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7. MORE ABOUT SHEAVES

We present a detailed study of sheaves on a scheme X , in particular sheaves of OX -
modules. For any presheaf F ′ on X there is an associated sheaf F that describes “the
same objects as F ′ but with the conditions on the sections made local”. This allows
us to define sheaves by constructions that would otherwise only yield presheaves. We
can thus construct e. g. direct sums of sheaves, tensor products, kernels and cokernels
of morphisms of sheaves, as well as push-forwards and pull-backs along morphisms
of schemes.

A sheaf of OX -modules is called quasi-coherent if it is induced by an R-module
on every affine open subset U = SpecR of X . Almost all sheaves that we will con-
sider are of this form. This reduces local computations regarding these sheaves to
computations in commutative algebra.

A quasi-coherent sheaf on X is called locally free of rank r if it is locally iso-
morphic to O⊕r

X . Locally free sheaves are the most well-behaved sheaves; they
correspond to vector bundles in topology. Any construction and theorem valid for
vector spaces can be carried over to the category of locally free sheaves. Locally free
sheaves of rank 1 are called line bundles.

For any morphism f : X → Y we define the sheaf of relative differential forms
ΩX/Y on X relative Y . The most important case is when Y is a point, in which case
we arrive at the sheaf ΩX of differential forms on X . It is locally free of rank dimX
if and only if X is smooth. In this case, its top alternating power ΛdimX ΩX is a line
bundle ωX called the canonical bundle. On a smooth projective curve it has degree
2g−2, where g is the genus of the curve.

On every smooth curve X the line bundles form a group which is isomorphic to
the Picard group PicX of divisor classes. A line bundle together with a collection
of sections that do not vanish simultaneously at any point determines a morphism to
projective space.

If f : X→Y is a morphism of smooth projective curves, the Riemann-Hurwitz for-
mula states that the canonical bundles of X and Y are related by ωX = f ∗ωY ⊗OX (R),
where R is the ramification divisor. For any smooth projective curve X of genus g
and any divisor D the Riemann-Roch theorem states that h0(D)− h0(KX −D) =
degD+1−g, where h0(D) denotes the dimension of the space of global sections of
the line bundle O(D) associated to D.

7.1. Sheaves and sheafification. The first thing we have to do to discuss the more ad-
vanced topics mentioned in section 6.6 is to get a more detailed understanding of sheaves.
Recall from section 2.2 that we defined a sheaf to be a structure on a topological space X
that describes “function-like” objects that can be patched together from local data. Let us
first consider an informal example of a sheaf that is not just the sheaf of regular functions
on a scheme.

Example 7.1.1. Let X be a smooth complex curve. For any open subset U ⊂ X , we have
seen that the ring of regular functions OX (U) on U can be thought of as the ring of complex-
valued functions ϕ : U → C,P 7→ ϕ(P) “varying nicely” (i. e. as a rational function) with
P.

Now consider the “tangent sheaf” TX , i. e. the sheaf “defined” by

TX (U) = {ϕ = (ϕ(P))P∈U ; ϕ(P) ∈ TX ,P“varying nicely with P”}

(of course we will have to make precise what “varying nicely” means). In other words, a
section ϕ ∈ TX (U) is just given by specifying a tangent vector at every point in U . As an
example, here is a picture of a section of TP1(P1):
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P

TX,P

φ(P)

As the tangent spaces TX ,P are all one-dimensional complex vector spaces, ϕ(P) can again
be thought of as being specified by a single complex number, just as for the structure sheaf
OX . The important difference (that is already visible from the definition above) is that
these one-dimensional vector spaces vary with P and thus have no canonical identification
with the complex numbers. For example, it does not make sense to talk about “the tangent
vector 1” at a point P. Consequently, there is no analogue of “constant functions” for
sections of the tangent sheaf. In fact, we will see in lemma 7.4.15 that every global section
of TP1 has two zeros, so there is really no analogue of constant functions. (In the picture
above, the north pole of the sphere is a point where the section of TP1 would be ill-defined
if we do not choose a section in which the lengths of the tangent vectors approach zero
towards the north pole.) Hence we have seen that the tangent sheaf of P1 is a sheaf that is
not isomorphic to the structure sheaf OP1 although its sections are given locally by “one
complex number varying nicely”.

(We should mention that the above property of P1 is purely topological: there is not
even a continuous nowhere-zero tangent field on the unit sphere in R3. This is usually
called the “hairy ball theorem” and stated as saying that “you cannot comb a hedgehog
(i. e. a ball) without a bald spot”.)

Let us now get more rigorous. Recall that a presheaf of rings F on a topological space
X was defined to be given by the data:

• for every open set U ⊂ X a ring F (U),
• for every inclusion U ⊂V of open sets in X a ring homomorphism ρV,U : F (V )→

F (U) called the restriction map,

such that

• F ( /0) = 0,
• ρU,U is the identity map for all U ,
• for any inclusion U ⊂V ⊂W of open sets in X we have ρV,U ◦ρW,V = ρW,U .

The elements of F (U) are then called the sections of F over U , and the restriction maps
ρV,U are written as f 7→ f |U . The space of global sections F (X) is often denoted Γ(F ).

A presheaf F of rings is called a sheaf of rings if it satisfies the following glueing
property: if U ⊂ X is an open set, {Ui} an open cover of U and fi ∈ F (Ui) sections for all i
such that fi|Ui∩U j = f j|Ui∩U j for all i, j, then there is a unique f ∈ F (U) such that f |Ui = fi
for all i. In other words, sections of a sheaf can be patched from compatible local data.

The same definition applies equally to categories other than rings, e. g. we can define
sheaves of Abelian groups, k-algebras, and so on. For a ringed space (X ,OX ), e. g. a
scheme, we can also define sheaves of OX -modules in the obvious way: every F (U) is
required to be an OX (U)-module, and these module structures have to be compatible with
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the restriction maps in the obvious sense. For example, the tangent sheaf of example 7.1.1
on a curve X is a sheaf of OX -modules: “sections of the tangent sheaf can be multiplied
with regular functions”.

Example 7.1.2. Let X ⊂PN be a projective variety over an algebraically closed field k, and
let S(X) = S =

⊕
d≥0 S(d) be its homogeneous coordinate ring. For any integer n, let K(n)

be the n-th graded piece of the localization of S at the non-zero homogeneous elements,
i. e.

K(n) =
{

f
g

; f ∈ S(d+n),g ∈ S(d) for some d ≥ 0 and g 6= 0
}
.

Now for any P ∈ X and open set U ⊂ X we set

OX (n)P =

{
f
g
∈ K(n) ; g(P) 6= 0

}
and OX (n)(U) =

⋂
P∈U

OX (n)P.

For n = 0 this is precisely the definition of the structure sheaf, so OX (0) = OX . In general,
OX (n) is a sheaf of OX -modules whose sections can be thought of as “functions” of degree
n in the homogeneous coordinates of X . For example:

(i) Every homogeneous polynomial of degree n defines a global section of OX (n).
(ii) There are no global sections of OX (n) for n < 0.

(iii) In P1 with homogeneous coordinates x0,x1, we have

1
x0
∈ OP1(−1)(U)

for U = {(x0 : x1) ; x0 6= 0}.
Note that on the distinguished open subset Xxi (where xi are the coordinates of PN) the
sheaf OX (n) is isomorphic to the structure sheaf OX : for every open subset U ⊂ Xxi the
maps

OX (U)→ OX (n)(U), ϕ 7→ ϕ · xn
i and OX (n)(U)→ OX (U), ϕ 7→ ϕ

xn
i

give an isomorphism, hence OX (n)|Xxi
∼= OX |Xxi

. So OX (n) is locally isomorphic to the
structure sheaf, but not globally. (This is the same situation as for the tangent sheaf of a
smooth curve in example 7.1.1.)

The sheaves O(n) on a projective variety (or more generally on a projective scheme)
are called the twisting sheaves. They are probably the most important sheaves after the
structure sheaf.

If we want to deal with more general sheaves, we certainly need to set up a suitable
category, i. e. we have to define morphisms of sheaves, kernels, cokernels, and so on. Let
us start with some simple definitions.

Definition 7.1.3. Let X be a topological space. A morphism f : F1→ F2 of presheaves
of abelian groups (or rings, sheaves of OX -modules etc.) on X is a collection of group
homomorphisms (resp. ring homomorphisms, OX (U)-module homomorphisms etc.) fU :
F1(U)→ F2(U) for every open subset U ⊂ X that commute with the restriction maps, i. e.
the diagram

F1(U)
ρU,V //

fU
��

F1(V )

fV
��

F2(U)
ρU,V // F2(V )

is required to be commutative.
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Example 7.1.4. If X ⊂ PN is a projective variety and f ∈ k[x0, . . . ,xN ] is a homogeneous
polynomial of degree d, we get morphisms of sheaves of OX -modules

OX (n)→ OX (n+d), ϕ 7→ f ·ϕ

for all n.

Definition 7.1.5. If f : X → Y is a morphism of topological spaces and F is a sheaf on
X , then we define the push-forward f∗F of F to be the sheaf on Y given by f∗F (U) =
F ( f−1(U)) for all open subsets U ⊂ Y .

Example 7.1.6. By definition, a morphism f : X → Y of ringed spaces comes equipped
with a morphism of sheaves OY → f∗OX . This is exactly given by the data of the pull-back
morphisms OY (U)→ OX ( f−1(U)) for all open subsets U ⊂ Y (see definition 5.2.1).

Definition 7.1.7. Let f : F1→ F2 be a morphism of sheaves of e. g. Abelian groups on a
topological space X . We define the kernel ker f of f by setting

(ker f )(U) = ker( fU : F1(U)→ F2(U)).

We claim that ker f is a sheaf on X . In fact, it is easy to see that ker f with the obvious
restriction maps is a presheaf. Now let {Ui} be an open cover of an open subset U ⊂ X ,
and assume we are given ϕi ∈ ker(F1(Ui)→ F2(Ui)) that agree on the overlaps Ui∩U j. In
particular, the ϕi are then in F1(Ui), so we get a unique ϕ ∈ F1(U) with ϕ|Ui = ϕi as F1
is a sheaf. Moreover, f (ϕi) = 0, so ( f (ϕ))|Ui = 0 by definition 7.1.3. As F2 is a sheaf, it
follows that f (ϕ) = 0, so ϕ ∈ ker f .

What the above argument boils down to is simply that the property of being in the
kernel, i. e. of being mapped to zero under a morphism, is a local property — a function is
zero if it is zero on every subset of an open cover. So the kernel is again a sheaf.

Remark 7.1.8. Now consider the dual case to definition 7.1.7, namely cokernels. Again let
f : F1 → F2 be a morphism of sheaves of e. g. Abelian groups on a topological space X .
As above we define a presheaf coker′ f by setting

(coker′ f )(U) = coker( fU : F1(U)→ F2(U)) = F2(U)/ im fU .

Note however that coker′ f is not a sheaf. To see this, consider the following example. Let
X = A1\{0}, Y = A2\{0}, and let i : X → Y be the inclusion morphism (x1) 7→ (x1,0).
Let i# : OY → i∗OX be the induced morphisms of sheaves on Y of example 7.1.6, and
consider the presheaf coker′ i# on Y . Look at the cover of Y by the affine open subsets
U1 = {x1 6= 0} ⊂ Y and U2 = {x2 6= 0} ⊂ Y . Then the maps

k
[

x1,
1
x1
,x2

]
= OY (U1)→ OX (U1∩X) = k

[
x1,

1
x1

]
and k

[
x1,x2,

1
x2

]
= OY (U2)→ OX (U2∩X) = 0

are surjective, hence (coker′ i#)(U1) = (coker′ i#)(U2) = 0. But on global sections the map

k[x1,x2] = OY (Y )→ OX (X) = k
[

x1,
1
x1

]
is not surjective, hence (coker′ i#)(Y ) 6= 0. This shows that coker′ i# cannot be a sheaf —
the zero section on the open cover {U1,U2} has no unique extension to a global section on
Y .

What the above argument boils down to is simply that being in the cokernel of a mor-
phism, i. e. of being a quotient in F2(U)/ im fU , is not a local property — it is a question
about finding a global section of F2 on U that cannot be answered locally.
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Example 7.1.9. Here is another example showing that quite natural constructions involv-
ing sheaves often lead to only presheaves because the constructions are not local. Let
X ⊂ PN be a projective variety. Consider the tensor product presheaf of the sheaves OX (1)
and OX (−1), defined by

(OX (1)⊗′OX (−1))(U) = OX (1)(U)⊗OX (U) OX (−1)(U).

As OX (1) describes “functions” of degree 1 and OX (−1) “functions” of degree−1, we ex-
pect products of them to be true functions of pure degree 0 in the homogeneous coordinates
of X . In other words, the tensor product of OX (1) with OX (−1) should just be the structure
sheaf OX . However, OX (1)⊗′ OX (−1) is not even a sheaf: consider the case X = P1 and
the open subsets U0 = {x0 6= 0} and U1 = {x1 6= 0}. On these open subsets we have the
sections

x0⊗
1
x0
∈ (OX (1)⊗′OX (−1))(U0)

and x1⊗
1
x1
∈ (OX (1)⊗′OX (−1))(U1).

Obviously, both these local sections are the constant function 1, so in particular they agree
on the overlap U0∩U1. But there is no global section in OX (1)(X)⊗OX (X) OX (−1)(X) that
corresponds to the constant function 1, as OX (−1) has no non-zero global sections at all.

The way out of this trouble is called sheafification. This means that for any presheaf
F ′ there is an associated sheaf F that is “very close” to F ′ and that should usually be
the object that one wants. Intuitively speaking, if the sections of a presheaf are thought
of as function-like objects satisfying some conditions, then the associated sheaf describes
the same objects with the conditions on them made local. In particular, if we look at F ′
locally, i. e. at the stalks, then we should not change anything; it is just the global structure
that changes. We have done this construction quite often already without explicitly saying
so, e. g. in the construction of the structure sheaf of schemes in definition 5.1.11. Here is
the general construction:

Definition 7.1.10. Let F ′ be a presheaf on a topological space X . The sheafification of
F ′, or the sheaf associated to the presheaf F ′, is defined to be the sheaf F such that

F (U) := {ϕ = (ϕP)P∈U with ϕP ∈ F ′P for all P ∈U

such that for every P ∈U there is a neighborhood V in U

and a section ϕ′ ∈ F ′(V ) with ϕQ = ϕ′Q ∈ F ′Q for all Q ∈V .}

(For the notion of the stalk F ′P of a presheaf F ′ at a point P ∈ X see definition 2.2.7.) It is
obvious that this defines a sheaf.

Example 7.1.11. Let X ⊂ AN be an affine variety. Let O ′X be the presheaf given by

O ′X (U) =
{

ϕ : U → k ; there are f ,g ∈ k[x1, . . . ,xN ] with g(P) 6= 0

and ϕ(P) = f (P)
g(P) for all P ∈U

}
for all open subsets U ⊂ X , i. e. the “presheaf of functions that are (globally) quotients of
polynomials”. Then the structure sheaf OX is the sheafification of O ′X , i. e. the sheaf of
functions that are locally quotients of polynomials. We have seen in example 2.1.7 that in
general O ′X differs from OX , i. e. it is in general not a sheaf.

Example 7.1.12. If X is a topological space and F the presheaf of constant real-valued
functions on X , then the sheafification of F is the sheaf of locally constant functions on X
(see also remark 2.2.5).

The sheafification has the following nice and expected properties:
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Lemma 7.1.13. Let F ′ be a presheaf on a topological space X, and let F be its sheafifi-
cation.

(i) The stalks FP and F ′P agree at every point P ∈ X.
(ii) If F ′ is a sheaf, then F = F ′.

Proof. (i): The isomorphism between the stalks is given by the following construction:

• An element of FP is by definition represented by (U,ϕ), where U is an open
neighborhood of P and ϕ = (ϕQ)Q∈U is a section of F over U . To this we can
associate the element ϕP ∈ F ′P.

• An element of F ′P is by definition represented by (U,ϕ), where ϕ ∈ F ′(U). To
this we can associate the element (ϕQ)Q∈U in F (U), which in turn defines an
element of FP.

(ii): Note that there is always a morphism of presheaves F ′ → F given by F ′(U)→
F (U),ϕ 7→ (ϕP)P∈U .

Now assume that F ′ is a sheaf; we will construct an inverse morphism F → F ′. Let
U ⊂ X be an open subset and ϕ = (ϕP)P∈U ∈ F (U) a section of F . For every P ∈U the
germ ϕP ∈ F ′P is represented by some (V,ϕ) with ϕ ∈ F ′(V ). As P varies over U , we are
thus getting sections of F ′ on an open cover of U that agree on the overlaps. As F ′ is a
sheaf, we can glue these sections together to give a global section in F ′(U). �

Using sheafification, we can now define all the “natural” constructions that we would
expect to be possible:

Definition 7.1.14. Let f : F1→ F2 be a morphism of sheaves of e. g. Abelian groups on a
topological space X .

(i) The cokernel coker f of f is defined to be the sheaf associated to the presheaf
coker′ f .

(ii) The morphism f is called injective if ker f = 0. It is called surjective if coker f =
0.

(iii) If the morphism f is injective, its cokernel is also denoted F2/F1 and called the
quotient of F2 by F1.

(iv) As usual, a sequence of sheaves and morphisms

· · · → Fi−1→ Fi→ Fi+1→ ·· ·

is called exact if ker(Fi→ Fi+1) = im(Fi−1→ Fi) for all i.

Remark 7.1.15. Let us rephrase again the results of definition 7.1.7 and remark 7.1.8 in
this new language:

(i) A morphism f : F1 → F2 of sheaves is injective if and only if the maps fU :
F1(U)→ F2(U) are injective for all U .

(ii) If a morphism f : F1 → F2 of sheaves is surjective, this does not imply that all
maps fU : F1(U)→ F2(U) are surjective. (The converse of this is obviously true
however: if all maps fU : F1(U)→ F2(U) are surjective, then coker′ f = 0, so
coker f = 0.)

This very important fact is the basis of the theory of cohomology, see chapter 8.

Example 7.1.16. Let X = P1
k with homogeneous coordinates x0,x1. Consider the mor-

phism of sheaves f : OX (−1)→ OX given by the linear polynomial x0 (see example 7.1.4).
We claim that f is injective. In fact, every section of OX (−1) over an open subset of X

has the form g(x0,x1)
h(x0,x1)

for some homogeneous polynomials g,h with degg−degh =−1. But
f ( g

h ) =
gx0
h is zero on an open subset of X if and only if g = 0 (note that we are not asking



126 Andreas Gathmann

for zeros of gx0
h , but we are asking whether this function vanishes on a whole open subset).

As this means that g
h itself is zero, we see that the kernel of f is trivial, i. e. f is injective.

We have seen already in example 7.1.2 that f is in fact an isomorphism when restricted
to U = X\{P} where P := (0 : 1). In particular, f is surjective when restricted to U .
However, f is not surjective on X (otherwise it would be an isomorphism, which is not true
as we already know). Let us determine its cokernel.

First we have to compute the cokernel presheaf coker′ f . Consider an open subset U ⊂
X . By the above argument, (coker′ f )(U) = 0 if P /∈U . So assume that P ∈U . Then we
have an exact sequence of OX (U)-modules

0 → OX (−1)(U) → OX (U) → k → 0
g
h 7→ gx0

h
ϕ = g

h 7→ ϕ(P)

as the functions in the image of OX (−1)(U)→ OX are precisely those that vanish on P. So
we have found that

(coker′ f )(U) =

{
k if P ∈U ,
0 if P /∈U .

It is easily verified that coker′ f is in fact a sheaf. It can be thought of as the ground field
k “concentrated at the point P”. For this reason it is often called a skyscraper sheaf and
denoted kP.

Summarizing, we have found the exact sequence of sheaves of OX -modules

0→ OX (−1)
·x0→ OX → kP→ 0.

Example 7.1.17. Let F1,F2 be two sheaves of OX -modules on a ringed space X . Then we
can define the direct sum, the tensor product, and the dual sheaf in the obvious way:

(i) The direct sum F1⊕F2 is the sheaf of OX -modules defined by (F1⊕F2)(U) =
F1(U)⊕F2(U). (It is easy to see that this is a sheaf already, so that we do not
need sheafification.)

(ii) The tensor product F1⊗F2 is the sheaf of OX -modules associated to the presheaf
U 7→ F1(U)⊗OX (U) F2(U).

(iii) The dual F ∨1 of F1 is the sheaf of OX -modules associated to the presheaf U 7→
F1(U)∨ = HomOX (U)(F1(U),OX (U)).

Example 7.1.18. Similarly to example 7.1.16 consider the morphism f : OX (−2)→ OX
of sheaves on X = P1

k given by multiplication with x0x1 (instead of with x0). The only
difference to the above example is that the function x0x1 vanishes at two points P0 = (0 : 1),
P1 = (1 : 0). So this time we get an exact sequence of sheaves

0→ OX (−2)
·x0x1→ OX → kP0 ⊕ kP1 → 0,

where the last morphism is evaluation at the points P0 and P1.
The important difference is that this time the cokernel presheaf is not equal to the co-

kernel sheaf: if we consider our exact sequence on global sections, we get

0→ Γ(OX (−2))→ Γ(OX )→ k⊕ k,

where Γ(OX (−2)) = 0, and Γ(OX ) are just the constant functions. But the last morphism
is evaluation at P and Q, and constant functions must have the same value at P and Q. So
the last map Γ(OX )→ k⊕ k is not surjective, indicating that some sheafification is going
on. (In example 7.1.16 we only had to evaluate at one point, and the corresponding map
was surjective.)



7. More about sheaves 127

Example 7.1.19. On X =PN , we have OX (n)⊗OX (m)=OX (n+m), with the isomorphism
given on sections by

f1

g1
⊗ f2

g2
7→ f1 f2

g1g2
.

Similarly, we have OX (n)∨ = OX (−n), as the OX (U)-linear homomorphisms from OX (n)
to OX are precisely given by multiplication with sections of OX (−n).

7.2. Quasi-coherent sheaves. It turns out that sheaves of modules are still too general
objects for many applications — usually one wants to restrict to a smaller class of sheaves.
Recall that any ring R determines an affine scheme X = SpecR together with its structure
sheaf OX . Hence one would expect that any R-module M determines a sheaf M̃ of OX -
modules on X . This is indeed the case, and almost any sheaf of OX -modules appearing
in practice is of this form. For computations, this means that statements about this sheaf
M̃ on X are finally reduced to statements about the R-module M. But it does not follow
from the definitions that a sheaf of OX -modules has to be induced by some R-module in
this way (see example 7.2.3), so we will say that it is quasi-coherent if it does, and in most
cases restrict our attention to these quasi-coherent sheaves. If X is a general scheme, we
accordingly require that it has an open cover by affine schemes SpecRi over which the
sheaf is induced by an Ri-module for all i.

Let us start by showing how an R-module M determines a sheaf of modules M̃ on
X = SpecR. This is essentially the same construction as for the structure sheaf in definition
5.1.11.

Definition 7.2.1. Let R be a ring, X = SpecR, and let M be an R-module. We define a
sheaf of OX -modules M̃ on X by setting

M̃(U) := {ϕ = (ϕp)p∈U with ϕp ∈Mp for all p ∈U

such that “ϕ is locally of the form m
r for m ∈M,r ∈ R”}

= {ϕ = (ϕp)p∈U with ϕp ∈Mp for all p ∈U

such that for every p ∈U there is a neighborhood V in U and m ∈M,r ∈ R

with r /∈ q and ϕq =
m
r ∈Mq for all q ∈V}.

It is clear from the local nature of the definition that M̃ is a sheaf.

The following proposition corresponds exactly to the statement of proposition 5.1.12
for structure sheaves. Its proof can be copied literally, replacing R by M at appropriate
places.

Proposition 7.2.2. Let R be a ring, X = SpecR, and let M be an R-module.

(i) For every p ∈ X the stalk of M̃ at p is Mp.
(ii) For every f ∈ R we have M̃(X f ) = M f . In particular, M̃(X) = M.

Example 7.2.3. The following example shows that not all sheaves of OX -modules on X =
SpecR have to be of the form M̃ for some R-module M.

Let X = A1
k , and let F be the sheaf associated to the presheaf

U 7→

{
OX (U) if 0 /∈U ,
0 if 0 ∈U .

with the obvious restriction maps. Then F is a sheaf of OX -modules. The stalk F0 is zero,
whereas FP = OX ,P for all other points P ∈ X .

Note that F has no non-trivial global sections: if ϕ ∈ F (X) then we obviously must
have ϕ0 = 0∈ F0, which by definition of sheafification means that ϕ is zero in some neigh-
borhood of 0. But as X is irreducible, ϕ must then be the zero function. Hence it follows
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that F (X) = 0. So if F was of the form M̃ for some R-module M, it would follow from
proposition 7.2.2 (ii) that M = 0, hence F would have to be the zero sheaf, which it obvi-
ously is not.

Definition 7.2.4. Let X be a scheme, and let F be a sheaf of OX -modules. We say that F
is quasi-coherent if for every affine open subset U = SpecR⊂ X the restricted sheaf F |U
is of the form M̃ for some R-module M.

Remark 7.2.5. It can be shown that it is sufficient to require the condition of the definition
only for every open subset in an affine open cover of X (see e. g. [H] proposition II.5.4). In
other words, quasi-coherence is a local property.

Example 7.2.6. On any scheme the structure sheaf is quasi-coherent. The sheaves OX (n)
are quasi-coherent on any projective subscheme of PN as they are locally isomorphic to
the structure sheaf. In the rest of this section we will show that essentially all operations
that you can do with quasi-coherent sheaves yield again quasi-coherent sheaves. Therefore
almost all sheaves that occur in practice are in fact quasi-coherent.

Lemma 7.2.7. Let R be a ring and X = SpecR.

(i) For any R-modules M,N there is a one-to-one correspondence

{morphisms of sheaves M̃→ Ñ}↔ {R-module homomorphisms M→ N}.
(ii) A sequence of R-modules 0→ M1 → M2 → M3 → 0 is exact if and only if the

sequence of sheaves 0→ M̃1→ M̃2→ M̃3→ 0 is exact on X.
(iii) For any R-modules M,N we have M̃⊕ Ñ = (M⊕N)˜.
(iv) For any R-modules M,N we have M̃⊗ Ñ = (M⊗N)˜.
(v) For any R-module M we have (M̃)∨ = (M∨)˜.

In particular, kernels, cokernels, direct sums, tensor products, and duals of quasi-coherent
sheaves are again quasi-coherent on any scheme X.

Proof. (i): Given a morphism M̃→ Ñ, taking global sections gives an R-module homomor-
phism M→ N by proposition 7.2.2 (ii). Conversely, an R-module homomorphism M→ N
gives rise to morphisms between the stalks Mp→ Np for all p, and therefore by definition
determines a morphism M̃ → Ñ of sheaves. It is obvious that these two operations are
inverse to each other.

(ii): By exercise 7.8.2, exactness of a sequence of sheaves can be seen on the stalks.
Hence by proposition 7.2.2 (i) the statement follows from the algebraic fact that the se-
quence 0→M1→M2→M3→ 0 is exact if and only if 0→ (M1)p→ (M2)p→ (M3)p→ 0
is for all prime ideals p ∈ R.

(iii), (iv), and (v) follow in the same way as (ii): the statement can be checked on
the stalks, hence it follows from the corresponding algebraic fact about localizations of
modules. �

Example 7.2.8. Let X = P1 and P = (0 : 1) ∈ X . The skyscraper sheaf kP of example
7.1.16 is quasi-coherent by lemma 7.2.7 as it is the cokernel of a morphism of quasi-
coherent sheaves. One can also check explicitly that kP is quasi-coherent: if U0 = {x0 6=
0} = P1\{P} and U1 = {x1 6= 0} = Speck[x0] ∼= A1 then kP|U0 = 0 (so it is the sheaf
associated to the zero module) and kP|U1

∼= M̃ where M = k is the k[x0]-module with the
module structure

k[x0]× k→ k

( f ,λ) 7→ f (0) ·λ.

Proposition 7.2.9. Let f : X→Y be a morphism of schemes, and let F be a quasi-coherent
sheaf on X. Assume moreover that every open subset of X can be covered by finitely many
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affine open subsets (this should be thought of as a technical condition that is essentially
always satisfied — it is e. g. certainly true for all subschemes of projective spaces). Then
f∗F is quasi-coherent on Y .

Proof. Let us first assume that X and Y are affine, so X = SpecR, Y = SpecS, and F =
M̃ for some R-module M. Then it follows immediately from the definitions that f∗F =
(M as an S-module)˜, hence push-forwards of quasi-coherent sheaves are quasi-coherent if
X and Y are affine.

In the general case, note that the statement is local on Y , so we can assume that Y is
affine. But it is not local on X , so we cannot assume that X is affine. Instead, cover X by
affine opens Ui, and cover Ui ∩U j by affine opens Ui, j,k. By our assumption, we can take
these covers to be finite.

Now the sheaf property for F says that for every open set V ⊂ Y the sequence

0→ F ( f−1(V ))→
⊕

i

F ( f−1(V )∩Ui)→
⊕
i, j,k

F ( f−1(V )∩Ui, j,k)

is exact, where the last map is given by (. . . ,si, . . .) 7→ (. . . ,si|Ui, j,k − s j|Ui, j,k , . . .). This
means that the sequence of sheaves on Y

0→ f∗F →
⊕

i

f∗(F |Ui)→
⊕
i, j,k

f∗(F |Ui, j,k)

is exact. But as we have shown the statement already for morphisms between affine
schemes and as finite direct sums of quasi-coherent sheaves are quasi-coherent, the last two
terms in this sequence are quasi-coherent. Hence the kernel f∗F is also quasi-coherent by
lemma 7.2.7. �

Example 7.2.10. With this result we can now define (and motivate) what a closed embed-
ding of schemes is. Note that for historical reasons closed embeddings are usually called
closed immersions in algebraic geometry (in contrast to differential geometry, where an
immersion is defined to be a local embedding).

We say that a morphism f : X → Y of schemes is a closed immersion if

(i) f is a homeomorphism onto a closed subset of Y , and
(ii) the induced morphism OY → f∗OX is surjective.

The kernel of the morphism OY → f∗OX is then called the ideal sheaf IX/Y of the immer-
sion.

Let us motivate this definition. We certainly want condition (i) to hold on the level
of topological spaces. But this is not enough — we have seen that even isomorphisms
cannot be detected on the level of topological spaces (see example 2.3.8), so we need some
conditions on the structure sheaves as well. We have seen in example 5.2.3 that a closed
immersion should be a morphism that is locally of the form SpecR/I→ SpecR for some
ideal I ⊂ R. In fact, this is exactly what condition (ii) means: assume that we are in the
affine case, i. e. X = SpecS and Y = SpecR. As OY and f∗OX are quasi-coherent (the
former by definition and the latter by proposition 7.2.9), so is the kernel of OY → f∗OX by
lemma 7.2.7. So the exact sequence

0→IX/Y → OY → f∗OX → 0

comes from an exact sequence of R-modules

0→ I→ R→ S→ 0

by lemma 7.2.7 (ii). In other words, I ⊂ R is an ideal of R, and S = R/I. So indeed the
morphism f is of the form SpecR/I → SpecR and therefore corresponds to an inclusion
morphism of a closed subset.
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Example 7.2.11. Having studied push-forwards of sheaves, we now want to consider pull-
backs, i. e. the “dual” situation: given a morphism f : X →Y and a sheaf F on Y , we want
to construct a “pull-back” sheaf f ∗F on X . Note that this should be “more natural” than
the push-forward, as sheaves describe “function-like” objects, and for functions pull-back
is more natural than push-forward: given a “function” ϕ : Y → k, there is set-theoretically
a well-defined pull-back function ϕ◦ f : X → k. In contrast, a function ϕ : X → k does not
give rise to a function Y → k in a natural way.

Let us first consider the affine case: assume that X = SpecR, and Y = SpecS, so that
the morphism f corresponds to a ring homomorphism S→ R. Assume moreover that the
sheaf F on Y is quasi-coherent, so that it corresponds to an S-module M. Then M⊗S R is
a well-defined R-module, and the corresponding sheaf on X should be the pull-back f ∗F .
Indeed, if e. g. M = S, i. e. F = OY , then M⊗S R = S⊗S R = R, so f ∗F = OX : pull-backs
of regular functions are just regular functions.

This is our “local model” for the pull-back of sheaves. To show that this extends to the
global case (and to sheaves that are not necessarily quasi-coherent), we need a different
description though. So assume now that X , Y , and F are arbitrary. The first thing to do is
to define a sheaf of abelian groups on X from F . This is more complicated than for the
push-forward constructed in definition 7.1.5, because f (U) need not be open if U is.

We let f−1F be the sheaf on X associated to the presheaf U 7→ limV⊃ f (U) F (V ), where
the limit is taken over all open subsets V with f (U) ⊂ V ⊂ Y . This notion of limit means
that an element in limV⊃ f (U) F (V ) is given by a pair (V,ϕ) with V ⊃ f (U) and ϕ ∈ F (V ),
and that two such pairs (V,ϕ) and (V ′,ϕ′) define the same element if and only if there is
an open subset W with f (U)⊂W ⊂V ∩V ′ such that ϕ|W = ϕ′|W . This is the best we can
do to adapt definition 7.1.5 to the pull-back case. It is easily checked that this construction
does what we want on the stalks: we have ( f−1F )P = F f (P) for all P ∈ X .

Note that f−1F is obviously a sheaf of ( f−1OY )-modules, but not a sheaf of OX -
modules. (This corresponds to the statement that in the affine case considered above, M
is an S-module, but not an R-module.) We have seen in our affine case what we have to
do: we have to take the tensor product over f−1OY with OX (i. e. over S with R). In other
words, we define the pull-back f ∗F of F to be

f ∗F = f−1F ⊗ f−1OY
OX ,

which is then obviously a sheaf of OX -modules. As this construction restricts to the one
given above if X and Y are affine and F quasi-coherent, it also follows that pull-backs of
quasi-coherent sheaves are again quasi-coherent.

It should be stressed that this complicated limit construction is only needed to prove
the existence of f ∗F in the general case. To compute the pull-back in practice, one will
almost always restrict to affine open subsets and then use the tensor product construction
given above.

Example 7.2.12. Here is a concrete example in which we can see again why the tensor
product construction is necessary in the construction of the pull-back. Consider the mor-
phism f : X = P1→ Y = P1 given by (s : t) 7→ (x : y) = (s2 : t2). We want to compute the
pull-back sheaf f ∗OY (1) on X .

As we already know, local sections of OY (1) are of the form g(x,y)
h(x,y) , with g and h homo-

geneous such that degg− degh = 1. Pulling this back just means inserting the equations
x = s2 and y = t2 of f into this expression; so the sheaf f−1OY (1) has local sections g(s2,t2)

h(s2,t2)
,

where now deg(g(s2, t2))−deg(h(s2, t2)) = 2.
But note that these sections do not even describe a sheaf of OX -modules: if we try to

multiply the section s2 with the function t
s (i. e. a section of OX ) on the open subset where
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s 6= 0, we get st, which is not of the form g(s2,t2)
h(s2,t2)

. We have just seen the solution to this
problem: consider the tensor product with OX . So sections of f ∗OY (1) are of the form

g(s2, t2)

h(s2, t2)
⊗ g′(s, t)

h′(s, t)

with deg(g(s2, t2))− deg(h(s2, t2)) = 2 and degg′− degh′ = 0. It is easy to see that this
describes precisely all expressions of the form g′′(s,t)

h′′(s,t) with degg′′−degh′′ = 2, so the result
we get is f ∗OY (1) = OX (2).

In the same way one shows that f ∗OY (n) = OX (dn) for all n ∈ Z and any morphism
f : X → Y between projective schemes that is given by a collection of homogeneous poly-
nomials of degree d.

We have seen now that most sheaves occurring in practice are in fact quasi-coherent.
So when we talk about sheaves from now on, we will usually think of quasi-coherent
sheaves. This has the advantage that, on affine open subsets, sheaves (that form a somewhat
complicated object) are essentially replaced by modules, which are usually much easier to
handle.

7.3. Locally free sheaves. We now come to the discussion of locally free sheaves, i. e.
sheaves that are locally just a finite direct sum of copies of the structure sheaf. These are
the most important and best-behaved sheaves one can imagine.

Definition 7.3.1. Let X be a scheme. A sheaf of OX -modules F is called locally free of
rank r if there is an open cover {Ui} of X such that F |Ui

∼= O⊕r
Ui

for all i. Obviously, every
locally free sheaf is also quasi-coherent.

Remark 7.3.2. The geometric interpretation of locally free sheaves is that they correspond
to “vector bundles” as known from topology — objects that associate to every point P of a
space X a vector bundle. For example, the “tangent sheaf” of P1 in example 7.1.1 is such
a vector bundle (of rank 1). Let us make this correspondence precise.

A vector bundle of rank r on a scheme X over a field k is a k-scheme F and a k-
morphism π : F → X , together with the additional data consisting of an open covering
{Ui} of X and isomorphisms ψi : π−1(Ui)→Ui×Ar

k over Ui, such that the automorphism
ψi ◦ψ

−1
j of (Ui ∩U j)×Ar is linear in the coordinates of Ar for all i, j. In other words,

the morphism π : F → X looks locally like the projection morphism U ×Ar
k → U for

sufficiently small open subsets U ⊂ X .

A
rF

X
Ui

ψ i

Ui

π

We claim that there is a one-to-one correspondence

{vector bundles π : F → X of rank r}↔ {locally free sheaves F of rank r on X}

given by the following constructions:
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(i) Let π : F → X be a vector bundle of rank r. Define a sheaf F on X by

F (U) = {k-morphisms s : U → F such that π◦ s = idU}.

(This is called the sheaf of sections of F .) Note that this has a natural structure
of a sheaf of OX -modules (over every point in X we can multiply a vector with
a scalar — doing this on an open subset means that we can multiply a section in
F (U) with a regular function in OX (U)).

Locally, on an open subset U on which π is of the form U ×Ar
k → U , we

obviously have

F (U) = {k-morphisms s : U → Ar
k},

so sections are just given by r independent functions. In other words, F |U is
isomorphic to O⊕r

U . So F is locally free by definition.
(ii) Conversely, let F be a locally free sheaf. Take an open cover {Ui} of X such that

there are isomorphisms ψi : F |Ui → O⊕r
Ui

. Now consider the schemes Ui×Ar
k and

glue them together as follows: for all i, j we glue Ui×Ar
k and U j ×Ar

k on the
common open subset (Ui∩U j)×Ar

k along the isomorphism

(Ui∩U j)×Ar
k→ (Ui∩U j)×Ar

k, (P,s) 7→ (P,ψi ◦ψ
−1
j ).

Note that ψi ◦ψ
−1
j is an isomorphism of sheaves of OX -modules and therefore

linear in the coordinates of Ar
k.

It is obvious that this gives exactly the inverse construction to (i).

Remark 7.3.3. Let π : F→ X be a vector bundle of rank r, and let P∈ X be a point. We call
π−1(P) the fiber of F over P; it is an r-dimensional vector space. If F is the corresponding
locally free sheaf, the fiber can be realized as i∗F where i : P→ X denotes the inclusion
morphism (note that i∗F is a sheaf on a one-point space, so its data consists only of one
k-vector space (i∗F )(P), which is precisely the fiber FP).

Lemma 7.3.4. Let X be a scheme. If F and G are locally free sheaves of OX -modules of
rank r and s, respectively, then the following sheaves are also locally free: F ⊕G (of rank
r+ s), F ⊗G (of rank r · s), and F ∨ (of rank r). If f : X → Y is a morphism of schemes
and F is a locally free sheaf on Y , then f ∗F is a locally free sheaf on X of the same rank.
(The push-forward of a locally free sheaf is in general not locally free.)

Proof. The proofs all follow from the corresponding statements about vector spaces (or
free modules over a ring): for example, if M and N are free R-modules of dimension r and
s respectively, then M⊕N is a free R-module of dimension r+ s. Applying this to an open
affine subset U = SpecR in X on which F and G are isomorphic to O⊕r

U = M̃ and O⊕s
U = Ñ

gives the desired result. The statement about tensor products and duals follows in the same
way. As for pull-backs, we have already seen that f ∗OY = OX , so f ∗F will be of the form
O⊕r

f−1(U)
on the inverse image f−1(U) ⊂ X of an open subset U ⊂ Y on which F is of the

form O⊕r
U . �

Remark 7.3.5. Lemma 7.3.4 is an example of the general principle that any “canonical”
construction or statement that works for vector spaces (or free modules) also works for
vector bundles. Here is another example: recall that for any vector space V over k (or any
free module) one can define the n-th symmetric product SnV and the n-th alternating
product ΛnV to be the vector space of formal totally symmetric (resp. antisymmetric)
products

v1 · · · · · vn ∈ SnV and v1∧·· ·∧ vn ∈ Λ
nV.
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If V has dimension r, then SnV and ΛnV have dimension
(n+r−1

n

)
and

(r
n

)
, respectively.

More precisely, if {v1, . . . ,vr} is a basis of V , then

{vi1 · · · · · vin ; i1 ≤ ·· · ≤ in} is a basis of SnV , and

{vi1 ∧ ·· · ∧ vin ; i1 < · · ·< in} is a basis of ΛnV .

Using the same construction, we can get symmetric and alternating products SnF and ΛnF
on X for every locally free sheaf F on X of rank r. They are locally free sheaves of ranks(n+r−1

n

)
and

(r
n

)
, respectively.

Here is an example of a linear algebra lemma that translates directly into the language
of locally free sheaves:

Lemma 7.3.6. Let 0→U→V →W → 0 be an exact sequence of vector spaces of dimen-
sions a, a+b, and b, respectively. Then Λa+bV = ΛaU⊗ΛbW.

Proof. Denote the two homomorphisms by i : U → V and p : V →W . Then there is a
canonical isomorphism

Λ
aU⊗Λ

bW → Λ
a+bV

(u1∧·· ·∧ua)⊗ (w1∧·· ·∧wb) 7→ i(u1)∧·· ·∧ i(ua)∧ p−1(w1)∧·· ·∧ p−1(wb).

The key remark here is that the p−1(wi) are well-defined up to an element of U by the
exact sequence. But if the above expression is non-zero at all, the u1, . . . ,ua must form
a basis of U , so if we plug in any element of U in the last b entries of the alternating
product we will get zero. Therefore the ambiguity in the p−1(wi) does not matter and the
above homomorphism is well-defined. It is obviously not the zero map, and it is then an
isomorphism for dimensional reasons (both sides are one-dimensional vector spaces). �

Corollary 7.3.7. Let 0→ F1→ F2→ F3→ 0 be an exact sequence of locally free sheaves
of ranks a1,a2,a3 on a scheme X. Then Λa2 F2 = Λa1 F1⊗Λa3 F3.

Proof. Immediately from lemma 7.3.6 using the above principle. �

7.4. Differentials. We have seen in proposition 4.4.8 that (formal) differentiation of func-
tions is useful to compute the tangent spaces at the (closed) points of a scheme X . We now
want to introduce this language of differentials. The idea is that the various tangent spaces
TP for P ∈ X should not just be independent vector spaces at every point, but rather come
from a global object on X . For example, if X is smooth over C, so that it is a complex
manifold, we know from complex geometry that X has a cotangent bundle whose fiber at
a point P is just the cotangent space, i. e. the dual of the tangent space, at P. We want to
give an algebro-geometric analogue of this construction. So let us first define the process
of formal differentiation. We start with the affine case.

Definition 7.4.1. Let f : X = SpecR→ Y = SpecS be a morphism of affine schemes,
corresponding to a ring homomorphism S→ R. We define the R-module ΩR/S, the module
of relative differentials, to be the free R-module generated by formal symbols {dr ; r∈R},
modulo the relations:

• d(r1 + r2) = dr1 +dr2 for r1,r2 ∈ R,
• d(r1r2) = r1dr2 + r2dr1 for r1,r2 ∈ R,
• ds = 0 for s ∈ S.

Example 7.4.2. Let S= k be a field and R= k[x1, . . . ,xn], so that we consider the morphism
f : An

k → pt. Then by the relations in ΩR/k, which are exactly the rules of differentiation
with the elements of k being the “constant” functions, it follows that d f = ∑i

∂ f
∂xi

dxi for all
f ∈ k[x1, . . . ,xn]. So ΩR/k is just the free R-module generated by the symbols dx1, . . . ,dxn.



134 Andreas Gathmann

Again let S = k, but now let R = k[x1, . . . ,xn]/( f1, . . . , fm) be the coordinate ring of an
affine variety. By the same calculation as above, ΩR/S is still generated as an R-module by
dx1, . . . ,dxn, but the relations fi give rise to relations d fi = 0 in ΩR/S. It is easy to see that
these are all relations in ΩR/S, so we have

ΩR/S = (Rdx1 + · · ·+Rdxn)/(∑
i

∂ f j

∂xi
dxi, j = 1, . . . ,m).

In particular, if X = SpecR, k is algebraically closed, and P ∈ X is a closed point of X
corresponding to a morphism R→ k, then by definition 4.4.1 we see that

ΩR/S⊗R k = 〈dx1, . . . ,dxn〉/(∑
i

∂ f j

∂xi
(P)dxi, j = 1, . . . ,m)

is just the dual T∨X ,P of the tangent space to X at P.

Example 7.4.3. If Y is not a point, then the difference in the module of differentials is just
that all elements of S (i. e. all differentials that come from Y ) are treated as “constants”. So
then ΩR/S can be thought of as “the differentials on X modulo pull-backs of differentials
on Y ”. We will probably not need this very often.

Of course, if f : X → Y is a morphism of general (not necessarily affine) schemes, we
want to consider the relative differentials of every restriction of f to affine opens of X and
Y , and glue them together to get a quasi-coherent sheaf ΩX/Y . To do this, we have to give
a different description of the relative differentials, as the construction given above does not
glue very well.

Lemma 7.4.4. Let S→ R be a homomorphism of rings. Consider the map δ : R⊗S R→ R
given by δ(r1⊗ r2) = r1r2 and let I ⊂ R⊗S R be its kernel. Then I/I2 is an R-module that
is isomorphic to ΩR/S.

Proof. The R-module structure of I/I2 is given by r ·(r1⊗r2) := rr1⊗r2 = r1⊗rr2, where
the second equality follows from

rr1⊗ r2− r1⊗ rr2 = (r1⊗ r2) · (r⊗1−1⊗ r) ∈ I · I

if r1 ⊗ r2 ∈ I. Define a map of R-modules ΩR/S → I/I2 by dr 7→ 1⊗ r− r⊗ 1. Now
we construct its inverse. The R-module E := R⊕ΩR/S is a ring by setting (r1⊕ dr′1) ·
(r2⊕dr′2) := r1r2⊕ (r1dr′2 + r2dr′1). It is easy to check that the map R×R→ E given by
(r1,r2) 7→ (r1r2,r1dr2) is an S-bilinear ring homomorphism, hence gives rise to a map g :
R⊗S R→ E. As g(I)⊂ΩR/S by definition and g(I2) = 0, this induces a map I/I2→ΩR/S.
It is easy to see that this is in fact the inverse of the map ΩR/S→ I/I2 given above. �

Remark 7.4.5. It is easy to translate this lemma into the language of schemes: let X =
SpecR and Y = SpecS, so that the ring homomorphism S→R corresponds to a map X→Y .
Then SpecR⊗S R = X ×Y X , and δ : R⊗S R→ R corresponds to the diagonal morphism
X→ X×Y X . Hence I ⊂ R⊗S R is the ideal of the diagonal ∆(X)⊂ X×Y X . This motivates
the following construction.

Definition 7.4.6. Let f : X → Y be a morphism of schemes. Let ∆ : X → X ×Y X be the
diagonal morphism, and let I = I∆(X)/X×Y X be its ideal sheaf. Then the sheaf of relative
differentials ΩX/Y is defined to be the sheaf ∆∗(I/I2) on X . If X is a scheme over a field
k and Y = Speck is a point, then we will usually write ΩX/Y as ΩX .

Remark 7.4.7. Here we assume that the diagonal morphism ∆ is a closed immersion, which
is the case if the schemes in question are separated (this is the analogue of lemma 2.5.3 for
schemes). We will always assume this here to avoid further complications.
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Remark 7.4.8. It should be stressed that definition 7.4.6 is essentially useless for practical
computations. Its only use is to show that a global object ΩX/Y exists that restricts to the
old definition 7.4.1 on affine open subsets. For applications, we will always use definition
7.4.1 and example 7.4.2 on open subsets.

Remark 7.4.9. The sheaf ΩX/Y is always quasi-coherent: on affine open subsets it restricts
to the sheaf associated to the module ΩR/S constructed above.

Remark 7.4.10. Any morphism f : X → Y of schemes over a field induces a morphism of
sheaves f ∗ΩY → ΩX on X that is just given by dϕ 7→ d( f ∗ϕ) = d(ϕ◦ f ) for any function
ϕ on Y .

Proposition 7.4.11. An n-dimensional scheme X (of finite type over an algebraically
closed field, e. g. a variety) is smooth if and only if ΩX is locally free of rank n. (Actu-
ally, this is a local statement: P ∈ X is a smooth point of X if and only if ΩX is (locally)
free in a neighborhood of P.)

Proof. One direction is obvious: if ΩX is locally free of rank n then its fibers at any point
P, i. e. the cotangent spaces T∨X ,P, have dimension n. By definition this means that P is a
smooth point of X .

Now let us assume that X is smooth (at P). As the proposition is of local nature we
can assume that X = SpecR with R = k[x1, . . . ,xr]/( f1, . . . , fm). By example 7.4.2 we then
have

T∨X ,P = 〈dx1, . . . ,dxr〉/(∑
i

∂ f j

∂xi
(P)dxi, j = 1, . . . ,m).

As this vector space has dimension n, we know that the matrix of differentials D(P) =
( ∂ fl

∂xi
(P)) at the point P has rank r− n. Without loss of generality we can assume that the

submatrix of D given by the first r−n columns and rows has non-zero determinant. This
means that dxr−n+1, . . . ,dxr form a basis of T∨X ,P.

But the condition for a determinant to be non-zero is an “open condition”, i. e. the set on
which it is satisfied is open. In other words, there is a neighborhood U of P in X such that
the submatrix of D(Q) given by the first r−n columns and rows has non-zero determinant
for all Q ∈U . Consequently, the differentials dxr−n+1, . . . ,dxr generate T∨X ,Q for all Q ∈U .
In particular, the dimension of T∨X ,Q is at most n. But the opposite inequality dimT∨X ,Q ≥ n
is always true; so we conclude that the differentials dxr−n+1, . . . ,dxr actually form a basis
of the cotangent space at all points Q ∈U . So

ΩX |U = OU dxr−n+1⊕·· ·⊕OU dxr,

i. e. ΩX is locally free. �

Remark 7.4.12. There is a similar statement for any quasi-coherent sheaf F . It says that:

(i) The dimension of the fibers is an upper semi-continuous function. This means
that if the dimension of the fiber of F at a point P is n, then it is at most n in some
neighborhood of P.

(ii) If the dimension of the fibers is constant on some open subset U , then F |U is
locally free.

The idea of the proof of this statement is very similar to that of proposition 7.4.11.

Definition 7.4.13. Let X be a smooth n-dimensional scheme over an algebraically closed
field. The dual bundle Ω∨X of the cotangent bundle is called the tangent bundle and is
denoted TX . It is a locally free sheaf of rank n. The top exterior power ΛnΩX of the
cotangent bundle is a locally free sheaf of rank 1; it is called the canonical bundle ωX of
X .
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Remark 7.4.14. The importance of the cotangent / canonical bundles stems from the fact
that these bundles are canonically defined (hence the name) for any smooth scheme n.
This gives e. g. a new method to show that two varieties are not isomorphic: if we have
two varieties whose canonical bundles have different properties (say their spaces of global
sections have different dimensions), then the varieties cannot be isomorphic.

As an example, let us now compute the cotangent / tangent / canonical bundles of some
easy varieties.

Lemma 7.4.15. The cotangent bundle of Pn is determined by the exact sequence

0→ΩPn → O(−1)⊕(n+1)→ O→ 0.

(This sequence is usually called the Euler sequence.) Consequently, the tangent bundle
fits into the dual exact sequence

0→ O→ O(1)⊕(n+1)→ TPn → 0,

and the canonical bundle is ωPn = O(−n−1).

Proof. We know already from example 7.4.2 that the cotangent bundle ΩPn is generated on
the standard open subsets Ui = {xi 6= 0} ∼= An by the differentials d( x0

xi
), . . . ,d( xn

xi
) of the

affine coordinates. Therefore the differentials d( xi
x j
), where defined, generate all of ΩPn .

By the rules of differentiation we have to require formally that

d
(

xi

x j

)
=

x jdxi− xidx j

x2
j

.

Note that the dxi are not well-defined objects, as the xi are not functions. But if we formally
let the symbols dx0, . . . ,dxn be the names of the generators of O(−1)⊕(n+1), the morphism
of sheaves

ΩPn → O(−1)⊕(n+1), d
(

xi

x j

)
7→ 1

x j
·dxi−

xi

x2
j
·dx j

is obviously well-defined and injective. It is now easily checked that the sequence of the
lemma is exact, with the last morphism given by

O(−1)⊕(n+1) 7→ O, dxi 7→ xi.

The sequence for the tangent bundle is obtained by dualizing. The statement about the
canonical bundle then follows from corollary 7.3.7. �

Lemma 7.4.16. Let X ⊂Pn be a smooth hypersurface of degree d, and let i : X→ Pn be the
inclusion morphism. Then the cotangent bundle ΩX is determined by the exact sequence

0→ OX (−d)→ i∗ΩPn →ΩX → 0.

Consequently, the tangent bundle is determined by the exact sequence

0→ TX → i∗TPn → OX (d)→ 0,

and the canonical bundle is ωX = OX (d−n−1).

Proof. We claim that the exact sequence is given by

0 → OX (−d) → i∗ΩPn → ΩX → 0
ϕ 7→ d( f ·ϕ),

dϕ 7→ d(ϕ|X ),
where f is the equation defining X . In fact, the second map is just the usual pull-back of
differential forms as in remark 7.4.10 (which is just a restriction in this case). It is surjective
because functions on X are locally of the form g

h for some homogeneous polynomials g and
h of the same degree, so they are locally obtained by restricting a function on Pn to X . It
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is not an isomorphism though, because we have the identity f = 0 on X . Consequently,
differentials dϕ are zero when restricted to X if and only if ϕ contains f as a factor. This
explains the first map of the above sequence.

As in the previous lemma, the statements about the tangent and canonical bundles are
obtained by dualizing and applying corollary 7.3.7, respectively. �

Remark 7.4.17. In general, if i : X → Y is a closed immersion of smooth schemes over a
field, there is an injective morphism TX → i∗TY of sheaves on X . In other words, at points
in X the tangent spaces of X are just subspaces of the tangent spaces of Y . The quotient
TY,P/TX ,P is called the normal space, and consequently the quotient bundle NX/Y = i∗TY/TX
is called the normal bundle. This is the same construction as in differential geometry.
Thus lemma 7.4.16 just tells us that the normal bundle of a degree-d hypersurface in Pn is
NX/Pn = OX (d).

Example 7.4.18. Let us evaluate lemma 7.4.16 in the simplest cases, namely for curves
X ⊂ P2 of low degrees d.

(i) d = 1: A linear curve in P2 is just isomorphic to P1. We get ΩX = ωX = O(1−
2−1) = O(−2) by lemma 7.4.16. This is consistent with lemma 7.4.15 for n = 1.

(ii) d = 2: We know from example 3.3.11 that a smooth plane conic is again just
isomorphic to P1 by means of a quadratic map f : P1→ X ⊂ P2. Our formula of
lemma 7.4.16 gives ωX = OX (2− 2− 1) = OX (−1). By pulling this back via f
we obtain ωX = OP1(−2) by example 7.2.12. So by applying the isomorphism to
case (i) we get the same canonical bundle back — which has to be the case, as the
cotangent bundle is canonically defined and cannot change with the embedding
in projective space.

(iii) d = 3: Here we get ωX = O(3−2−1) = O, i. e. the canonical bundle is simply
isomorphic to the sheaf of regular functions. We can understand this from our
representation in proposition 6.5.7 of cubic curves as complex tori of the form
C/Λ for some lattice Λ ⊂ C. If z is the complex coordinate on C, note that the
differential form dz is invariant under shifts in Λ, as d(z+a) = dz for all a ∈ C.
Therefore dz descends to a global differential form on X =C/Λ without zeros or
poles. It follows that we have an isomorphism OX → ωX given by ϕ 7→ ϕ ·dz.

7.5. Line bundles on curves. We now want to specialize even further and consider vector
bundles of rank 1 (also called “line bundles”, because their fibers are just lines) on smooth
curves. This section should be compared to section 6.3 where we considered divisors on
such curves. We will show that divisor classes and line bundles are essentially the same
thing.

Recall that the group PicX of divisor classes on a smooth curve X has a group structure
in a natural way. So let us first make the set of all line bundles on X into a group as well.
In fact, this can be done for any scheme:

Definition 7.5.1. Let X be a scheme. A line bundle on X is a vector bundle (i. e. a locally
free sheaf) of rank 1. We denote the set of all line bundles on X by Pic′X . This set has a
natural structure of Abelian group, with multiplication given by tensor products, inverses
by taking duals, and the neutral element by the structure sheaf.

We will now restrict our attention to smooth curves. To set up a correspondence between
line bundles and divisors, we will have to define the divisor of a (rational) section of a line
bundle. This is totally analogous to the divisor of a rational function in definition 6.3.4.

Definition 7.5.2. Let L be a line bundle on a smooth curve X , and let P ∈ X be a point.
Assume that we are given a section s ∈ L(U) of L on some neighborhood U of P. As L
is a line bundle, there is an isomorphism ψ : L |U → OU (possibly after shrinking U). The
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order of vanishing ordP s of the section s at P is defined to be the order of vanishing of the
regular function ψ(s) at P.

Remark 7.5.3. Note that this definition does not depend on the choice of ψ: if ψ′ : L |U →
OU is another isomorphism, then the composition ψ′ ◦ψ−1 : OU → OU is an isomorphism
of the structure sheaf, which must be given by multiplication with a function ϕ that is
nowhere zero (in particular not at P). So we have an equation of divisors

(ψ′(s)) = (ψ′ψ−1
ψ(s)) = (ϕ ·ψ(s)) = (ϕ)+(ψ(s)) = (ψ(s)),

which shows that ordP s is well-defined.

Definition 7.5.4. Let L be a line bundle on a smooth curve X . A rational section of L over
U is a section of the sheaf L⊗OX KX , where KX denotes the “sheaf of rational functions”
whose value at every open subset U ⊂ X is just K(X). In other words, a rational section of
a line bundle is given by an ordinary section of the line bundle, possibly multiplied with a
rational function.

Now let P ∈ X be a point, and let s be a rational section of L in a neighborhood of P.
With the same isomorphism ψ as in definition 7.5.2, the order ordP s of s at P is defined to
be the order of the rational function ψ(s) at P. (This is well-defined for the reason stated
in remark 7.5.3.)

If s is a global rational section of L , we define the divisor (s) of s to be

(s) = ∑
P∈X

ordP s ·P ∈ DivX .

Example 7.5.5. Let X = P1 with homogeneous coordinates x0,x1.

(i) Consider the global section s = x0x1 of OX (2). It vanishes at the points P = (0 : 1)
and Q = (1 : 0) with multiplicity 1 each, so (s) = P+Q.

(ii) The divisor of the global rational section s = 1
x0

of OX (−1) is (s) =−P.

To show that Pic′X ∼= PicX for smooth curves we need the following key lemma (which
is the only point at which smoothness is needed).

Lemma 7.5.6. Let X be a curve (over some algebraically closed field), and let P ∈ X be a
smooth point. Then there is a function ϕP in a neighborhood of P such that

(i) ϕP vanishes at P with multiplicity 1, i. e. its divisor contains the point P with
multiplicity 1.

(ii) ϕP is non-zero at all points distinct from P.

Proof. We can assume that X = SpecR is affine, with R = k[x1, . . . ,xr]/( f1, . . . , fm) being
the coordinate ring of X . As P is a smooth point of X , its cotangent space

T∨X ,P = 〈dx1, . . . ,dxr〉/(∑
i

∂ f j

∂xi
(P)dxi for all j)

is one-dimensional. Let ϕP be any linear function such that dϕP generates this vector
space. Then ϕP vanishes at P with multiplicity 1 by construction. We can now pick a
neighborhood of P such that ϕP does not vanish at any other point. �

Remark 7.5.7. If the ground field is C and one thinks of X as a complex one-dimensional
manifold, one can think of the function ϕP of lemma 7.5.6 as a “local coordinate” of X
around P, i. e. a function that gives a local isomorphism of X with C, with P mapping to
0 ∈ C. Note however that this is not true in the algebraic category, as the Zariski open
subsets are too big.

We are now ready to prove the main proposition of this section.
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Definition 7.5.8. A divisor D = ∑P aPP on a smooth curve X is called effective (written
D≥ 0) if aP ≥ 0 for all P.

Proposition 7.5.9. Let X be a smooth curve. Then there is an isomorphism of Abelian
groups

Pic′X → PicX
L 7→ (s) for any rational section s of L .

Its inverse is given by
PicX → Pic′X

D 7→ O(D),

where O(D) is the line bundle defined by

O(D)(U) = {ϕ ∈ K(X) ; (ϕ)+D≥ 0 on U}.

Proof. We have to check a couple of things:

(i) If L is a line bundle, then there is a rational section s of L : This is obvious, as L
is isomorphic to O on an open subset of X . So we can find a section of L on this
open subset (corresponding to the constant function 1). This will be a rational
section of L on all of X .

(ii) The divisor class (s) of a rational section s of L does not depend on the choice of
s: If we have another section s′, then the quotient s

s′ will be a rational function,
which has divisor class zero by definition of PicX . So (s) = ( s

s′ ·s
′) = ( s

s′ )+(s′) =
(s′) in PicX .

(iii) If D is a divisor then O(D) is actually a line bundle: let P ∈ X be a point and
choose a neighborhood U of P such that no point of U\P is contained in D. Let
n be the coefficient of P in D. Then an isomorphism ψ : O(D)→ O on U is
given by multiplication with ϕn

P, where ϕP is the function of lemma 7.5.6. In fact,
a rational function ϕ in K(X) is by definition a section of O(D) if and only if
ordP ϕ+n≥ 0, which is the case if and only if ϕ ·ϕn

P is regular at P.
(iv) If the divisors D and D′ define the same element in PicX then O(D) = O(D′): By

assumption we have D−D′ = (ϕ) in PicX for some rational function ϕ. Obvi-
ously, this induces an isomorphism O(D)→ O(D′) through multiplication with
ϕ.

We have now shown that the maps stated in the proposition are well-defined. Let us now
check that the two maps are inverse to each other.

(v) Pic′X → PicX → Pic′X : Let s0 be a rational section of a line bundle L , and
consider O((s0)) = {ϕ ∈ K(X) ; (ϕ)+(s0)≥ 0}. We have an isomorphism

L → O((s0)), s 7→ s
s0
.

(vi) PicX → Pic′X → PicX : The (constant) rational function 1 defines a rational sec-
tion of O(D). To determine its order at a point P we have to apply the local
isomorphism with O constructed in (iii): the order of this rational section at P is
just the order of 1 ·ϕn

P, which is n. This is exactly the multiplicity of P in D, so
the divisor of our section is precisely D.

Finally, we have to check that the map is a homomorphism of groups. But this is clear:
if s and s′ are rational sections of L and L ′, respectively, then ss′ is a rational section of
L⊗L ′, and (ss′) = (s)+(s′). Hence tensor products of line bundles correspond to addition
of divisors under our correspondence. �

Definition 7.5.10. Let X be a smooth curve. From now on we will identify line bundles
with divisor classes and call both groups PicX . In particular, this defines the degree of a
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line bundle (to be the degree of the associated divisor class). The divisor class associated
to the canonical bundle ωX is denoted KX ; it is called the canonical divisor (class).

Example 7.5.11. We have seen in lemma 6.3.11 that PicP1 = Z, i. e. there is exactly one
divisor class in every degree. Consequently, there is exactly one line bundle for every
degree n, which is of course just O(n). On the other hand, if X ⊂ P2 is a smooth cubic
curve we know from corollary 6.3.15 that PicX consists of a copy of X in every degree.
So on a cubic curve there are (many) more line bundles than just the bundles of the form
O(n).

Remark 7.5.12. The correspondence of proposition 7.5.9 allows us to define the pull-back
f ∗D of a divisor class D on Y for any (surjective) morphism of smooth curves f : X → Y :
it is just given by pulling back the corresponding line bundle.

In fact, we can even define a pull-back f ∗D for any divisor D ∈ DivY that induces this
construction on the corresponding divisor class: let P ∈ X be any point, and let Q = f (P)
be its image, considered as an element of DivY . Then the subscheme f−1(Q) of X has a
component whose underlying point is P. We define the ramification index eP of f at P to
be the length of this component subscheme. In more down to earth terms, this means that
we take a function ϕQ as in lemma 7.5.6 that vanishes at Q with multiplicity 1, and define
eP to be the order of vanishing of the pull-back function f ∗ϕQ = ϕQ ◦ f at P.

The ramification index has a simple interpretation in complex analysis: in the ordinary
topology the curves X and Y are locally isomorphic to the complex plane, so we can pick
local coordinates z on X around P and w on Y around Q. Every holomorphic map is now
locally of the form z 7→w = uzn for some n≥ 1 and an invertible function u (i. e. a function
that is non-zero at P). The number n is just the ramification index defined above. It is 1 if
and only if f is a local isomorphism at P in complex analysis. We say that f is ramified at
P if n = eP > 1, and unramified at P otherwise.

eP=1 eP=2

f

Y

P

Q

X

Y

X
P

f

Q

If we now consider a point Q as an element of DivY , we simply define

f ∗Q = ∑
P: f (P)=Q

eP ·P

and extend this by linearity to obtain a homomorphism f ∗ : DivY →DivX . In other words,
f ∗D is just obtained by taking the inverse image points of the points in D with the appro-
priate multiplicities.

Using the correspondence of proposition 7.5.9 it is now easily checked that the induced
map f ∗ : PicY → PicX on the Picard groups agrees with the pull-back of line bundles.

Example 7.5.13. Let f : X = P1→Y = P1 be the morphism given by (x0 : x1) 7→ (x2
0 : x2

1).
Then f ∗(1 : 0) = 2 · (1 : 0) and f ∗(1 : 1) = (1 : 1)+(1 :−1) as divisors in X .

As an application of line bundles, we will now see how they can be used to describe
morphisms to projective spaces. This works for all schemes (not just curves).
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Lemma 7.5.14. Let X be a scheme over an algebraically closed field. There is a one-to-
one correspondence

{morphisms f : X → Pr}←→

 line bundles L on X together with global
sections s0, . . . ,sr ∈ Γ(X ,L) such that:
for all P ∈ X there is some si with si(P) 6= 0


Proof. “←−”: Given r+1 sections of a line bundle L on X that do not vanish simultane-
ously, we can define a morphism f : X → Pr by setting f (P) = (s0(P) : · · · : sr(P)). Note
that the values si(P) are not well-defined numbers, but their quotients si

s j
(P) are (as they are

sections of L ⊗L∨ = O, i. e. ordinary functions). Therefore f (P) is a well-defined point
in projective space.

“−→”: Given a morphism f : X → Pr, we set L = f ∗OPr(1) and si = f ∗xi, where we
consider the xi as sections of O(1) (and thus the si as sections of f ∗O(1)). �

Remark 7.5.15. One should regard this lemma as a generalization of lemma 3.3.9 where
we have seen that a morphism to Pr can be given by specifying r+1 homogeneous poly-
nomials of the same degree. Of course, this was just the special case in which the line
bundle of lemma 7.5.14 is O(d). We had mentioned already in remark 3.3.10 that not all
morphisms are of this form; this translates now into the statement that not all line bundles
are of the form O(n).

7.6. The Riemann-Hurwitz formula. Let X and Y be smooth projective curves, and let
f : X →Y be a surjective morphism. We want to compare the sheaves of differentials on X
and Y . Note that every projective curve admits a surjective morphism to P1: by definition
it sits in some Pn to start with, so we can find a morphism to P1 by repeated projections
from points not in X . So if we know the canonical bundle of P1 (which we do by lemma
7.4.15: it is just OP1(−2)) and how canonical bundles transform under morphisms, we can
at least in theory compute the canonical bundles of every curve.

Definition 7.6.1. Let f : X→Y be a surjective morphism of smooth projective curves. We
define the ramification divisor of f to be R = ∑P∈X (eP− 1) ·P ∈ DivX , where eP is the
ramification index of f at P defined in remark 7.5.12. So the divisor R contains all points
at which f is ramified, with appropriate multiplicities.

Proposition 7.6.2. (Riemann-Hurwitz formula) Let f : X → Y be a surjective morphism
of smooth projective curves, and let R be the ramification divisor of f . Then KX = f ∗KY +R
(or equivalently ωX = f ∗ωY ⊗OX (R)) in PicX.

Proof. Let P∈ X be any point, and let Q = f (P) be its image point. Choose local functions
ϕP and ϕQ around P (resp. Q) that vanish at P (resp. Q) with multiplicity 1 as in lemma
7.5.6. Then by the definition of the ramification index we have

f ∗ϕQ = u ·ϕeP
P

for some local function u on X with no zero or pole at P. Now pick a global rational section
α of ωY . If its divisor (α) contains the point Q with multiplicity n, we can write locally

α = v ·ϕn
QdϕQ,

where v is a local function on Y with no zero or pole at Q. Inserting these equations into
each other, we see that

f ∗α = f ∗v · ( f ∗ϕn
Q)d( f ∗ϕQ) = un f ∗v ·ϕneP

P · (ϕep
P du+uepϕ

eP−1
P dϕP).

This vanishes at P to order neP + eP − 1. Summing this over all points P ∈ X we see
that the divisor of f ∗α is f ∗(α)+R. As KX = ( f ∗α) and f ∗KY = f ∗(α), the proposition
follows. �
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We will now study the same situation from a topological point of view (if the ground
field is C). Then X and Y are two-dimensional compact manifolds.

For such a space X , we say that a cell decomposition of X is given by writing X as a
finite disjoint union of points, (open) lines, and discs. This decomposition should be “nice”
in a certain topological sense, e. g. the boundary points of every line in the decomposition
must be points of the decomposition. It takes some work to make this definition (and
the following propositions) bullet-proof. We do not want to elaborate on this, but only
remark that every “reasonable” decomposition that one could think of will be allowed. For
example, here are three valid decompositions of the Riemann sphere P1

C:

(i) (ii) (iii)

(In (i), we have only one point (the north pole), no line, and one “disc”, namely P1 minus
the north pole). We denote by σ0,σ1,σ2 the number of points, lines and discs in the
decomposition, respectively. So in the above examples we have (σ0,σ1,σ2) = (1,0,1),
(2,2,2), and (6,8,4), respectively.

Of course there are many possible decompositions for a given curve X . But there is an
important number that is invariant:

Lemma 7.6.3. The number σ0−σ1+σ2 depends only on X and not on the chosen decom-
position. It is called the (topological) Euler characteristic χ(X) of X.

Proof. Let us first consider the case when we move from one decomposition to a “finer”
one, i. e. if we add points or lines to the decomposition. For example, in the above pictures
(iii) is a refinement of (ii), which is itself a refinement of (i). Note that every refinement is
obtained by applying the following steps a finite number of times:

(i) Adding another point on a line: In this case we raise σ0 and σ1 by 1, so the
alternating sum σ0−σ1 +σ2 does not change (see the picture below).

add a point add a line

(ii) Adding another line in a disc: In this case we raise σ1 and σ2 by 1, so the alter-
nating sum σ0−σ1 +σ2 again does not change (see the picture above).

So we conclude that the alternating sum σ0−σ1 +σ2 does not change under refinements.
But it is easily seen that any two decompositions have a common refinement (which is
essentially given by taking all the points and lines in both decompositions, and maybe
add more points where two such lines intersect. For example, the common refinement
of decomposition (ii) above and the same decomposition rotated clockwise by 90 degrees
would be (iii)). It follows that the alternating sum is independent of the decomposition. �

We have already noted in example 0.1.1 that a smooth complex curve is topologically a
(real) closed surface with a certain number g of “holes”. The number g is called the genus
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of the curve. Let us compute the topological Euler characteristic of such a curve of genus
g:

Lemma 7.6.4. The Euler characteristic of a curve of genus g is equal to 2−2g.

Proof. Take e. g. the decomposition illustrated in the following picture:

It has 2g+2 points, 4g+4 lines, and 4 discs, so the result follows. �

Let us now compare the Euler characteristics of two curves X and Y if we have a mor-
phism f : X → Y :

Lemma 7.6.5. Let f : X → Y be a morphism of complex smooth projective curves. Let n
be the number of inverse image points of any point of Y under f . As in proposition 7.6.2
let R be the ramification divisor of f . Then −χ(X) =−n ·χ(Y )+degR.

Proof. Choose “compatible” decompositions of X and Y , i. e. loosely speaking decompo-
sitions such that the inverse images of the points / lines / discs of the decomposition of
Y are (finite) unions of points / lines / discs of the decomposition of X , and such that all
points / lines / discs of the decomposition of X arise in this way. Moreover, we require that
all ramification points of f are points of the decomposition of X . (It is easily seen that this
can always be achieved.) Denote by σX

0 , σX
1 , σX

2 the number of points / lines / discs of the
decomposition of X , and similarly for Y .

As every point of Y that is not the image of a ramification point has n inverse images
under f , it follows that σX

1 = nσY
1 and σX

2 = nσY
2 . We do not have σX

0 = nσY
0 however: if

P is a ramification point, i. e. eP > 1, then f is locally eP-to-one around P, i. e. P counts
for eP in nσY

0 , whereas it is actually only one point in the decomposition of X . Hence we
have to subtract eP− 1 for any ramification point P from nσY

0 to get the correct value of
σX

0 . This means that σX
0 = nσY

0 −degR and hence −χ(X) =−nχ(Y )+degR. �

Corollary 7.6.6. Let X be a (complex) smooth projective curve. Then degKX = 2g−2.

Proof. As we have already remarked, any such curve X admits a surjective morphism f to
P1 by projection. Using that degKP1 =−χ(P1) =−2 (by lemma 7.4.15 and lemma 7.6.4)
and applying lemma 7.6.5 together with the Riemann-Hurwitz formula 7.6.2, we see that
degKX =−χ(X). The result therefore follows from lemma 7.6.4. �

7.7. The Riemann-Roch theorem. As in the last section let X be a smooth projective
curve of genus g over an algebraically closed field. For any line bundle L we want to
compute the dimensions of the vector spaces Γ(L) of global sections of L . We will denote
this dimension by h0(L) (the reason for this notation will become obvious when we dis-
cuss cohomology in chapter 8). By abuse of notation we will also write h0(D) instead of
h0(O(D)) for any divisor D.
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We should remark that this is a classical question that was one of the first problems
studied in algebraic geometry: given a smooth projective curve X (resp. a compact one-
dimensional complex manifold), points P1, . . . ,Pr ∈ X , and numbers a1, . . . ,ar ≥ 0, what is
the dimension of the space of rational (resp. meromorphic) functions on X that have poles
of order at most ai at the points Pi and are regular (resp. holomorphic) everywhere else? In
our language, this just means that we are looking for the number h0(a1P1 + · · ·+arPr).

Example 7.7.1. Let D be a divisor on X with negative degree. Recall that sections of
O(D) are just rational functions ϕ on X such that (ϕ)+D is effective. Taking degrees, this
certainly implies that deg(ϕ)+degD≥ 0. But deg(ϕ) = 0 by remark 6.3.5 and degD < 0
by assumption, which is a contradiction. Hence we conclude that h0(D) = 0 if degD < 0:
there are no global sections of O(D) in this case.

Example 7.7.2. Let L be the line bundle OX (n) for some n ∈ Z. Recall that sections of L
are of the form f

g with f and g homogeneous such that deg f −degg = n. Now for global
sections g must be a constant function (otherwise we would have a pole somewhere), so
we conclude that Γ(L) is simply the n-th graded piece of the homogeneous coordinate ring
S(X).In other words, h0(L) is by definition equal to the value hX (n) of the Hilbert function
introduced in section 6.1. We have seen in proposition 6.1.5 that hX (n) is equal to a linear
polynomial χX (n) in n for n� 0. Moreover, the linear coefficient of χX (n) is the degree
of OX (n), and the constant coefficient is 1−g by definition of g (see example 6.1.10). So
we conclude that

h0(D) = degD+1−g
if D is the divisor class associated to a line bundle OX (n) for n� 0.

Theorem 7.7.3. (Riemann-Roch theorem for line bundles on curves) Let X be a complex
smooth projective curve of genus g. Then for any divisor D on X we have

h0(D)−h0(KX −D) = degD+1−g.

Proof. Step 1. Recall that for any point P ∈ X and any divisor D we have the exact
“skyscraper sequence” by exercise 7.8.4

0→ O(D)→ O(D+P)→ kP→ 0

where the last morphism is given by evaluation at the point P. From this we get an exact
sequence of global sections

0→ Γ(O(D))→ Γ(O(D+P))→ C
(where the last map is in general not surjective, see example 7.1.18). Therefore h0(D+
P)−h0(D) is either 0 or 1. If we denote the left hand side of the Riemann-Roch theorem
by χ(D) = h0(D)−h0(KX −D), we conclude that

χ(D+P)−χ(D) = (h0(D+P)−h0(D))+(h0(KX −D)−h0(KX −D−P))

is either 0, 1, or 2. (Of course, what we want to prove is that χ(D+P)−χ(D) is always
equal to 1.)

Step 2. We want to rule out the case that χ(D+P)−χ(D) = 2. For this we actually
have to borrow a theorem from complex analysis.

So assume that h0(D+P)−h0(D) = 1 and h0(KX −D)−h0(KX −D−P) = 1. The fact
that h0(D+P)−h0(D) = 1 means precisely that there is a global section ϕ of OX (D+P)
that is not a global section of OX (D), i. e. that ϕ is a rational section of OX (D) that has a
simple pole at P and is regular at all other points. Similarly, there is a global section α of
OX (KX −D) that is not a global section of OX (KX −D−P). In other words, α is a global
section of ωX⊗L∨ that does not vanish at P. By multiplication we see that ϕ ·α is a rational
section of L⊗(ωX⊗L∨) = ωX that has a simple pole at P and is regular at all other points.
In other words, ϕ ·α is a global rational differential form with just a single pole which is
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of order 1. But this is a contradiction to the residue theorem of complex analysis: the sum
of the residues of any rational (or meromorphic) differential form on a compact Riemann
surface is zero, but in our case we have ∑Q∈X resQ(ϕ ·α) = resP(ϕ ·α) 6= 0.

Step 3. We claim that
χ(D)≥ degD+1−g

for all divisors D. Note that we can choose points P1, . . . ,Pr such that D+P1 + · · ·+Pr is
precisely the intersection divisor of X with a certain number n of hyperplanes: for every
point in D we just choose a hyperplane through that point and add all other intersection
points with X to the Pi. This then means that O(D+P1 + · · ·+Pr) = O(n). By possibly
adding more intersection points of X with hyperplanes we can make n arbitrarily large. So
by example 7.7.2 we find that

h0(D+P1 + · · ·+Pr) = degD+ r+1−g.

Moreover, if n (and thus r) is large enough we see by example 7.7.1 that h0(KX −D−P1−
·· ·−Pr) = 0 and therefore

χ(D+P1 + · · ·+Pr) = degD+ r+1−g.

But by step 2 we know that subtracting a point from the divisor will decrease χ(·) by 0 or
1. If we apply this r times to the points P1, . . . ,Pr we conclude that χ(D) ≥ (degD+ r+
1−g)− r, as we have claimed.

Step 4. Replacing D by KX −D in the inequality of step 3 yields

−χ(D) = h0(KX −D)−h0(D)≥ degKX −degD+1−g

=−degD−1+g

as degKX = 2g− 2 by corollary 7.6.6. Combining the two inequalities of steps 3 and 4
proves the theorem. �

Remark 7.7.4. If D is the divisor associated to the line bundle O(n) (for any n), note that
χ(D) is just the value χX (n) of the Hilbert polynomial. So for these line bundles we can
reinterpret our main proposition 6.1.5 about Hilbert polynomials as follows: the difference
between hX (n) and χX (n) is simply h0(ωX ⊗OX (−n)). As this vanishes for large n by
degree reasons, it follows that hX (n) = χX (n) for large n.

Example 7.7.5. Setting D= 0 in the Riemann-Roch theorem yields h0(KX )= g. This gives
an alternate definition of the genus of a smooth projective curve: one could define the genus
of such a curve as the dimension of the space of global differential forms. This definition
has the advantage that it is immediately clear that it is well-defined and independent of the
projective embedding (compare this to example 6.1.10).

Remark 7.7.6. In general one should think of the Riemann-Roch theorem as a formula to
compute h0(D) for any D, modulo an “unwanted” correction term h0(KX −D). In many
applications one can make this correction term vanish, e. g. by making the degree of D
large enough so that deg(KX −D) becomes negative.

Remark 7.7.7. There are numerous generalizations of the Riemann-Roch theorem. In fact,
there are whole books on Riemann-Roch type theorems. Let us mention some of the gen-
eralizations without proof:

(i) The requirement that the ground field be C is not essential. The very same state-
ment holds over any algebraically closed ground field (the proof has to be changed
though at step 2 where we invoked complex analysis).

(ii) The requirement that the curve be projective is not essential either, it only needs
to be complete (i. e. “compact”).
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(iii) Instead of a line bundle one can take a vector bundle: if F is any vector bundle
on X of rank r then

h0(F )−h0(ωX ⊗F ∨) = degΛ
rF + r(1−g)

(see example 10.4.7).
(iv) There are versions of the Riemann-Roch theorem for singular curves as well.

(Note that in the singular case we do not have a canonical bundle, so one needs a
new idea here.)

(v) There are also versions of the Riemann-Roch theorem for varieties of dimension
bigger than 1 (see theorem 10.4.5).

(vi) Finally, the same theorem can be proven (with the same proof actually) in com-
plex analysis, where h0(D) then denotes the dimension of the space of meromor-
phic functions with the specified zeros and poles. As the resulting dimension
does change we conclude that on a projective smooth complex curve every mero-
morphic function is in fact rational. This is an example of a very general result
that says that complex analysis essentially reduces to algebraic geometry in the
projective case (in other words, we “do not gain much” by allowing holomorphic
functions instead of rational ones in the first place).

As an application of the Riemann-Roch theorem let us consider again morphisms to
projective spaces. Let X be a smooth projective curve, and let D be a divisor on X . Let
s0, . . . ,sr be a basis of the space Γ(O(D)) of global sections of O(D). Then we have seen
in lemma 7.5.14 that we get a morphism

X → Pr, P 7→ (s0(P) : · · · : sr(P))

provided that the sections si do not vanish simultaneously at any point. Using the Riemann-
Roch theorem we can now give an easy criterion when this is the case. Note first however
that picking a different basis of section would result in a morphism that differs from the
old one simply by a linear automorphism of Pr. Thus we usually say that the divisor D (or
its associated line bundle) determines a morphism to Pr up to automorphisms of Pr.

Proposition 7.7.8. Let X be a smooth projective curve of genus g, and let D be a divisor
on X.

(i) If degD≥ 2g then the divisor D determines a morphism X → Pr as above.
(ii) If degD≥ 2g+1 then moreover this morphism is an embedding (i. e. an isomor-

phism onto its image).

Proof. (i): By what we have said above we simply have to show that for every point P ∈ X
there is a global section s ∈ Γ(O(D)) that does not vanish at P.

By the degree condition we know that deg(KX −D) ≤ 2g− 2− 2g < 0 and deg(KX −
D+P)≤ 2g−2−2g+1< 0. So by example 7.7.1 we get from the Riemann-Roch theorem
that

h0(D) = degD+1−g and h0(D−P) = (degD−1)+1−g.

In particular we have h0(D)−h0(D−P) = 1, i. e. there is a section s ∈ Γ(O(D)) that is not
a section of O(D−P), i. e. that does not vanish at P.

(ii): The idea of the proof is the same as in (i). However, as we have not developed
enough powerful techniques yet to prove that a morphism has an inverse, we will restrict
ourselves to proving that the morphism determined by D is bijective. So let P and Q be
distinct points of X . To prove that they are mapped to different points it suffices to show
that there is a section s ∈ Γ(O(D)) with s(P) = 0,s(Q) 6= 0: the morphism R 7→ (s(R) :
s′(R) : · · ·) then maps P to a point with the first coordinate 0, while the first coordinate is
non-zero for the image point of Q.
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To find this section s, simply apply the argument of (i) to D−P and the point Q: we get
h0(D−P)−h0(D−P−Q) = 1, i. e. there is a section s ∈ Γ(O(D−P)) that is not a section
of O(D−P−Q), i. e. it is a section of O(D) that vanishes at P but not at Q. �

Example 7.7.9. If X is a smooth projective curve of genus g ≥ 2 we get a canonical
embedding X → Pr into a projective space (up to automorphisms by Pr) by taking the
morphism associated to the divisor 3KX . This follows by part (ii) of proposition 7.7.8 as
3(2g− 2) ≥ 2g+ 1 if g ≥ 2. By remark 7.7.7 (ii) the same is true for any complete (i. e.
“compact”) curve that is not necessarily given initially as a subvariety of projective space.

7.8. Exercises.

Exercise 7.8.1. Let F ′ be a presheaf on a topological space X , and let F be its sheafifica-
tion as in definition 7.1.10. Show that

(i) There is a natural morphism θ : F ′→ F .
(ii) Any morphism from F ′ to a sheaf factors uniquely through θ.

Exercise 7.8.2. Let f : F →G be a morphism of sheaves of abelian groups on a topological
space X . Show that f is injective / surjective / an isomorphism if and only if all induced
maps fP : FP→ GP on the stalks are injective / surjective / isomorphisms.

Exercise 7.8.3. Let f : F1→F2 be a morphism of locally free sheaves on a scheme X over
a field k. Let P ∈ X be a point, and denote by (Fi)P the fiber of the vector bundle Fi over
P, which is a k-vector space. Are the following statements true or false:

(i) If F1 → F2 is injective then the induced map (F1)P → (F2)P is injective for all
P ∈ X .

(ii) If F1→ F2 is surjective then the induced map (F1)P→ (F2)P is surjective for all
P ∈ X .

Exercise 7.8.4. Prove the following generalization of example 7.1.16: If X is a smooth
curve over some field k, L a line bundle on X , and P ∈ X a point, then there is an exact
sequence

0→ L(−P)→ L → kP→ 0,
where kP denotes the “skyscraper sheaf”

kP(U) =

{
k if P ∈U ,
0 if P /∈U .

Exercise 7.8.5. If X is an affine variety over a field k and F a locally free sheaf of rank r
on X , is then necessarily F ∼= O⊕r

X ?

Exercise 7.8.6. Let X be a scheme, and let F be a locally free sheaf on X . Show that
(F ∨)∨ ∼= F . Show by example that this statement is in general false if F is only quasi-
coherent but not locally free.

Exercise 7.8.7. Figure out what exactly goes wrong with the correspondence between line
bundles and divisor classes on a curve X if X is singular. Can we still associate a divisor to
any section of a line bundle? Can we still construct a line bundle from any divisor?

Exercise 7.8.8. What is the line bundle on Pn×Pm leading to the Segre embedding Pn×
Pm→ PN by the correspondence of lemma 7.5.14? What is the line bundle leading to the
degree-d Veronese embedding Pn→ PN?

Exercise 7.8.9. Show that any smooth projective curve of genus 2. . .

(i) can be realized as a curve of degree 5 in P3,
(ii) admits a two-to-one morphism to P1. How many ramification points does such a

morphism have?
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Exercise 7.8.10. Let X be a smooth projective curve, and let P ∈ X be a point. Show that
there is a rational function on X that is regular everywhere except at P.


