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8. COHOMOLOGY OF SHEAVES

For any quasi-coherent sheaf F on a scheme X we construct the cohomology groups
H i(X ,F ) for i ≥ 0 using the Čech complex associated to an affine open cover of X .
We show that the cohomology groups do not depend on the choice of affine open
cover. The cohomology groups H i(X ,F ) vanish for i > 0 if X is affine, and in any
case for i > dimX .

For any short exact sequence of sheaves on X there is an associated long exact
sequence of the corresponding cohomology groups.

If L is a line bundle of degree at least 2g−1 on a smooth projective curve of genus
g then the cohomology group H1(X ,L) is zero. Using this “vanishing theorem” we
reprove the Riemann-Roch theorem in a cohomological version. Comparing this to
the old version yields the equality dimH0(KX −D) = dimH1(D) for any divisor D,
which is a special case of the Serre duality theorem. As an application we can now
define the genus of a possibly singular curve to be dimH1(X ,OX ).

We compute the cohomology groups of all line bundles on projective spaces. As a
consequence, we obtain the result that the cohomology groups of coherent sheaves on
projective schemes are always finite-dimensional vector spaces, and that H i(X ,F ⊗
OX (d)) = 0 for all i > 0 and d� 0.

8.1. Motivation and definitions. There are numerous ways to motivate the theory of co-
homology of sheaves. Almost all of them are based on the observation that “the functor of
taking global sections of a sheaf is not exact”, i. e. given an exact sequence of sheaves of
Abelian groups

0→ F1→ F2→ F3→ 0
on a scheme (or topological space) X , by taking global sections we get an exact sequence

0→ Γ(F1)→ Γ(F2)→ Γ(F3)

of Abelian groups in which the last map Γ(F2)→ Γ(F3) is in general not surjective. We
have seen one example of this in example 7.1.18. Here is one more example:

Example 8.1.1. Let X ⊂Pn be a smooth hypersurface of degree d with inclusion morphism
i : X → Pn. We know from lemma 7.4.15 that the cotangent sheaf of Pn fits into an exact
sequence of vector bundles

0→ΩPn → O(−1)⊕(n+1)→ O→ 0.

Pulling this sequence back by i and taking global sections, we see that we have an exact
sequence

0→ Γ(i∗ΩPn)→ Γ(OX (−1)⊕(n+1))→ ··· .
But OX (−1) has no global sections, so we conclude that i∗ΩPn has no global sections
either. Now consider the exact sequence of lemma 7.4.16

0→ OX (−d)→ i∗ΩPn →ΩX → 0,

from which we deduce the exact sequence

0→ Γ(OX (−d))→ Γ(i∗ΩPn)→ Γ(ΩX ).

We have just seen that the first two groups in this sequence are trivial. But Γ(ΩX ) is
not trivial in general (e. g. for a cubic curve in P2 we have ΩX = OX and thus Γ(ΩX ) = k).
Hence the last map in the above sequence of global sections cannot be surjective in general.

We have however already met a case in which the induced map on global sections is
exact: if X = SpecR is an affine scheme and Fi = M̃i for some R-modules Mi are quasi-
coherent sheaves on X then by lemma 7.2.7 (ii) the sequence

0→ F1→ F2→ F3→ 0
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is exact if and only if the sequence

0→ Γ(F1)→ Γ(F2)→ Γ(F3)→ 0

is exact (note that Γ(Fi) = Mi by proposition 7.2.2 (ii)). We have mentioned already that
essentially all sheaves occurring in practice are quasi-coherent, so we will assume this from
now on for the rest of this chapter.

The conclusion is that we know that taking global sections is an exact functor if the
underlying scheme is affine. The goal of the theory of cohomology is to extend the
global section sequence to the right for all schemes X in the following sense: for any
(quasi-coherent) sheaf F on X we will define natural cohomology groups H i(X ,F ) for
all i > 0 satisfying (among other things) the following property: given any exact sequence
0→ F1 → F2 → F3 → 0 of sheaves on X , there is an induced long exact sequence of
cohomology groups

0→ Γ(F1)→ Γ(F2)→ Γ(F3)→ H1(X ,F1)→ H1(X ,F2)→ H1(X ,F3)→ H2(X ,F1)→ ··· .

If X is an affine scheme then H i(X ,F ) = 0 for all i > 0, so that we arrive again at our old
result that the sequence of global sections is exact in this case.

Let us now give the definition of these cohomology groups. There are various ways to
define these groups. In these notes we will use the approach of so-called Čech cohomology.
This is the most suitable approach for actual applications (but maybe not the best one from
a purely theoretical point of view). The idea of Čech cohomology is simple: we have seen
above that the global section functor is exact (i. e. does what we finally want) if X is an
affine scheme. So if X is any scheme we will just choose an affine open cover {Ui} of X
and consider sections of our sheaves on these affine open subsets and their intersections.

Definition 8.1.2. Let X be a scheme, and let F be a (quasi-coherent) sheaf on X . Fix an
affine open cover {Ui}i∈I of X , and assume for simplicity that I is an ordered set. For all
p≥ 0 we define the Abelian group

Cp(F ) = ∏
i0<···<ip

F (Ui0 ∩·· ·∩Uip).

In other words, an element α ∈CP(F ) is a collection α = (αi0,...,ip) of sections of F over
all intersections of p+1 sets taken from the cover. These sections can be totally unrelated.

For every p≥ 0 we define a “boundary operator” dp : Cp(F )→Cp+1(F ) by

(dp
α)i0,...,ip+1 =

p+1

∑
k=0

(−1)k
αi0,...,ik−1,ik+1,...,ip+1 |Ui0∩···∩Uip+1

.

Note that this makes sense as the αi0,...,ik−1,ik+1,ip+1 are sections of F on Ui0 ∩ ·· ·∩Uik−1 ∩
Uik+1 ∩·· ·∩Uip+1 , which contains Ui0 ∩·· ·∩Uip+1 as an open subset.

By abuse of notation we will denote all these operators simply by d if it is clear from
the context on which Cp(F ) they act.

Lemma 8.1.3. Let F be a sheaf on a scheme X. Then dp+1 ◦ dp : Cp(F )→Cp+2(F ) is
the zero map for all p≥ 0.
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Proof. This statement is essentially due to the sign in the definition of dα: for every α ∈
Cp(F ) we have

(dp+1dp
α)i0,...,ip+2 =

p+2

∑
k=0

(−1)k(dα)i0,...,ik−1,ik+1,...,ip+2

=
p+2

∑
k=0

k−1

∑
m=0

(−1)k+m
αi0,...,im−1,im+1,...,ik−1,ik+1,...,ip+2

+
p+2

∑
k=0

p+2

∑
m=k+1

(−1)k+m−1
αi0,...,ik−1,ik+1,...,im−1,im+1,...,ip+2

= 0

(omitting the restriction maps). �

We have thus defined a sequence of Abelian groups and homomorphisms

C0(F )
d0
−→C1(F )

d1
−→C2(F )

d2
−→ ·· ·

such that dp+1 ◦ dp = 0 at every step. Such a sequence is usually called a complex of
Abelian groups. The maps dp are then called the boundary operators.

Definition 8.1.4. Let F be a sheaf on a scheme X . Pick an affine open cover {Ui} of X
and consider the associated groups Cp(F ) and homomorphisms dp : Cp(F )→Cp+1(F )
for p≥ 0. We define the p-th cohomology group of F to be

H p(X ,F ) = kerdp/ imdp−1

with the convention that Cp(F ) and dp are zero for p < 0. Note that this is well-defined
as imdp−1 ⊂ kerdp by lemma 8.1.3. If X is a scheme over a field k then the cohomology
groups will be vector spaces over k. The dimension of the cohomology groups H i(X ,F )
as a k-vector space is then denoted hi(X ,F ).

Remark 8.1.5. The definition of the cohomology groups as it stands depends on the choice
of the affine open cover of X . It is a very crucial (and non-trivial) fact that the H i(X ,F )
actually do not depend on this choice (as we have already indicated by the notation). It is
the main disadvantage of our Čech approach to cohomology that this independence is not
obvious from the definition. There are other constructions of the cohomology groups (for
example the “derived functor approach” of [H] chapter III) that never use such affine open
covers and therefore do not face this problem. On the other hand, these other approaches
are essentially useless for actual computations. This is why we have given the Čech ap-
proach here. We will prove the independence of our cohomology groups of the open cover
in section 8.5. For now we will just assume this independence and rather discuss the prop-
erties and applications of the cohomology groups.

Example 8.1.6. The following examples follow immediately from the definition and the
assumption of remark 8.1.5:

(i) For any X and F we have H0(X ,F ) = Γ(F ). In fact, we have H0(X ,F ) =
ker(d0 : C0(F )→C1(F )) by definition. But an element α ∈C0(F ) is just given
by a section αi ∈ F (Ui) for every element of the open cover, and the map d0 is
given by (αi−α j)|Ui∩U j . By the sheaf axiom this is zero for all i and j if and
only if the αi come from a global section of F . Hence H0(X ,F ) = Γ(F ). (In
particular, our definition of h0(L) in section 7.7 is consistent with our current
definition of h0(X ,L).)

(ii) If X is an affine scheme then H i(X ,F ) = 0 for i > 0. In fact, if X is affine we can
pick the open cover consisting of the single element X , in which case the groups
Ci(F ) and hence the H i(X ,F ) are trivially zero for i > 0.
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(iii) If X is a projective scheme of dimension n then H i(X ,F ) = 0 whenever i > n.
In fact, by proposition 4.1.9 we can pick homogeneous polynomials f0, . . . , fn
such that X ∩ Z( f0, . . . , fn) = /0. We thus get an open cover of X by the n+ 1
subsets X\Z( fi) which are all affine by proposition 5.5.4. Using this open cover
for the definition of the cohomology groups, we see that the Ci(F ) and hence the
H i(X ,F ) are zero for i > n. Note that the same is true for any scheme that can be
covered by n+1 affine open subsets.

Note that for (i) we did not need the independence of the cohomology groups of the open
cover, but for (ii) and (iii) we did. In fact, the last two statements are both highly non-trivial
theorems about cohomology groups. They only follow so easily in our setup because we
assumed the independence of the cover.

Example 8.1.7. Let X = P1 and F = O. By example 8.1.6 (i) we know that H0(P1,O)∼= k
is simply the space of (constant) global regular functions, and by part (iii) we know that
H i(P1,O) = 0 for i > 1. So let us determine H1(P1,O). To compute this cohomology
group let us pick the obvious affine open cover Ui = {xi 6= 0} for i = 0,1. Then

C1(O) = O(U0∩U1)

=

{
f

xa
0xb

1
; f homogeneous of degree a+b

}
=

〈
xm

0 xn
1

xa
0xb

1
; m+n = a+b and m,n,a,b≥ 0

〉
.

Of course the condition m+ n = a+ b implies that we always have m ≥ a or n ≥ b. So
every such generator is regular on at least one of the open subsets U0 and U1. It follows
that every such generator is in the image of the boundary map

d0 : C0(O) = O(U0)×O(U1)→ O(U0∩U1), (α0,α1) 7→ α1−α0|U0∩U1 .

Consequently H1(P1,O) = 0 by definition of the cohomology groups.

Example 8.1.8. In the same way as in example 8.1.7 let us now compute the cohomology
group H1(P1,O(−2)). With the same notations as above we have now

C1(O(−2)) = O(−2)(U0∩U1)

=

{
f

xa
0xb

1
; f homogeneous of degree a+b−2

}
=

〈
xm

0 xn
1

xa
0xb

1
; m+n = a+b−2

〉
.

The condition m+ n = a+ b− 2 implies that m ≥ a− 1 or n ≥ b− 1. If one of these
inequalities is strict, then the corresponding generator xm

0 xn
1

xa
0xb

1
is regular on U0 or U1 and is

therefore zero in the cohomology group H1(P1,O(−2)) as above. So we are only left
with the function 1

x0x1
where neither inequality is strict. As C2(O(−2)) = 0 and so the

boundary operator d1 is trivial, we conclude that H1(P1,O(−2)) is one-dimensional, with
the function 1

x0x1
as a generator.

8.2. The long exact cohomology sequence. The main property of the cohomology groups
is that they solve the problem of finding an exact sequence of sections associated to a short
exact sequence of sheaves:
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Proposition 8.2.1. Let 0→F1→F2→F3→ 0 be an exact sequence of sheaves on a (sep-
arated) scheme X. Then there is a canonical long exact sequence of cohomology groups

0→ H0(X ,F1)→ H0(X ,F2)→ H0(X ,F3)

→ H1(X ,F1)→ H1(X ,F2)→ H1(X ,F3)

→ H2(X ,F1)→ ·· · .

Proof. Consider the diagram of Abelian groups and homomorphisms

· · ·

��

· · ·

��

· · ·

��

0 // Cp−1(F1)
f //

d
��

Cp−1(F2)
g //

d
��

Cp−1(F3) //

d
��

0

0 // Cp(F1)
f //

d
��

Cp(F2)
g //

d
��

Cp(F3) //

d
��

0

0 // Cp+1(F1)
f //

d

��

Cp+1(F2)
g //

d

��

Cp+1(F3) //

d

��

0

· · · · · · · · ·

The columns of this diagram are complexes (i. e. d ◦ d = 0 at all places) by lemma 8.1.3.
We claim that the rows of this diagram are all exact: by lemma 7.2.7 (ii) and what we have
said in section 8.1 we know that the sequences 0→ F1(U)→ F2(U)→ F3(U)→ 0 are
exact on every affine open subset U of X . But the intersection of two (and hence finitely
many) affine open subsets of X is again affine as U ∩V = ∆X ∩ (U ×V ) is a closed subset
of an affine scheme U ×V (where ∆X ⊂ X ×X denotes the diagonal of X). As the Cp(Fi)
are made up from sections on such open subsets, the claim follows. Moreover, note that all
squares in this diagram are commutative by construction.

The statement of the proposition now follows from a basic lemma of homological alge-
bra: �

Lemma 8.2.2. Any short exact sequence of complexes

· · ·

��

· · ·

��

· · ·

��

0 // Cp−1 f //

d
��

Dp−1 g //

d
��

E p−1 //

d
��

0

0 // Cp f //

d
��

Dp g //

d
��

E p //

d
��

0

0 // Cp+1 f //

d
��

Dp+1 g //

d
��

E p+1 //

d
��

0

· · · · · · · · ·



154 Andreas Gathmann

(i. e. the Cp,Dp,E p are Abelian groups, the diagram commutes, the rows are exact and the
columns are complexes) gives rise to a long exact sequence in cohomology

· · · → H p−1(E)→ H p(C)→ H p(D)→ H p(E)→ H p+1(C)→ ·· ·

where H p(C) = ker(Cp→Cp+1)/ im(Cp−1→Cp), and similarly for D and E.

Proof. The proof is done by pure “diagram chasing”. We will give some examples.

(i) Existence of the morphisms ψ : H p(C)→ H p(D): let α ∈ H p(C) be represented
by an element in Cp (which we denote by the same letter by abuse of notation).
Then dα = 0 ∈ Cp+1. Set ψ(α) = f (α). Note that dψ(α) = f (dα) = 0, so
ψ(α) is a well-defined cohomology element. We still have to check that this
definition does not depend on the representative chosen in Cp. So if α = dα′ for
some α′ ∈Cp−1 (so that α = 0 in H p(C)) then ψ(α) = f (dα′) = d f (α′) (so that
ψ(α) = 0 in H p(D)).

(ii) The existence of the morphisms H p(D)→ H p(E) follows in the same way: they
are simply induced by the morphisms g.

(iii) Existence of the morphisms φ : H p(E)→H p+1(C): The existence of these “con-
necting morphisms” is probably the most unexpected part of this lemma. Let α be
a (representative of a) cohomology element in E p, so that dα= 0. As g : Dp→E p

is surjective, we can pick a β ∈ Dp such that g(β) = α. Consider the element
dβ ∈ Dp+1. We have g(dβ) = dg(β) = dα = 0, so dβ is in fact of the form f (γ)
for a (unique) γ ∈Cp+1. We set φ(α) = γ.

We have to check that this is well-defined:
(a) dγ = 0 (so that γ actually defines an element in cohomology): we have

f (dγ) = d f (γ) = d(dβ) = 0 as the middle column is a complex, so dγ = 0
as the f are injective.

(b) The construction does not depend on the choice of β: if we pick another β′

with g(β′) = α then g(β−β′) = 0, so β−β′ = f (δ) for some δ ∈Cp as the
p-th row is exact. Now if γ and γ′ are the elements such that f (γ) = dβ and
f (γ′) = β′ then f (γ− γ′) = d(β−β′) = d f (δ) = f (dδ). As f is injective we
conclude that γ− γ′ = dδ, so γ and γ′ define the same element in H p+1(C).

(c) If α = dα′ for some α′ ∈ E p−1 (so that α defines the zero element in co-
homology) then we can pick an inverse image β′ with g(β′) = α′ as g is
surjective. For β we can then take dβ′. But then dβ = d(dβ′) = 0 as the
middle column is a complex, so the resulting element in H p+1(C) is zero.

Summarizing, we can say that the morphism H p(E)→ H p+1(C) is obtained by
going “left, down, left” in our diagram. We have just checked that this really
gives rise to a well-defined map.

We have now seen that there is a canonical sequence of morphisms between the cohomol-
ogy groups as stated in the lemma. It remains to be shown that the sequence is actually
exact. We will check exactness at the H p(D) stage only (i. e. show that ker(H p(D)→
H p(E)) = im(H p(C)→ H p(D)) and leave the other two checks (at H p(C) and H p(E))
that are completely analogous as an exercise.

im(H p(C)→H p(D))⊂ ker(H p(D)→H p(E)): Let α∈H p(D) be of the form α= f (β)
for some β ∈ H p(C)). Then g(α) = g( f (β)) = 0 as the p-th row is exact.

ker(H p(D)→ H p(E)) ⊂ im(H p(C)→ H p(D)): Let α ∈ H p(D) be a cohomology ele-
ment (i. e. dα = 0) such that g(α) = 0 in cohomology, i. e. g(α) = dβ for some E p−1. As
g is surjective we can pick an inverse image γ ∈ Dp−1 of β. Then

g(α−dγ) = g(α)−g(dγ) = g(α)−dβ = 0,
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so there is a δ ∈Cp such that f (δ) = α− dγ as the p-th row is exact. Note that δ defines
an element in H p(C) as f (dδ) = d(α−dγ) = 0−0 = 0 and thus dδ = 0 as f is injective.
Moreover, f (δ) = α in H p(D) by construction, so α ∈ im(H p(C)→ H p(D)). �

Example 8.2.3. Consider the exact sequence of sheaves on X = P1

0−→ O(−2)
·x0x1−→ O −→ kP⊕ kQ −→ 0

from example 7.1.18, where P = (0 : 1) and Q = (1 : 0), and the last map is given by evalu-
ation at P and Q. From proposition 8.2.1 we deduce an associated long exact cohomology
sequence

0→H0(X ,O(−2))→H0(X ,O)→H0(X ,kP⊕kQ)→H1(X ,O(−2))→H1(X ,O)→ ··· .
Now H0(X ,O(−2)) = 0 by example 7.7.1 and H1(X ,O) = 0 by example 8.1.7. Moreover,
H0(X ,O) is just the space of global (constant) functions, H0(X ,kP⊕ kQ) is isomorphic to
k× k (given by specifying values at the points P and Q), and H1(X ,O(−2)) = 〈 1

x0x1
〉 is

1-dimensional by example 8.1.8. So our exact sequence is just

0→ k→ k× k→ k→ 0.

We can actually also identify the morphisms. The first morphism in this sequence is a 7→
(a,a) as it is the evaluation of the constant function a at the points P and Q. The second
morphism is given by the “left, down, left” procedure of part (iii) of the proof of lemma
8.2.2 in the following diagram:

0 // C0(O(−2)) //

��

C0(O) //

��

C0(kP⊕ kQ) //

��

0

0 // C1(O(−2)) // C1(O) // C1(kP⊕ kQ) // 0

Starting with any element (a,b) ∈C0(kP⊕ kQ) we can find an inverse image in C0(O) =
O(U0)×O(U1) (with Ui = {xi 6= 0}, namely the pair of constant functions (b,a) (as P∈U1
and Q ∈U0). Going down in the diagram yields the function a− b ∈ O(U0 ∩U1) by the
definition of the boundary operator. Recalling that the morphism from O(−2) to O is given
by multiplication with x0x1, we find that a−b

x0x1
is the element in C1(O(−2)) that we were

looking for. In terms of the basis vector 1
x0x1

of H1(X ,O(−2)) this function has the single
coordinate a−b. So in this basis our exact cohomology sequence becomes

0 → k → k× k → k → 0
a 7→ (a,a)

(a,b) 7→ a−b,

which is indeed exact.

8.3. The Riemann-Roch theorem revisited. Let us now study the cohomology groups
of line bundles on smooth projective curves in some more detail. So let X be such a curve,
and let L be a line bundle on X . Of course by example 8.1.6 (i) and (iii) the only interesting
cohomology group is H1(X ,L). We will show that this group is trivial if L is “positive
enough”:

Proposition 8.3.1. (Kodaira vanishing theorem for line bundles on curves) Let X be a
smooth projective curve of genus g, and let L be a line bundle on X such that degL ≥
2g−1. Then H1(X ,L) = 0.

Proof. We compute H1(X ,L) using our definition of cohomology groups. So let U0 ⊂ X
be an affine open subset of X . It must be of the form X\{P1, . . . ,Pr} for some points Pi
on X . Now pick any other affine open subset U1 ⊂ X that contains the points Pi. Then U1
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is of the form X\{Q1, . . . ,Qs} with Pi 6= Q j for all i, j. So we have an affine open cover
X =U0∪U1.

By definition we have H1(X ,L) = L(U0∩U1)/(L(U0)+L(U1)). Note that L(U0∩U1)
is precisely the space of rational sections of L that may have poles at the points Pi and Q j,
and similarly for L(U0) and L(U1). In other words, to prove the proposition we have to
show that any rational section α of L with poles at the Pi and Q j can be written as the sum
of two rational sections α0 and α1, where α0 has poles only at the Pi and α1 only at the Q j.

So let α be such a rational section. It is a global section of L⊗OX (a1P1 + · · ·+arPr +
b1Q1 + · · ·+bsQs) for some ai,b j ≥ 0.

Let us assume that a1 ≥ 1. Note that then the degree of the line bundle ωX ⊗L∨⊗
OX (−a1P1− ·· ·− arPr) is at most −2 by assumption and corollary 7.6.6. Hence by the
Riemann-Roch theorem 7.7.3 (and example 7.7.1) it follows that

h0(L⊗OX (a1P1 + · · ·+arPr)) = degL+a1 + · · ·+ar +1−g.

In the same way we get

h0(L⊗OX ((a1−1)P1 + · · ·+arPr)) = degL+a1−1+a2 + · · ·+ar +1−g.

We conclude that

h0(L⊗OX (a1P1 + · · ·+arPr))−h0(L⊗OX ((a1−1)P1 + · · ·+arPr)) = 1.

So we can pick a rational section α′0 in Γ(L⊗OX (a1P1+ · · ·+arPr)) that is not in Γ(h0(L⊗
OX ((a1−1)P1 + · · ·+arPr))), i. e. a section that has a pole of order exactly a1 at P1.

Now α and α′0 are both sections of the one-dimensional vector space

Γ(L⊗OX (a1P1 + · · ·+arPr))/Γ(L⊗OX ((a1−1)P1 + · · ·+arPr)),

and moreover α′0 is not zero in this quotient. So by possibly multiplying α′0 with a constant
scalar we can assume that α−α′0 is in Γ(L⊗OX ((a1−1)P1 + · · ·+arPr)).

Note now that α′0 has poles only at the Pi, whereas the total order of the poles of α−α′0
at the Pi is at most a1 + · · ·+ ar− 1. Repeating this process we arrive after a1 + · · ·+ ar
steps at a rational section α0 with poles only at the Pi such that α1 := α−α0 has no poles
any more at the Pi. This is precisely what we had to construct. �

Remark 8.3.2. As in the case of the Riemann-Roch theorem there are vast generalizations
of the Kodaira vanishing theorem, e. g. to higher-dimensional spaces. One version is the
following: if X is a smooth projective variety then H i(X ,ωX ⊗OX (n)) = 0 for all i > 0 and
n > 0. Note that in the case of a smooth curve this follows from our version of proposition
8.3.1, as deg(ωX ⊗OX (n)) = 2g−2+1≥ 2g−1.

In general cohomology groups “tend to be zero quite often”. There are many so-called
vanishing theorems that assert that certain cohomology groups are zero under some condi-
tions that can hopefully easily be checked. We will prove one more vanishing theorem in
theorem 8.4.7 (ii). Of course, the advantage of vanishing cohomology groups is that they
break up the long exact cohomology sequence of proposition 8.2.1 into smaller pieces.

Using our Kodaira vanishing theorem we can now reprove the Riemann-Roch theo-
rem in a “cohomological version”. In analogy to the notation of section 7.7 let us denote
H1(X ,OX (D)) also by H1(D) for any divisor D, and similarly for h1(D).

Corollary 8.3.3. (Riemann-Roch theorem for line bundles on curves, second version)
Let X be a smooth projective curve of genus g. Then for any divisor D on X we have

h0(D)−h1(D) = degD+1−g.

Proof. From the exact skyscraper sequence

0→ OX (D)→ OX (D+P)→ kP→ 0
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for any point P ∈ X we get the long exact sequence in cohomology

0→ H0(D)→ H0(D+P)→ k→ H1(D)→ H1(D+P)→ 0

by proposition 8.2.1. Taking dimensions, we conclude that χ(D+P)−χ(D) = 1, where
χ(D) := h0(D)−h1(D). It follows by induction that we must have

h0(D)−h1(D) = degD+ c

for some constant c (that does not depend on D). But by our first version of the Riemann-
Roch theorem 7.7.3 we have

h0(D)−h0(KX −D) = degD+1−g.

So to determine the constant c we can pick a divisor D of degree at least 2g− 1: then
h1(D) vanishes by proposition 8.3.1 and h0(KX −D) by example 7.7.1. So we conclude
that c = 1−g, as desired. �

Remark 8.3.4. Comparing our two versions of the Riemann-Roch theorem we see that we
must have h0(ωX ⊗L∨) = h1(L) for all line bundles L on a smooth projective curve X . In
fact, this is just a special case of the Serre duality theorem that asserts that for any smooth
n-dimensional variety X and any locally free sheaf F there are canonical isomorphisms

H i(X ,F )∼= Hn−i(X ,ωX ⊗F ∨)∨

for all i = 0, . . . ,n. Unfortunately, these isomorphisms cannot easily be written down.
There are even more general versions for singular varieties X and more general sheaves F .
We refer to [H] section III.7 for details.

Note that our new version of the Riemann-Roch theorem can be used to define the genus
of singular curves:

Definition 8.3.5. Let X be a (possibly singular) curve. Then the genus of X is defined to
be the non-negative integer h1(X ,OX ). (This definition is consistent with our old ones as
we can see by setting L = OX in corollary 8.3.3.)

Let us investigate the geometric meaning of the genus of singular curves in two cases:

Example 8.3.6. Let C1, . . . ,Cn be smooth irreducible curves of genera g1, . . . ,gn, and de-
note by C̃ = C1 ∪ ·· · ∪Cn their disjoint union. Now pick r pairs of points Pi,Qi ∈ C̃ that
are all distinct, and denote by C the curve obtained from C̃ by identifying every Pi with
the corresponding Qi for i = 1, . . . ,r. Curves obtained by this procedure are called nodal
curves.

To compute the genus of the nodal curve C we consider the exact sequence

0→ OC→⊕n
i=1OCi →⊕

r
i=1kPi → 0

where the last maps ⊕n
i=1OCi → kPi are given by evaluation at Pi minus evaluation at Qi.

The sequence just describes the fact that regular functions on C are precisely functions on
C̃ that have the same value at Pi and Qi for all i.

By proposition 8.2.1 we obtain a long exact cohomology sequence

0→ H0(C,OC)→⊕n
i=1H0(Ci,OCi)→ k⊕r→ H1(C,OC)→⊕n

i=1H1(Ci,OCi)→ 0.

Taking dimensions, we get 1−n+ r−h1(C,OC)+∑i gi = 0, so we see that the genus of C
is ∑i gi + r+1−n. If C is connected, note that r+1−n is precisely the number of “loops”
in the graph of C. So the genus of a nodal curve is the sum of the genera of its components
plus the number of “loops”. This fits well with our topological interpretation of the genus
given in examples 0.1.2 and 0.1.3.
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C2
C1 C1

C

P1 Q1

C1 C2

genus = g1 + g2

C3

2 + g3 +1genus = g1 + g genus = g1 +1

Proposition 8.3.7. Let X ⊂ P2 be a (possibly singular) curve of degree d, given as the
zero locus of a homogeneous polynomial f of degree d. Then the genus of X is equal to
1
2 (d−1)(d−2).

Proof. Let x0,x1,x2 be the coordinates of P2. By a change of coordinates we can assume
that the point (0 : 0 : 1) is not on X . Then the affine open subsets U0 = {x0 6= 0} and
U1 = {x1 6= 0} cover X . So in the same way as in the proof of proposition 8.3.1 we get

H1(X ,OX ) = OX (U0∩U1)/(OX (U0)+OX (U1)).

Moreover, the equation of f must contain an xd
2-term, so the relation f = 0 can be used to

restrict the degrees in x2 of functions on X to at most d−1. Hence we get

OX (U0∩U1) =

{
xi

2

x j
0xk

1

; 0≤ i≤ d−1 and i = j+ k

}
and

OX (U0) =

{
xi

2

x j
0xk

1

; 0≤ i≤ d−1, k ≤ 0, and i = j+ k

}
(and similarly for OX (U1)). We conclude that

H1(X ,OX ) =

{
xi

2

x j
0xk

1

; 0≤ i≤ d−1, j > 0, k > 0, and i = j+ k

}
.

To compute the dimension of this space note that for a given value of i (which can run from
0 to d− 1) we get i− 1 choices of j and k (namely (1, i− 1),(2, i− 2), . . . ,(i− 1,1)). So
the total dimension is h1(X ,OX ) = 1+2+ · · ·+(d−2) = 1

2 (d−1)(d−2). �

Remark 8.3.8. The important point of proposition 8.3.7 is that the genus of a curve is
constant in families: if we degenerate a smooth curve into a singular one (by varying the
coefficients in its equation) then the genus of the singular curve will be the same as the
genus of the original smooth curve. This also fits well with our idea in examples 0.1.2 and
0.1.3 that we can compute the genus of a plane curve by degenerating it into a singular one,
where the result is then easy to read off.

Remark 8.3.9. Our second (cohomological) version of the Riemann-Roch theorem is in
fact the one that is needed for generalizations to higher-dimensional varieties. If X is an
n-dimensional projective variety and F a sheaf on X then the generalized Riemann-Roch
theorem mentioned in remark 7.7.7 (v) will compute the Euler characteristic

χ(X ,F ) :=
n

∑
i=0

(−1)ihi(X ,F )
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in terms of other data that are usually easier to determine than the cohomology groups
themselves.

8.4. The cohomology of line bundles on projective spaces. Let us now turn to higher-
dimensional varieties and compute the cohomology groups of the line bundles OX (d) on
the projective space X = Pn.

Proposition 8.4.1. Let X = Pn, and denote by S = k[x0, . . . ,xn] the graded coordinate ring
of X. Then the sheaf cohomology groups of the line bundles OX (d) on X are given by:

(i)
⊕

d∈Z H0(X ,OX (d)) = S as graded k-algebras,
(ii)

⊕
d∈Z Hn(X ,OX (d)) = S′ as graded k-vector spaces, where S′ ∼= S with the grad-

ing given by S′d = S−n−1−d .
(iii) H i(X ,OX (d)) = 0 whenever i 6= 0 and i 6= n.

Remark 8.4.2. By splitting up the equations of (i) and (ii) into the graded pieces one obtains
the individual cohomology groups H i(X ,OX (d)). So for example we have

hn(X ,OX (d)) = h0(X ,OX (−n−1−d)) =

{(−d−1
n

)
if d ≤−n−1,

0 if d >−n−1.

(Note that the equality of these two dimensions is consistent with the Serre duality theorem
of remark 8.3.4, since ωX = OX (−n−1) by lemma 7.4.15.)

Proof. (i) is clear from example 8.1.6 (i).
(ii): Let {Ui} for 0≤ i≤ n be the standard affine open cover of X , i. e. Ui = {xi 6= 0}. We

will prove the proposition for all d together by computing the cohomology of the quasi-
coherent graded sheaf FX =

⊕
d∈Z OX (d) while keeping track of the grading (note that

cohomology commutes with direct sums). This is just a notational simplification.
Of course we have Ui0,...,ik = {xi0 · · · · · xik 6= 0}. So F (Ui0,...,ik) is just the localization

Sxi0 ···xik
. It follows that the sequence of groups Ck(FX ) reads

∏
i0

Sxi0
→ ∏

i0<i1

Sxi0 xi1
→ ·· · →∏

j
Sx0···x j−1x j+1···xn → Sx0···xn . (∗)

Looking at the last term in this sequence, we compute that

Hn(X ,F ) = coker(∏
j

Sx0···x j−1x j+1···xn → Sx0···xn)

= 〈x j0
0 · · ·x

jn
n ; ji ∈ Z〉/〈x j0

0 · · ·x
jn
n ; ji ≥ 0 for some i〉

= 〈x j0
0 · · ·x

jn
n ; ji < 0 for all i〉

=
1

x0 · · ·xn
k[x−1

0 , . . . ,x−1
n ],

so up to a shift of degx0 · · ·xn = n+1 these are just the polynomials in xi with non-positive
exponents. This shows (ii).

(iii): We prove this by induction on n. There is nothing to show for n = 1. Let H =
{xn = 0} ∼= Pn−1 be a hyperplane. Note that there is an exact sequence of sheaves on X

0→ OX (d−1)→ OX (d)→ OH(d)→ 0

for all d, where the first map is given by multiplication with xn, and the second one by
setting xn to 0. Taking these sequences together for all d ∈ Z we obtain the exact sequence

0→ F (−1) ·xn→ F → FH → 0
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where we set F (−1) = F ⊗OX (−1). From the associated long exact cohomology se-
quence and the induction hypothesis we get the following exact sequences:

0→ H0(X ,F (−1))→ H0(X ,F )→ H0(H,FH)→ H1(X ,F (−1))→ H1(X ,F )→ 0,

0→ H i(X ,F (−1))→ H i(X ,F )→ 0 for 1 < i < n−1,

0→ Hn−1(X ,F (−1))→ Hn−1(X ,F )→ Hn−1(H,FH)→ Hn(X ,F (−1))→ Hn(X ,F )→ 0.

So first of all we see that H i(X ,F (−1)) ∼= H i(X ,F ) for all 1 < i < n− 1. We claim that
this holds in fact for 1 ≤ i ≤ n−1. To see this for i = 1 note that the first exact sequence
above starts with

0→ k[x0, . . . ,xn]
·xn→ k[x0, . . . ,xn]→ k[x0, . . . ,xn−1]→ ··· ,

which is obviously exact on the right, so it follows that H1(X ,F (−1)) ∼= H1(X ,F ). A
similar analysis of the third exact sequence above, using the explicit description of the
proof of part (ii), shows that Hn−1(X ,F (−1)) ∼= Hn−1(X ,F ). So we see that the map
H i(X ,F (−1)) ·xn→ H i(X ,F ) is an isomorphism for all 1 ≤ i ≤ n− 1. (Splitting this up
into the graded parts, this means that H i(X ,OX (d− 1)) ∼= H i(X ,OX (d)) for all d, i. e. the
cohomology groups do not depend on d. We still have to show that they are in fact zero.)

Now localize the Čech complex (∗) with respect to xn. Geometrically this just means
that we arrive at the complex that computes the cohomology of F on Un = {xn 6= 0}. As
Un is an affine scheme and therefore does not have higher cohomology groups by example
8.1.6 (ii), we see that

H i(X ,F )xn = H i(Un,F |Un) = 0.

So for any α ∈ H i(X ,F ) we know that xk
n ·α = 0 for some k. But we have shown above

that multiplication with xn in H i(X ,F ) is an isomorphism, so α = 0. This means that
H i(X ,F ) = 0, as desired. �

Example 8.4.3. As a consequence of this computation we can now of course compute the
cohomology groups of all sheaves on Pn that are made up of line bundles in some way. Let
us calculate the cohomology groups H i(X ,ΩX ) as an example. By the Euler sequence of
lemma 7.4.15

0→ΩPn → O(−1)⊕(n+1)→ O→ 0

we get the long exact cohomology sequence

0→ H0(ΩPn)→ H0(O(−1))⊕(n+1)→ H0(O)

→ H1(ΩPn)→ H1(O(−1))⊕(n+1)→ H1(O)

→ H2(ΩPn)→ ··· .

By proposition 8.4.1 the cohomology groups of O(−1) are all zero, while the cohomology
groups H i(O) are zero unless i = 0, in which case we have h0(O) = 1. So we conclude that

hi(Pn,ΩPn) =

{
1 if i = 1,
0 otherwise.

As an application of our computation of the cohomology groups of line bundles on pro-
jective spaces, we now want to prove in the rest of this section that the cohomology groups
of certain “finitely generated” quasi-coherent sheaves on projective schemes are always
finite-dimensional. Let us first define what we mean by this notion of finite generation.

Definition 8.4.4. Let X be a scheme. A sheaf F on X is called coherent if for every affine
open subset U = SpecR ⊂ X the restricted sheaf F |U is the sheaf associated to a finitely
generated R-module in the sense of definition 7.2.1.
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Remark 8.4.5. Except for the finite generation condition this definition is precisely the
same as for quasi-coherent sheaves. Consequently, our results that essentially all operations
that one can do with quasi-coherent sheaves yield again quasi-coherent sheaves carry over
to coherent sheaves without much change.

To show that the cohomology groups of coherent sheaves on projective schemes are
finite-dimensional we need an auxiliary lemma first.

Lemma 8.4.6. Let X be a projective scheme over a field, and let F be a coherent sheaf on
X. Then there is a surjective morphism OX (−d)⊕n→ F for some d and n.

Proof. Let X ⊂ Pr = Projk[x0, . . . ,xr] and consider the standard affine open subsets Ui =
SpecRi ⊂ X given by xi 6= 0. As F is coherent, F |Ui is of the form M̃i, where Mi is a
finitely generated Ri-module. Let si,1, . . . ,si,ki be generators. Then the si, j define sections
of F over Ui, and their germs generate the stalk of F at every point of Ui.

The si, j do not need to extend to global sections of F , but we will now show that after
multiplying with xd

i for some d we get global sections si, j · xd
i ∈ Γ(F ⊗OX (d)). As X\Ui

is covered by the affine open subsets Uk for k 6= i, it is sufficient to show that we can
extend si, j to all Uk in this way. But F (Uk) = Mk and F (Ui∩Uk) = (Mk)xi by proposition
7.2.2 (ii), so si, j ∈ F (Ui ∩Uk) ∈ (Mk)xi obviously gives an element in F (Uk) = Mk after
multiplying with a sufficiently high power of xi.

Hence we have shown that for some d we get global sections si, j ∈ Γ(F ⊗OX (d)) that
generate the stalk of F ⊗OX (d) at all points of X . So these sections define a surjective
morphism O → F ⊗OX (d)⊕n (where n is the total number of sections chosen) and hence
a surjective morphism OX (−d)⊕n→ F . �

Theorem 8.4.7. Let X be a projective scheme over a field, and let F be a coherent sheaf
on X.

(i) The cohomology groups H i(X ,F ) are finite-dimensional vector spaces for all i.
(ii) We have H i(X ,F ⊗OX (d)) = 0 for all i > 0 and d� 0.

Proof. Let i : X → Pr be the inclusion morphism. As i∗F is coherent by proposition 7.2.9
(or rather its analogue for coherent sheaves) and the cohomology groups of F and i∗F
agree by definition, we can assume that X = Pr.

We will prove the proposition by descending induction on i. By example 8.1.6 (iii)
there is nothing to show for i > r. By lemma 8.4.6 there is an exact sequence 0→ R →
OX (−d)⊕n→ F → 0 for some d and n, where R is a coherent sheaf on X by lemma 7.2.7.
Tensoring with OX (e) for some e∈Z and taking the corresponding long exact cohomology
sequence, we get

· · · → H i(X ,OX (e−d)⊕n)→ H i(X ,F ⊗OX (e))→ H i+1(X ,R ⊗OX (e))→ ··· .

(i): Take e = 0. Then the vector space on the left is always finite-dimensional by the
explicit computation of proposition 8.4.1, and the one on the right is finite-dimensional by
the induction hypothesis. Hence H i(X ,F ) is finite-dimensional as well.

(ii): For e� 0 the group on the left is zero again by the explicit calculation of proposi-
tion 8.4.1, and the one on the right is zero by the induction hypothesis. Hence H i(X ,F ⊗
OX (e)) = 0 for e� 0. �

Remark 8.4.8. Of course the assumption of projectivity is essential in theorem 8.4.7, as for
example H0(A1,OA1) = k[x] is not finite-dimensional as a vector space over k.
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For a more interesting example, consider X = A2\{(0,0)} and compute H1(X ,OX ).
Using the affine open cover X =U1∪U2 with Ui = {xi 6= 0} for i = 1,2, we get

H1(X ,OX ) = OX (U1∩U2)/(OX (U1)+OX (U2))

=
〈

xi
1x j

2 ; i, j ∈ Z
〉
/
〈

xi
1x j

2 ; j ≥ 0 or i≥ 0
〉

=
〈

xi
1x j

2 ; i, j < 0
〉
,

which is not finite-dimensional. So we conclude that X is not projective (which is obvi-
ous). But we have also reproven the statement that X is not affine (see remark 2.3.17), as
otherwise we would have a contradiction to example 8.1.6 (ii).

8.5. Proof of the independence of the affine cover. To make our discussion of sheaf
cohomology rigorous it remains to be proven that the cohomology groups as of definition
8.1.4 do not depend on the choice of affine open cover. So let us go back to the original
definitions 8.1.2 and 8.1.4 that (seem to) depend on this choice. For simplicity let us
assume that all affine covers involved are finite.

Lemma 8.5.1. Let F be a quasi-coherent sheaf on an affine scheme X. Then H i(X ,F ) = 0
for all i > 0 and every choice of affine open cover {Ui}.

Proof. Let us define a “sheafified version” of the Čech complex as follows: we set

C p(F ) = ∏
i0<···<ip

i∗F |Ui0∩···∩Uip

where i : Ui0 ∩ ·· · ∩Uip → X denotes the various inclusion maps. Then the C p(F ) are
quasi-coherent sheaves on X by proposition 7.2.9. Their spaces of global sections are
Γ(C p(F ))=Cp(F ) by definition. There are boundary morphisms dp : C p(F )→C p+1(F )
defined by the same formula as in definition 8.1.2, giving rise to a complex

C 0(F )→ C 1(F )→ C 2(F )→ ·· · . (∗)

Note that it suffices to prove that this sequence is exact: as taking global sections of quasi-
coherent sheaves on affine schemes preserves exact sequences by proposition 7.2.2 (ii) it
then follows that the sequence

C0(F )→C1(F )→C2(F )→ ···

is exact as well, which by definition means that H i(X ,F ) = 0 for i > 0.
The exactness of (∗) can be checked on the stalks. So let P ∈ X be any point, and let

U j be an affine open subset of the given cover that contains P. We define a morphism of
stalks of sheaves at P

k : C k
P→ C k−1

P , α 7→ kα

by (kα)i0,...,ip−1 = α j,i0,...,ip−1 , where we make the following convention: if the indices
j, i0, . . . , ip−1 are not in sorted order and σ ∈ Sp+1 is the permutation such that σ( j) <
σ(i0)< · · ·< σ(ip−1) then by α j,i0,...,ip−1 we mean (−1)σ ·ασ( j),σ(i0),...,σ(ip−1).

We claim that kd +dk : C k
P→ C k

P is the identity. In fact, we have

(dkα)i0,...,ip = αi0,...,ip −
p

∑
k=1

(−1)k
α j,i0,...,ik−1,ik+1,...,ip

and

(kdα)i0,...,ip =
p

∑
k=1

(−1)k
α j,i0,...,ik−1,ik+1,...,ip

from which the claim follows.
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Finally we can now prove that the sequence (∗) is exact at any point P: we know
already that imdk−1 ⊂ kerdk as dk ◦dk−1 = 0. Conversely, if α ∈ kerdk, i. e. dα = 0, then
α = (kd +dk)(α) = d(kα), i. e. α ∈ imdk−1. �

Lemma 8.5.2. Let F be a quasi-coherent sheaf on a scheme X. Pick an affine open cover
U = {U1, . . . ,Uk}. Let U0 ⊂ X be any other affine open subset, and denote by Ũ the affine
open cover {U0, . . . ,Uk}. Then the cohomology groups determined by the open covers U
and Ũ are the same.

Proof. Let Cp(F ) and H p(X ,F ) be the groups of Čech cycles and the cohomology groups
for the cover U, and denote by C̃p(F ) and H̃ p(X ,F ) the corresponding groups for the
cover Ũ.

Note that there are natural morphisms C̃p(F )→ Cp(F ) and H̃ p(X ,F )→ H p(X ,F )
given by “forgetting the data that involves the open subset U0”, i. e. by

(αi0,...,ip)0≤i0<i1<···<ip≤k 7→ (αi0,...,ip)1≤i0<i1<···<ip≤k.

More precisely, an element α̃ ∈ C̃p(F ) can be thought of as a pair α̃ = (α,α0), where
α ∈Cp(F ) is given by αi0,...,ip = α̃i0,...,ip (for i0 > 0) and α0 ∈Cp−1(U0,F |U0) is given by
α0

i0,...,ip−1
= α̃0,i0,...,ip−1 . Moreover, dα̃ = 0 if and only if

dα = 0 (1)

(these are the equations (dα̃)i0,...,ip+1 = 0 for i0 > 0) and

α|U0 −dα
0 = 0 (2)

(these are the equations (dα̃)i0,...,ip+1 = 0 for i0 = 0).

We have to show that the morphism H̃ p(X ,F )→ H p(X ,F ) is injective and surjective.

(i) H̃ p(X ,F )→ H p(X ,F ) is surjective: Let α ∈ H p(X ,F ) be a cohomology cycle,
i. e. dα = 0. We have to find an α0 ∈ Cp−1(U0,F |U0) such that α̃ = (α,α0)

satisfies dα̃ = 0, i. e. by (2) such that dα0 = α|U0 . But d(α|U0) = (dα)|U0 = 0, so
by lemma 8.5.1 α|U0 = dα0 for some α0.

(ii) H̃ p(X ,F )→ H p(X ,F ) is injective: Let α̃ ∈ H̃ p(X ,F ) be a cohomology cycle
(i. e. dα̃ = 0) such that α = 0 ∈ H p(X ,F ), i. e. α = dβ for some β ∈ Cp−1(F ).
We have to show that α̃ = 0 ∈ H̃ p(X ,F ), i. e. we have to find a β̃ = (β,β0) ∈
C̃p−1(F ) such that dβ̃ = α̃. By (2) this means that we need β|U0 − dβ0 = α0.
But d(β|U0 −α0) = α|U0 −α|U0 = 0, so by lemma 8.5.1 there is a β0 such that
β|U0 −α0 = dβ0.

�

Corollary 8.5.3. The cohomology groups of quasi-coherent sheaves on any scheme do not
depend on the choice of open affine cover.

Proof. Let F be a quasi-coherent sheaf on a scheme X . Let U = {U1, . . . ,Uk} and U′ =
{U ′1, . . . ,U ′m} be two affine open covers of X . Then the cohomology groups H i(X ,F )
determined by U are the same as those determined by U ∪U′ by (a repeated application
of) lemma 8.5.2, which in turn are equal to those determined by U′ by the same lemma. �

8.6. Exercises.
Exercise 8.6.1. Let X be a smooth projective curve. For any point P ∈ X consider the
exact skyscraper sequence of sheaves on X

0→ ωX → ωX ⊗OX (P)→ kP→ 0

as in exercise 7.8.4. Show that the induced sequence of global sections is not exact, i. e.
the last map Γ(ωX ⊗OX (P))→ Γ(kP) is not surjective.
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Exercise 8.6.2. Complete the proof of lemma 8.2.2, i. e. show that the sequence of mor-
phisms of cohomology groups

· · · → H p−1(E)→ H p(C)→ H p(D)→ H p(E)→ H p+1(C)→ ·· ·
associated to an exact sequence of complexes 0→C→ D→ E→ 0 is exact at the H p(C)
and H p(E) positions.

Exercise 8.6.3. Compute the cohomology groups H i(P1×P1, p∗OP1(a)⊗ q∗OP1(b)) for
all a,b ∈ Z, where p and q denote the two projection maps from P1×P1 to P1.

Exercise 8.6.4. Give an example of a smooth projective curve X and line bundles L1,L2
on X of the same degree such that h0(X ,L1) 6= h0(X ,L2).

Exercise 8.6.5. Let X ⊂ Pr be a complete intersection of dimension n ≥ 1, i. e. it is the
scheme-theoretic zero locus of r−n homogeneous polynomials. Show that X is connected.

(Hint: Prove by induction on n that the natural map H0(Pr,OPr(d))→H0(X ,OX (d)) is
surjective for all d ∈ Z.)


