

(ii) not surjective: This is essentially example 9.3.1. The classes [Li] of this example
are Weil divisors but not Cartier divisors.

Another example on an irreducible space X is the cone

X = {x2
3 = x2

1 + x2
2} ⊂ P3.

x 1

x 2

x 3

LL1 2

Let L1 = Z(x2,x1 + x3) and L2 = Z(x2,x1− x3) be the two lines as in the picture.
We claim that there is no Cartier divisor on X corresponding to the Weil divisor
[L1]. In fact, if there was such a Cartier divisor, defined locally around the origin
by a function ϕ, we must have an equality of ideals

(x2
1 + x2

2− x2
3,ϕ) = (x2,x1 + x3)

in the local ring OP3,0. This is impossible since the right ideal contains two lin-
early independent linear parts, whereas the left ideal contains only one. But note
that the section x2 of the line bundle OX (1) defines a Cartier divisor div(x2) on
X whose associated Weil divisor is [L1]+ [L2], and the section x1 + x3 defines a
Cartier divisor whose associated Weil divisor is 2[L1]. So [L1] and [L2] are not
Cartier divisors, whereas [L1]+ [L2], 2[L1], and 2[L2] are. In particular, there is in
general no “decomposition of a Cartier divisor into its irreducible components”
as we have it by definition for Weil divisors.

There is quite a deep theorem however that the two notions agree on smooth schemes:

Theorem 9.3.7. Let X be a smooth n-dimensional scheme. Then DivX ∼= Zn−1(X) and
PicX ∼= An−1(X).

Proof. We cannot prove this here and refer to [H] remark II.6.11.1.A for details. One has
to prove the analogue of lemma 7.5.6, i. e. that every codimension-1 subvariety of X is
locally the scheme-theoretic zero locus of a single function. This is a commutative algebra
statement as it can be shown on the local ring of X at the subvariety.

(To be a little more precise, the property of X that we need is that its local rings are
unique factorization domains: if this is the case and V ⊂ X is an subvariety of codimension
1, pick any non-zero (local) function f ∈ OX ,V that vanishes on V . As OX ,V is a unique
factorization domain we can decompose f into its irreducible factors f = f1 · · · fn. Of
course one of the fi has to vanish on V . But as fi is irreducible, its ideal must be the ideal
of V , so V is locally the zero locus of a single function. The problem with this is that it
is almost impossible to check that a ring (that one does not know very well) is a unique
factorization domain. So one uses the result from commutative algebra that every regular
local ring (i. e. “the local ring of a scheme at a smooth point”) is a unique factorization
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domain. Actually, we can see from the above argument that it is enough that X is “smooth
in codimension 1”, i. e. that its set of singular points has codimension at least 2 — or
to express it algebraically, that its local rings OX ,V at codimension-1 subvarieties V are
regular.) �

Example 9.3.8. Finally let us discuss the relation between divisors and line bundles as
observed for curves in section 7.5. Note that we have in fact used such a correspondence
already in example 9.3.6 where we defined a Cartier divisor by giving a section of a line
bundle. The precise relation between line bundles and Cartier divisors is as follows.

Lemma 9.3.9. For any scheme X there are one-to-one correspondences

{Cartier divisors on X}↔ {(L ,s) ; L a line bundle on X and s a rational section of L}
and

{Cartier divisor classes on X}↔ {line bundles on X that admit a rational section}.

Proof. The proof of this is essentially the same as the correspondence between divisor
classes and line bundles on a smooth projective curve in proposition 7.5.9. Given a Cartier
divisor D = {(Ui,ϕi)} on X , we get an associated line bundle O(D) by taking the subsheaf
of OX -modules of KX generated by the functions 1

ϕi
on Ui. Conversely, given a line bundle

with a rational section, this section immediately defines a Cartier divisor. The proof that
the same correspondence holds for divisor classes is the same as in proposition 7.5.9. �

Remark 9.3.10. We should note that almost any line bundle on any scheme X admits a
rational section. In fact, this is certainly true for irreducible X (as the line bundle is then
isomorphic to the structure sheaf on a dense open subset of X by definition), and one can
show that it is true in most other cases as well (see [H] remark 6.14.1 for more information).
Most books actually define the group PicX to be the group of line bundles on X .

Summarizing our above discussions we get the following commutative diagram:

line bundles
together with a
rational section

tt
Cartier divisors DivX //

��

Cartier divisor classes PicX

��

OO

Weil divisors Zn−1(X) // Weil divisor classes An−1(X)

where

(i) the bottom row (the Weil divisors) exists only if X is purely n-dimensional,
(ii) the upper right vertical arrow is an isomorphism in most cases, at least if X is

irreducible,
(iii) the lower vertical arrows are isomorphisms at least if X is smooth (in codimension

1).

Remark 9.3.11. Although line bundles, Cartier divisor classes, and Weil divisor classes are
very much related and even all the same thing on many schemes (e. g. smooth varieties),
note that their “functorial properties” are quite different: if f : X → Y is a morphism then
for line bundles and Cartier divisors the pull-back f ∗ is the natural operation, whereas for
Weil divisors (i. e. elements of the Chow groups) the push-forward f∗ as in section 9.2
is more natural. In algebraic topology this can be expressed by saying that Weil divisors
correspond to homology cycles, whereas Cartier divisors correspond to cohomology cycles.
On nice spaces this is the same by Poincaré duality, but this is a non-trivial statement. The
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natural operation for homology (resp. cohomology) is the push-forward (resp. pull-back).
Intersection products are defined between a cohomology and a homology class, yielding a
homology class. This corresponds to our initial statement of this section that intersection
products of Chow cycles (“homology classes”) with divisors will usually only be well-
defined with Cartier divisors (“cohomology classes”) and not with Weil divisors.

9.4. Intersections with Cartier divisors. We are now ready to define intersection prod-
ucts of Chow cycles with Cartier divisors, as motivated in the beginning of section 9.3. Let
us give the definition first, and then discuss some of its features.

Definition 9.4.1. Let X be a scheme, let V ⊂ X be a k-dimensional subvariety with inclu-
sion morphism i : V → X , and let D be a Cartier divisor on X . We define the intersection
product D ·V ∈ Ak−1(X) to be

D ·V = i∗[i∗OX (D)],

where OX (D) is the line bundle on X associated to the Cartier divisor D by lemma 9.3.9,
i∗ denotes the pull-back of line bundles, [i∗OX (D)] is the Weil divisor class associated to
the line bundle i∗OX (D) by remark 9.3.10 (note that V is irreducible), and i∗ denotes the
proper push-forward of corollary 9.2.12.

Note that by definition the intersection product depends only on the divisor class of D,
not on D itself. So using our definition we can construct bilinear intersection products

PicX×Zk(X)→ Ak−1(X),
(
D,∑ai[Vi]

)
7→∑ai(D ·Vi).

If X is smooth and pure-dimensional (so that Weil and Cartier divisors agree) and W is
a codimension-1 subvariety of X , we denote by W ·V ∈ Ak−1(X) the intersection product
D ·V , where D is the Cartier divisor corresponding to the Weil divisor [W ].

Example 9.4.2. Let X be a smooth n-dimensional scheme, and let V and W be subvarieties
of dimensions k and n− 1, respectively. If V 6⊂W , i. e. if dim(W ∩V ) = k− 1, then the
intersection product W ·V is just the cycle [W ∩V ] with possibly some scheme-theoretic
multiplicities. In fact, in this case the Weil divisor [W ] corresponds by remark 9.3.10
to a line bundle OX (W ) together with a section f whose zero locus is precisely W . By
definition of the intersection product we have to pull back this line bundle to V , i. e. restrict
the section f to V . The cycle W ·V is then the zero locus of f |V , with possibly scheme-
theoretic multiplicities if f vanishes along V with higher order.

As a concrete example, let C1 and C2 be two curves in P2 of degrees d1 and d2, re-
spectively, that intersect in finitely many points P1, . . . ,Pn. Then the intersection product
C1 ·C2 ∈ A0(P2) is just ∑i ai[Pi], where ai is the scheme-theoretic multiplicity of the point
Pi in the intersection scheme C1∩C2. Using that all points in P2 are rationally equivalent,
i. e. that A0(P2) ∼= Z is generated by the class of any point, we see that C1 ·C2 is just the
Bézout number d1 ·d2.

Example 9.4.3. Again let X be a smooth n-dimensional scheme, and let V and W be
subvarieties of dimensions k and n−1, respectively. This time let us assume that V ⊂W ,
so that the intersection W ∩V = V has dimension k and thus does not define a (k− 1)-
dimensional cycle. There are two ways to interpret the intersection product W ·V in this
case:

(i) Recall that the intersection product W ·V depends only on the divisor class of
W , not on W itself. So if we can replace W by a linearly equivalent divisor W ′

such that V 6⊂W ′ then the intersection product W ·V is just W ′ ·V which can
now be constructed as in example 9.4.2. For example, let H ⊂ P2 be a line and
assume that we want to compute the intersection product H ·H ∈ A0(P2) ∼= Z.
The intersection H∩H has dimension 1, but we can move the first H to a different
line H ′ which is linearly equivalent to H. So we see that H ·H = H ′ ·H = 1, as
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H ′∩H is just one point. Note however that it may not always be possible to find
such a linearly equivalent divisor that makes the intersection have the expected
dimension.

(ii) If the strategy of (i) does not work or one does not want to apply it, there is also
a different description of the intersection product for which no moving of W is
necessary. Let us assume for simplicity that W is smooth. By the analogue of
remark 7.4.17 for general hypersurfaces the bundle i∗OX (W ) (where i : V → X
is the inclusion morphism) is precisely the restriction to V of the normal bundle
NW/X of W in X . By definition 9.4.1 the intersection product W ·V is then the
Weil divisor associated to this bundle, i. e. the locus of zeros minus poles of a
rational section of the normal bundle NW/X restricted to V .

X

P1

P2

V=W

W V. [ P1 ] +[ P2 ]=

Note that we can consider this procedure as an infinitesimal version of (i): the
section of the normal bundle describes an “infinitesimal deformation” of W in X ,
and the deformed W meets V precisely in the locus where the section vanishes.

Proposition 9.4.4. (Commutativity of the intersection product) Let X be an n-dimensional
variety, and let D1,D2 be Cartier divisors on X with associated Weil divisors [D1], [D2].
Then D1 · [D2] = D2 · [D1] ∈ An−2(X).

Proof. We will only sketch the proof in two easy cases (that cover most applications how-
ever). For the general proof we refer to [F] theorem 2.4.

Case 1: D1 and D2 intersect in the expected dimension, i. e. the locus where the defining
equations of both D1 and D2 have a zero or pole has codimension 2 in X . Then one
can show that both D1 · [D2] and D2 · [D1] is simply the sum of the components of the
geometric intersection D1∩D2, counted with their scheme-theoretic multiplicities. In other
words, if V ⊂ X is a codimension-2 subvariety and if we assume for simplicity that the
local defining equations f1, f2 for D1,D2 around V are regular, then [V ] occurs in both
intersection products with the coefficient lA(A/( f1, f2)), where A = OX ,V is the local ring
of X at V .

Case 2: X is a smooth scheme, so that Weil and Cartier divisors agree on X . Then it suf-
fices to compare the intersection products W ·V and V ·W for any two (n−1)-dimensional
subvarieties V,W of X . But the two products are obviously equal if V = W , and they are
equal by case 1 if V 6=W . �

Corollary 9.4.5. The intersection product passes to rational equivalence, i. e. there are
well-defined bilinear intersection maps PicX×Ak(X)→ Ak−1(X) determined by D · [V ] =
[D ·V ] for all D ∈ PicX and all k-dimensional subvarieties V of X.

Proof. All that remains to be shown is that D ·α = 0 for any Cartier divisor D if the cycle
α is zero in the Chow group Ak(X). But this follows from proposition 9.4.4, as for any
rational function ϕ on a (k+1)-dimensional subvariety W of X we have

D · [div(ϕ)] = div(ϕ) · [D] = 0

(note that div(ϕ) is a Cartier divisor on W that is linearly equivalent to zero). �
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Remark 9.4.6. Obviously we can now iterate the process of taking intersection products
with Cartier divisors: if X is a scheme and D1, . . . ,Dm are Cartier divisors (or divisor
classes) on X then there are well-defined commutative intersection products

D1 ·D2 · · ·Dm ·α ∈ Ak−m(X)

for any k-cycle α ∈ Ak(X). If X is an n-dimensional variety and α = [X ] is the class of
X we usually omit [X ] from the notation and write the intersection product simply as D1 ·
D2 · · ·Dm ∈ An−m(X). If m = n and X is complete, the notation D1 ·D2 · · ·Dm is moreover
often used to denote the degree of the 0-cycle D1 ·D2 · · ·Dm ∈ A0(X) (see example 9.2.13)
instead of the cycle itself. If a divisor D occurs m times in the intersection product we will
also write this as Dm.

Example 9.4.7. Let X = P2. Then PicX = A1(X) = Z · [H], and the intersection product is
determined by H2 = 1 (“two lines intersect in one point”). In the same way, Hn = 1 on Pn.

Example 9.4.8. Let X = P̃2 be the blow-up of P2 in a point P. By example 9.2.14 we
have PicX = Z[H]⊕Z[E], where E is the exceptional divisor, and H is a line in P2 not
intersecting E. The strict transform L of a line in P2 through P has class [L] = [H]− [E] ∈
PicX .

The intersection products on X are therefore determined by computing the three prod-
ucts H2, H ·E, and E2. Of course, H2 = 1 and H ·E = 0 (as H ∩E = /0). To compute
E2 we use the relation [E] = [H]− [L] and the fact that E and L meet in one point (with
multiplicity 1):

E2 = E · (H−L) = E ·H−E ·L = 0−1 =−1.

By our interpretation of example 9.4.3 (ii) this means that the normal bundle of E ∼= P1 in
X is OP1(−1). In particular, this normal bundle has no global sections. This means that E
cannot be deformed in X as in the picture of example 9.4.3 (ii): one says that the curve E
is rigid in X .

We can consider the formulas H2 = 1, H ·E = 0, E2 =−1, together with the existence
of the intersection product PicX ×PicX → Z as a Bézout style theorem for the blow-up
X = P̃2. In the same way, we get Bézout style theorems for other (smooth) surfaces and
even higher-dimensional varieties.

Example 9.4.9. As a more complicated example, let us reconsider the question of exercise
4.6.6: how many lines are there in P3 that intersect four general given lines L1, . . . ,L4⊂P3?
Recall from exercise 3.5.4 that the space of lines in P3 is the smooth four-dimensional
Grassmannian variety X = G(1,3) that can be described as the set of all rank-2 matrices(

a0 a1 a2 a3
b0 b1 b2 b3

)
modulo row transformations. By the Gaussian algorithm it follows that G(1,3) has a strat-
ification by affine spaces X4,X3,X2,X ′2,X1,X0 (where the subscript denotes the dimension
and the stars denote arbitrary complex numbers)(

1 0 ∗ ∗
0 1 ∗ ∗

) (
1 ∗ 0 ∗
0 0 1 ∗

) (
1 ∗ ∗ 0
0 0 0 1

)
X4 X3 X2

(
0 1 0 ∗
0 0 1 ∗

) (
0 1 ∗ 0
0 0 0 1

) (
0 0 1 0
0 0 0 1

)
X ′2 X1 X0
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If we denote by σ4, . . . ,σ0 the classes in A∗(X) of the closures of X4, . . . ,X0, we have seen
in remark 9.1.18 that A∗(X) is generated by the classes σ4, . . . ,σ0. These classes actually
all have a geometric interpretation:

(i) σ4 = [X ].
(ii) σ3 is the class of all lines that intersect the line {x0 = x1 = 0} ⊂ P3. Note that

this is precisely the zero locus of a0b1−a1b0. In particular, if L⊂ P3 is any other
line then the class σL

3 of all lines in P3 meeting L is also a quadratic function q
in the entries of the matrix that is invariant under row transformations (in fact a
2× 2 minor in a suitable choice of coordinates of P3). The quotient a0b1−a1b0

q is
then a rational function on X whose divisor is σ3−σL

3 . It follows that the class
σL

3 does not depend on L. So we can view σ3 as the class that describes all lines
intersecting any given line in P3.

(iii) σ2 is the class of all lines passing through the point (0 : 0 : 0 : 1). By an argument
similar to that in (ii) above, we can view σ2 as the class of all lines passing through
any given point in P3.

(iv) σ′2 is the class of all lines that are contained in a plane (namely in the plane x0 = 0
for the cycle X ′2 given above).

(v) σ1 is the class of all lines that are contained in a plane and pass through a given
point in this plane.

(vi) σ0 is the class of all lines passing through two given points in P3.

Hence we see that the intersection number we are looking for is just σ4
3 ∈ A0(X) ∼= Z —

the number of lines intersecting any four given lines in P3. So let us compute this number.
Step 1. Let us compute σ2

3 ∈ A2(X), i. e. class of all lines intersecting two given lines
L1,L2 in P3. We have seen above that it does not matter which lines we take, so let us
choose L1 and L2 such that they intersect in a point P ∈ P3. A line that intersects both L1
and L2 has then two possibilities:

(i) it is any line in the plane spanned by L1 and L2,
(ii) it is any line in P3 passing through P.

As (i) corresponds to σ′2 and (ii) to σ2 we see that σ2
3 = σ2 +σ′2. To be more precise,

we still have to show that σ2
3 contains both X2 and X ′2 with multiplicity 1 (and not with a

higher multiplicity). As an example, we will show that σ2
3 contains σ2 with multiplicity

1; the proof for σ′2 is similar. Consider the open subset X4 ⊂ G(1,3); it is isomorphic to
an affine space A4 with coordinates a2,a3,b2,b3. On this open subset, the space of lines
intersecting the line {x0 = x2 = 0} is given scheme-theoretically by the equation b2 = 0,
whereas the space of lines intersecting the line {x0 = x3 = 0} is given scheme-theoretically
by the equation b3 = 0. The scheme-theoretic intersection of these two spaces (i. e. the
product σ2

3) is then given by b2 = b3 = 0, which is precisely the locus of lines through the
point (0 : 1 : 0 : 0) (with multiplicity 1), i. e. the cycle σ2.

Step 2. In the same way we compute that

(i) σ3 ·σ2 = σ1 (lines meeting a line L and a point P are precisely lines in the plane
spanned by L and P passing through P),

(ii) σ3 ·σ′2 = σ1 (lines meeting a line L and contained in a plane H are precisely lines
in the plane H passing through the point H ∩L),

(iii) σ3 ·σ1 = σ0.

So we conclude that

σ
4
3 = σ

2
3(σ2 +σ

′
2) = 2σ3σ1 = 2,

i. e. there are exactly two lines in P3 meeting four other general given lines.
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We should note that similar decompositions into affine spaces exist for all Grassmannian
varieties, as well as rules how to intersect the corresponding Chow cycles. These rules are
usually called Schubert calculus. They can be used to answer almost any question of the
form: how many lines in Pn satisfy some given conditions?

Finally, let us prove a statement about intersection products that we will need in the next
section. It is based on the following set-theoretic idea: let f : X → Y be any map of sets,
and let V ⊂ X and W ⊂ Y be arbitrary subsets. Then it is checked immediately that

f ( f−1(W )∩V ) =W ∩ f (V ).

This relation is called a projection formula. There are projection formulas for many other
morphisms and objects that can be pushed forward and pulled back along a morphism. We
will prove an intersection-theoretic version here.

Lemma 9.4.10. Let f : X→Y be a proper surjective morphism of schemes. Let α∈ Ak(X)
be a k-cycle on X, and let D ∈ PicY be a Cartier divisor (class) on Y . Then

f∗( f ∗D ·α) = D · f∗α ∈ Ak−1(Y ).

Proof. (Note that this is precisely the set-theoretic intersection formula from above, to-
gether with the statement that the scheme-theoretic multiplicities match up in the right
way.)

By linearity we may assume that α = [V ] for a k-dimensional subvariety V ⊂ X . Let
W = f (V ), and denote by g : V →W the restriction of f to V . Then the left hand side of
the equation of the lemma is g∗[g∗D′], where D′ is the Cartier divisor on W associated to
the line bundle OY (D)|W . The right hand side is [K(V ) : K(W )] · [D′] by construction 9.2.9,
with the convention that [K(V ) : K(W )] = 0 if dimW < dimV . We will prove that these
expressions actually agree in Zk−1(W ) for any given Cartier divisor D′. This is a local
statement (as we just have to check that every codimension-1 subvariety of W occurs on
both sides with the same coefficient), so passing to an open subset we can assume that D′

is the divisor of a rational function ϕ on W . But then by theorem 9.2.11 the left hand side
is equal to

g∗ div(g∗ϕ) = divN(g∗ϕ) = div(ϕ[K(V ):K(W )]) = [K(V ) : K(W )] ·div(ϕ),

which equals the right hand side. �

9.5. Exercises.

Exercise 9.5.1. Let X ⊂ Pn be a hypersurface of degree d. Compute the Chow group
An−1(Pn\X).

Exercise 9.5.2. Compute the Chow groups of X = Pn×Pm for all n,m≥ 1. Assuming that
there are “intersection pairing homomorphisms”

An+m−k(X)×An+m−l(X)→ An+m−k−l(X), (α,α′) 7→ α ·α′

such that [V ∩W ] = [V ] · [W ] for all subvarieties V,W ⊂ X that intersect in the expected di-
mension, compute these homomorphisms explicitly. Use this to state a version of Bézout’s
theorem for products of projective spaces.

Exercise 9.5.3. (This is a generalization of example 9.1.7.) If X1 and X2 are closed sub-
schemes of a scheme X show that there are exact sequences

Ak(X1∩X2)→ Ak(X1)⊕Ak(X2)→ Ak(X1∪X2)→ 0

for all k ≥ 0.



186 Andreas Gathmann

Exercise 9.5.4. Show that for any schemes X and Y there are well-defined product homo-
morphisms

Ak(X)×Al(Y )→ Ak+l(X×Y ), [V ]× [W ] 7→ [V ×W ].

If X has a stratification by affine spaces as in remark 9.1.18 show that the induced homo-
morphisms ⊕

k+l=m

Ak(X)×Al(Y )→ Am(X×Y )

are surjective. (In general, they are neither injective nor surjective).

Exercise 9.5.5. Prove the following criteria to determine whether a morphism f : X → Y
is proper:

(i) The composition of two proper morphisms is proper.
(ii) Properness is “stable under base change”: if f : X →Y is proper and g : Z→Y is

any morphism, then the induced morphism f ′ : X×Y Z→ Z is proper as well.
(iii) Properness is “local on the base”: if {Ui} is any open cover of Y and the restric-

tions f | f−1(Ui)
: f−1(Ui)→Ui are proper for all i then f is proper.

(iv) Closed immersions (see 7.2.10) are proper.

Exercise 9.5.6. Let f : P1 → P1 be the morphism given in homogeneous coordinates by
(x0 : x1) 7→ (x2

0 : x2
1). Let P ∈ P1 be the point (1 : 1), and consider the restriction f̃ :

P1\{P} → P1. Show that f̃ is not proper, both with the topological and the algebraic
definition of properness.

Exercise 9.5.7. For any n > 0 compute the Chow groups of P2 blown up in n points.

Exercise 9.5.8. Let k be an algebraically closed field. In this exercise we will construct an
example of a variety that is complete (i. e. compact if k = C) but not projective.

Consider X = P3 and the curves C1 = {x3 = x2−x1 = 0} and C2 = {x3 = x0x2−x2
1 = 0}

in X . Denote by P1 = (1 : 0 : 0 : 0) and P2 = (1 : 1 : 1 : 0) their two intersection points.
Let X̃ ′1 → X be the blow-up at C1, and let X̃1 → X̃ ′1 be the blow-up at the strict trans-

form of C2. Denote by π1 : X̃1 → X the projection map. Similarly, let π2 : X̃2 → X be
the composition of the two blow-ups in the opposite order; first blow up C2 and then the
strict transform of C1. Obviously, X̃1 and X̃2 are isomorphic away from the inverse im-
age of {P1,P2}, so we can glue π

−1
1 (X\{P1}) and π

−1
2 (X\{P2}) along the isomorphism

π
−1
1 (X\{P1,P2}) ∼= π

−1
2 (X\{P1,P2}) to get a variety Y . This variety will be our example.

From the construction there is an obvious projection map π : Y → X .

(i) Show that Y is proper over k.
(ii) For i = 1,2 we know that Ci is isomorphic to P1. Hence we can choose a rational

function ϕi on Ci with divisor P1−P2. Compute the divisor of the rational function
ϕi ◦π on the variety π−1(Ci), as an element in Z1(Y ).

(iii) From (ii) you should have found two irreducible curves D1,D2 ⊂ Y such that
[D1]+ [D2] = 0 ∈ A1(Y ). Deduce that Y is not a projective variety.

Exercise 9.5.9. Let X be a smooth projective surface, and let C,D⊂ X be two curves in X
that intersect in finitely many points.

(i) Prove that there is an exact sequence of sheaves on X

0→ OX (−C−D)→ OX (−C)⊕OX (−D)→ OX → OC∩D→ 0.

(ii) Conclude that the intersection product C ·D ∈ Z is given by the formula

C ·D = χ(X ,OX )+χ(X ,OX (−C−D))−χ(X ,OX (−C))−χ(X ,OX (D))

where χ(X ,F ) = ∑i(−1)ihi(X ,F ) denotes the Euler characteristic of the sheaf
F .
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(iii) Show how the idea of (ii) can be used to define an intersection product of divisors
on a smooth complete surface (even if the divisors do not intersect in dimension
zero).


