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6. FIRST APPLICATIONS OF SCHEME THEORY

To every projective subscheme of IP’Z we associate the Hilbert function hy : 7. —
Z, d — dim; S(X )(d>. For large d the Hilbert function is a polynomial in d of degree
dim X, the so-called Hilbert polynomial xx .

We define (dimX)! times the leading coefficient of Yx to be the degree of X;
this is always a positive integer. For zero-dimensional schemes the degree is just the
number of points in X counted with their scheme-theoretic multiplicities. The degree
is additive for unions of equidimensional schemes and multiplicative for intersections
with hypersurfaces (Bézout’s theorem).

We give some elementary applications of Bézout’s theorem for plane curves.
Among others, we give upper bounds for the numbers of singularities of a plane
curve and the numbers of loops of a real plane curve.

A divisor on a curve C is just a formal linear combination of points on C with
integer coefficients. To every polynomial or rational function on C we can associate
a divisor, namely the divisor of “zeros minus poles” of the polynomial or function.
The group of all divisors modulo the subgroup of divisors of rational functions is
called the Picard group PicC of C.

We show that the degree-0 part of Pic C is trivial for C = P!, whereas it is bijective
to C itself if C is a smooth plane cubic curve. This defines a group structure on such
cubic curves that can also be interpreted geometrically. In complex analysis, plane
cubic curves appear as complex tori of the form C/A, where A is a rank-2 lattice in
C.

Finally, we give a short outlook to the important parts of algebraic geometry that
have not been covered yet in this class.

6.1. Hilbert polynomials. In this section we will restrict our attention to projective sub-
schemes of P" over some fixed algebraically closed field. Let us start by defining some
numerical invariants associated to a projective subscheme of P".

Definition 6.1.1. Let X be a projective subscheme of ;. Note that the homogeneous coor-

dinate ring S(X) is a graded ring, and that each graded part S(X)? is a finite-dimensional
vector space over k. We define the Hilbert function of X to be the function

hx 1 — 7
d s hx(d) := dimy S(X)@.

(Note that we trivially have ix(d) = 0 for d < 0 and hx(d) > 0 for d > 0, so we will often
consider iy as a function iy : N — N.)

Example 6.1.2. Let X = P" be projective space itself. Then S(X) = k[xo,...,xn], so the

Hilbert function hy (d) = (‘H”) is just the number of degree-d monomials in n+ 1 variables

n
X0, - - ,X,. In particular, note that hy (d) = (d+">(d+'zl)"'(d+]>

is a polynomial in d of degree
n with leading coefficient % (compare this to proposition 6.1.5).
Example 6.1.3. Let us now consider some examples of zero-dimensional schemes.

(i) Let X = {(1:0),(0: 1)} C P! be two points in P!. Then I(X) = (xox1). So a
basis of S(X)@ is given by {1} for d = 0, and {x¢,x¢} for d > 0. We conclude

that
1 ford=0
hx(d) = ’
x(d) {2 ford > 0.

(i) Let X ={(1:0:0),(0:1:0),(0:0: 1)} C P? be three points in P? that are not
on a line. Then I(X) = (xpx1,%0x2,x1x2). So in the same way as in (i), a basis of



6. First applications of scheme theory 93

S(X)) is given by {1} for d = 0 and {x4,x{,x¢} for d > 0. Therefore

1 ford=0
hy (d) = ’
x(d) {3 ford > 0.

(iii) Let X = {(1:0),(0:1),(1: 1)} C P! be three collinear points. Then I(X) =
(xox1 (x0 —x1)). The relation x(z)xl = xox% allows us to reduce the number of xq in
a monomial xf)x{ provided that i > 2 and j > 1. So a basis of S(X )<d) is given by

{1} ford =0, {xo,x; } ford = 1, and {x¢,xox", x4} for d > 1. Hence

1 ford=0,
hx(d)=<2 ford=1,
3 ford>1.

It is easy to see that we get the same result for three collinear points in P2. So
comparing this with (ii) we conclude that the Hilbert function does not only de-
pend on the scheme X up to isomorphism, but also on the way the scheme is
embedded into projective space.

(iv) Let X C P! be the “double point” given by the ideal I(X) = (x3). A basis of
S(X)@ is given by {1} for d = 0 and {xox? ', x¢} for d > 0, so it follows that

1 ford=0
hy (d) = ’
x(d) {2 for d > 0.

justasin (i). So the double point “behaves like two separate points” for the Hilbert
function.

So we see that in these examples the Hilbert function becomes constant for d large enough,
whereas its initial values for small d may be different. We will now show that this is what
happens in general for zero-dimensional schemes:

Lemma 6.1.4. Let X be a zero-dimensional projective subscheme of P". Then

(1) X is affine, so equal to SpecR for some k-algebra R.

(ii) This k-algebra R is a finite-dimensional vector space over k. Its dimension is
called the length of X and can be interpreted as the number of points in X
(counted with their scheme-theoretic multiplicities).

(iii) hy(d) = dimg R for d > 0. In particular, hx (d) is constant for large values of d.

Proof. (1): As X is zero-dimensional, we can find a hyperplane that does not intersect X.
Then X = X\H is affine by proposition 5.5.4 (ii).

(ii): First we may assume that X is irreducible, i. e. consists of only one point (but may
have a non-trivial scheme structure), since in the reducible case X = X; U --- LI X, with
X; = SpecR; for i =1,...,m we have R = R| X --- X R, by exercise 5.6.14. Moreover,
by a change of coordinates we can assume that this point is the origin in A". If X =
Specklxy,...,x,]/I we then must have (xi,...,x,) = v/I by the Nullstellensatz. It follows
that xfi € [ for some d and all i. Consequently, every monomial of degree at least D :=d-n
lies in 7 (as it must contain at least one x; with a power of at least d). In other words,
k[x1,...,x,]/I has a basis (as a vector space over k) of polynomials of degree less than D.
But the space of such polynomials is finite-dimensional.

(iii): Note that I(X) is simply the homogenization of I. Conversely, I is equal to
I(X)|xy=1- So for d > D an isomorphism S(¢) — R as vector spaces over k is given by

(k[x0, - 2] I D = K[t /I, f 5 fleg=
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and the inverse

KXty oyl /T (K[, xal JIX)) D, o foxg 8]
where f" denotes the homogenization of a polynomial as in exercise 3.5.3 (note that the

second map is well-defined as k[xy,...,x,]/I has a basis of polynomials of degree less than
D). 0

We will now discuss the Hilbert function of arbitrary projective subschemes of P” (that
are not necessarily zero-dimensional).

Proposition 6.1.5. Let X be a (non-empty) m-dimensional projective subscheme of P".
Then there is a (unique) polynomial Yx € Z[d) such that hx(d) = xx(d) for d > 0. More-
over,

(i) The degree of Yx is m.
(ii) The leading coefficient of Yx is % times a positive integer.

Remark 6.1.6. As the Hilbert polynomial is defined in terms of the Hilbert function for
large d, it suffices to look at the graded parts of I(X) (or S(X)) for d > 0. So by lemma
5.5.9 (iv) we do not necessarily need to take the saturated ideal of X for the computation
of the Hilbert polynomial. We have as well that

xx (d) = dimg (k[xo, ..., x,] /D)@ ford >0

for any homogeneous ideal I such that X = Projk[xo, . ..,x,]/I.

Proof. We will prove the proposition by induction on the dimension m of X. The case
m = 0 follows from lemma 6.1.4, so let us assume that m > 0. By a linear change of
coordinates we can assume that no component of X lies in the hyperplane H = {xy = 0}.
Then there is an exact sequence of graded vector spaces over k

0 — kfxo,...,x,)/1(X) =, k[xo, ..., xn)/1(X) — klxo,...,xs]/(I(X) + (x9)) — 0.

(if the first map was not injective, there would be a homogeneous polynomial f such that
f¢I(X)but fxo € I(X). We would then have X = (X NZ(f)) U (X NH). But as no irre-
ducible component lies in H by assumption, we must have X = X NZ(f), in contradiction
to f ¢ I(X)). Taking the d-th graded part of this sequence (and using remark 6.1.6 for the
ideal I(X) + (x0)), we get

hxru(d) =hx(d) —hx(d—1).

for large d. By the induction assumption, hyny(d) is a polynomial of degree m — 1 for

large d whose leading coefficient is ﬁ times a positive integer. We can therefore write

m—1 d
thH(d): ZCi(i) ford >0

i=0

for some constants ¢;, where c,,_1 is a positive integer (note that (‘ll) is a polynomial of
degree i in d with leading coefficient ll,) We claim that

m—1
d+1
hX(d):c+Zci<_+ ) ford >0
i—o \itl
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for some ¢ € Z. In fact, this follows by induction on d, as
/’lx<d) = thH(d) + hx(d — 1)

m—1 d m—1 d
ZZC,‘<,>+C+ C,‘(, >
i=0 \! i—o \itl

The statement of proposition 6.1.5 motivates the following definition:

Definition 6.1.7. Let X be a projective subscheme of P". The degree deg X of X is defined
to be (dimX)! times the leading coefficient of the Hilbert polynomial Xy . (By proposition
6.1.5, this is a positive integer.)

Example 6.1.8.

(i) If X is a zero-dimensional scheme then degX is equal to the length of X, i.e. to
“the number of points in X counted with their scheme-theoretic multiplicities”.
(i1) deglP" =1 by example 6.1.2.
(iii) Let X = Projk[xo,...,xn]/(f) be the zero locus of a homogeneous polynomial.
We claim that degX = deg f. In fact, taking the d-th graded part of S(X) =
k[xo,...,xn]/f - k[x0,...,xn] we get

hx (d) = dimgk[xo, . .., x,]) 9 — dimgk[xo, . . ., x,] (4 -9/

_ (d+n\ (d—degf+n
()
L (@t n)-(d 1)~ (d—degf+n)--(d—deg f+1))

Tl
d
= cef d" ! +lower order terms.
(n—1)!
Proposition 6.1.9. Ler X; and X, be m-dimensional projective subschemes of P", and
assume that dim(X; N X,) < m. Then deg(X; UX,) = deg X +degX,.

Proof. For simplicity of notation let us set S = k[x, ..., x,]. Note that
X1NX, =ProjS/(I(X1)+1(X2)) and X;UXp =ProjS/(I(X))NI(X2)).
So from the exact sequence
0 — S/UX)NIX)) — S/AX)@S/I(X2) — S/(I(X)+1(X2)) — 0
f = (f: /)
(f>8) — f-s
we conclude that
hx, (d)+ hx, (d) = hx,ux, (d)+ hxinx, (d)
for large d. In particular, the same equation follows for the Hilbert polynomials. Compar-

ing only the leading (i. e. d"™) coefficient we then get the desired result, since the degree of
xAx,nx, is less than m by assumption. O

Example 6.1.10. Let X be a projective subscheme of P”. We call

g(X) = (=)™ (x(0) — 1)
the (arithmetic) genus of X. The importance of this number comes from the following
two facts (that we unfortunately cannot prove yet with our current techniques):
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(1) The genus of X is independent of the projective embedding, i.e. if X and Y are
isomorphic projective subschemes then g(X) = g(Y). See section 6.6.3 and exer-
cise 10.6.8 for more details.

(ii) If X is a smooth curve over C, then g(X) is precisely the “topological genus”
introduced in example 0.1.1. (Compare for example the degree-genus formula of
example 0.1.3 with exercise 6.7.3 (ii).)

Remark 6.1.11. In general, the explicit computation of the Hilbert polynomial hx of a
projective subscheme X = Projk[xo,...,x,]/I from the ideal I is quite complicated and
requires methods of computer algebra.

6.2. Bézout’s theorem. We will now prove the main property of the degree of a projective
variety: that it is “multiplicative when taking intersections”. We will prove this here only
for intersections with hypersurfaces, but there is a more general version about intersections
in arbitrary codimension (see e. g. cite Ha theorem 18.4).

Theorem 6.2.1. (Bézout’s theorem) Let X be a projective subscheme of P of positive
dimension, and let f € k|xo, ... ,x,] be a homogeneous polynomial such that no component
of X is contained in Z(f). Then

deg(XNZ(f)) =degX -degf.

Proof. The proof is very similar to that of the existence of the Hilbert polynomial in propo-
sition 6.1.5. Again we get an exact sequence

0 — kfxo,...,x,)/1(X) i> k[x0, ... xn) /I(X) — klxo,...,%:]/(I(X)+ (f)) — 0O
from which it follows that
Xxnz(f) = Xx (d) —xx(d —degf).
But we know that
degX
wx(d) = % d™ + ¢p_1d™ " + terms of order at most d" 2,
m:

where m = dim X. Therefore it follows that

deg X m m m— m—
Xcz(s) = i (" = (d = deg f)") + ot ("' — (d = deg )" )

+ terms of order at most d" 2

degX
= eg’ -mdeg f-d™' + terms of order at most d" 2.
m:
We conclude that deg(X NZ(f)) = degX - deg f. O

Example 6.2.2. Let C; and C, be two curves in P> without common irreducible com-
ponents. These curves are then given as the zero locus of homogeneous polynomials of
degrees d; and dy, respectively. We conclude that deg(C) NC,) = d; - d» by Bézout’s the-
orem. By example 6.1.8 (i) this means that C; and C; intersect in exactly d - d» points, if
we count these points with their scheme-theoretic multiplicities in the intersection scheme
C1 N Cy. In particular, as these multiplicities are always positive integers, it follows that Cy
and C; intersect set-theoretically in at most d - d, points, and in at least one point. This
special case of theorem 6.2.1 is also often called Bézout’s theorem in textbooks.

Example 6.2.3. In the previous example, the scheme-theoretic multiplicity of a point in
the intersection scheme C| NC; is often easy to read off from geometry: let P € C; NC; be
a point. Then:

(1) If C; and C; are smooth at P and have different tangent lines at P then P counts
with multiplicity 1 (we say: the intersection multiplicity of C; and C; at P is 1).
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(i) If C; and C; are smooth at P and are tangent to each other at P then the intersection
multiplicity at P is at least 2.

(iii) If Cy is singular and C, is smooth at P then the intersection multiplicity at P is at
least 2.

(iv) If C; and C; are singular at P then the intersection multiplicity at P is at least 3.

The key to proving these statements is the following. As the computation is local around
P we can assume that the curves are affine in A2, that P = (0,0) is the origin, and that the
two curves are given as the zero locus of one equation

Ci={fi=0} where f; = ajx+ by + higher order terms,
C={f=0} where f> = arx+ byy + higher order terms.

If both curves are singular at the origin, their tangent space at P must be two-dimensional,
i.e. all of A2. This means that a; = b; = ap = by = 0. It follows that 1, x, and y are
three linearly independent elements in k[x,y]/(f1,f2) (Whose spectrum is by definition the
intersection scheme). So the intersection multiplicity is at least 3. In the same way, we get
at least 2 linearly independent elements (the constant 1 and one linear function) if only one
of the curves is singular, or both curves have the same tangent line (i. e. the linear parts of
their equations are linearly dependent).

Example 6.2.4. Consider again the twisted cubic curve in P3
C={(s*:s%:5:1%); (s:1) € P!}
2 2
= {(x0 :x1 :x2 1 x3) ; X] — XoX2 = X5 — X1 X3 = Xox3 — X1x2 = 0}.

We have met this variety as the easiest example of a curve in P that cannot be written as
the zero locus of two polynomials. We are now able to prove this statement very easily
using Bézout’s theorem: assume that /(C) = (f,g) for some homogeneous polynomials f
and g. As the degree of C is 3 by exercise 6.7.2, it follows that deg f - deg g = 3. This is only
possible if deg f = 3 and degg = 1 (or vice versa), i.e. one of the polynomials has to be
linear. But C is not contained in a linear space (its ideal does not contain linear functions).

In particular we see that C cannot be the intersection of two of the quadratic polynomials
given above, as this intersection must have degree 4. In fact,

Z(x% _x0x27x% —x1x3) =CU{x; =x, =0}

in accordance with Bézout’s theorem and proposition 6.1.9 (note that {x; =x, =0} is a
line and thus has degree 1).

Let us now prove some corollaries of Bézout’s theorem.

Corollary 6.2.5. (Pascal’s theorem) Let X C P2 be a conic (i. e. the zero locus of a ho-
mogeneous polynomial f of degree 2). Pick six points A,B,C,D,E F on X that form the
vertices of a hexagon inscribed in X. Then the three intersection points of the opposite
edges of the hexagon (i.e. P=ABNDE, Q = BCNEF, and R = CDNFA) lie on a line.
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Proof. Consider the two reducible cubics X; = ABUCDUEF and X, = BCUDE U FA,
and let fi =0 and f, = 0 be the equations of X; and X;, respectively. In accordance with
Bézout’s theorem, X; and X> meet in the 9 points A,B,C,D,E,F,P,Q,R.

Now pick any point § € X not equal to the previously chosen ones. Of course there are
A, € k such that Af] + uf> vanishes at S. Set X’ = Z(Afi +uf>); this is a cubic curve too.

Note that X’ meets X in the 7 points A,B,C,D, E F,S, although deg X’ - degX = 6. We
conclude by Bézout’s theorem that X’ and X have a common component. For degree
reasons the only possibility for this is that the cubic X’ is reducible and contains the conic
X as a factor. Therefore X’ = X UL, where L is a line.

Finally note that P,Q,R liec on X’ as they liec on X; and X,. Therefore P,Q,R € X UL.
But these points are not on X, so they must be on the line L. (]

Corollary 6.2.6. Let C C P? be an irreducible curve of degree d. Then C has at most (dgl)
singular points.

Remark 6.2.77. For d =1 C must be a line, so there is no singular point. A conic is either
irreducible (and smooth) or a union of two lines, so for d = 2 the statement is obvious
too. For d = 3 the corollary states that there is at most one singular point on an irreducible
curve. In fact, the projectivization of the singular cubic affine curve y* = x?> +x> is such an
example with one singular point (namely the origin).

Proof. Assume the contrary and let Py, ... ,P(d;l) 1 be distinct singular points of C. More-
over, pick arbitrary further distinct points Qy,...,0y-3 on C (we can assume d > 3 by
remark 6.2.7). We thus have a total of (dgl) +1+d-3= % — 4 —1 points P; and Q.
We claim that there is a curve C’ of degree d — 2 that passes through all P; and Q.
In fact, the space of all homogeneous degree-(d —2) polynomials in three variables is a

(‘21) -dimensional vector space over k, so the space of hypersurfaces of degree d —2 is a

projective space PV of dimension N = (g) — 1, with the coefficients of the equation as the

homogeneous coordinates. Now the condition that such a hypersurface passes through a
given point is obviously a linear condition in this PY. As N hyperplanes in PV always
have a non-empty intersection, it follows that there is a hypersurface passing through any
N given points. But N = ([21) —-1= % — % — 1 is precisely the number of points we have.
(Compare this argument to exercise 3.5.8 and the parametrization of cubic surfaces at the

beginning of section 4.5.)

Now compute the degree of the intersection scheme CNC’. By Bézout’s theorem, it
must be degC - degC’ = d(d —2). Counting the intersection points, we see that we have
the d — 3 points Q;, and the (d;]) + 1 points P; that count with multiplicity at least 2 as
they are singular points of C (see example 6.2.3). So we get

d—1
deg(CNC) > (d—3)+2 (( ) )—i—l) =d*—2d+1>degC-degC'.

By Bézout’s theorem it follows that C and C’ must have a common component. But C is
irreducible of degree degC > degC’, so this is impossible. We thus arrive at a contradiction
and conclude that the assumption of the existence of (dgl) + 1 singular points was false.

O

The following statement about real plane curves looks quite different from corollary
6.2.6, yet the proof is largely identical. Note that every smooth real plane curve consists of
a certain number of connected components (in the classical topology); here are examples
with one real component (the left two curves) and with two real components (the right
curve):
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%+y2—420 yz—xz—%—le y—x——+1—

We want to know the maximum number of such components that a real smooth curve of
degree d can have. One way of constructing curves with many components is to start with
a singular curve, and then to deform the equation a little bit to obtain a smooth curve. The
following example starts with a reducible quartic curve and deforms it into a smooth curve
with two and four components, respectively.

/A
<@> a D
W)

2
2y —4)= T 4Rl —4) = (B 4+ =2+ —d4)=—1

As in the complex case, it is more convenient to pass to the projective plane IP’]% instead
of AHZQ. This will add points at infinity of the curves so that every component becomes
a loop (i.e. it has no ends). For example, in the two cubic curves above one point each
is added to the curves, so that the components extending to infinity become a loop. We
are therefore asking for the maximum number of loops that a projective smooth real plane
curve of degree d can have.

There is an extra topological twist in IF’HZQ that we have not encountered before. As usual,
we construct Pﬁ by taking Aé (which we will draw topologically as an open disc here)
and adding a point at infinity for every direction in Aﬂzg. This has the effect of adding a
boundary to the disc (with the boundary point corresponding to the point at infinity). But
note that opposite points of the boundary of the disc belong to the same direction in AHQQ
and hence are the same point in }P’%R. In other words, IP’I% is topologically equivalent to a
closed disc with opposite boundary points identified:

PR

identify

It is easy to see that this is a non-orientable surface: if we start with a small circle and
move it across the boundary of the disc (i. e. across the infinity locus of ]P’]% then it comes
out with opposite orientation:

D A
B

=)
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Consequently, we have two different types of loops. A “type 1 loop” is a loop such that
its complement has only one component (which is topologically a disc). A “type 2 loop”
is a loop such that its complement has two components (an “interior” and “exterior” of the
loop). It is interesting to note that of these two components one is a disc, and the other is a
Mobius strip.

A

Type 1 loop Type 2 loop

(Those of you who know some algebraic topology will note that the homology group
H, (]P’ﬁ) is isomorphic to Z/27Z; so the two types of curves correspond to the two elements
of Z/27.)

With these prerequisites at hand, we can now prove the following statement (modulo
some topology statements that should be intuitively clear):

Corollary 6.2.8. (Harnack’s theorem) A real smooth curve in ]P’HzQ of degree d has at most
(dgl) +1 loops.

Remark 6.2.9. A line (d = 1) has always exactly one loop. A non-empty conic (d = 2) is
a hyperbola, parabola, or ellipse, so in every case the number of loops is 1. For d = 3 the
corollary gives a maximum number of 2 loops, and for d = 4 we get at most 4 loops. We
have just seen examples of these numbers of loops above. One can show that the bound
given in Harnack’s theorem is indeed sharp, i. e. for every d one can find smooth real curves
of degree d with exactly (dgl) + 1 loops.

Proof. Assume that the statement is false, so that there are (dgl) + 2 loops in a smooth
real plane curve C. Note that any two type 1 loops must intersect (which is impossible
for a smooth curve), so there can be at most one type 1 loop. Hence assume that the first
on each of them. By

(d;l) + 1 loops are of type 2, and pick one point Py,... ,P(d,l)ﬂ

2
remark 6.2.9 we can assume that d > 3, so pick d — 3 further distinct points Q1,...,Q4—3
on the last loop (which can be of any type). We thus have a total of (dgl) +14+d-3=
& _d

5 — 5 — 1 points P; and Q;.

As in the proof of corollary 6.2.6 there is a curve C’ of degree d — 2 that passes through
all P; and Q. Compute the degree of the intersection scheme CNC’. By Bézout’s theorem,
it must be degC-degC’ = d(d — 2). Counting the intersection points, we see that we have
the d — 3 points Q;, and the (dgl) + 1 points P; that count with multiplicity at least 2 as
every type 2 loop divides the real projective plane in an interior and exterior region; so if
C' enters the interior of a type 2 loop it must exit it again somewhere. (It may also be that
(' is tangent to the loop or singular at the intersection point, but in this case the intersection
multiplicity must be at least 2 too.)

P P O

) @@

\%}—’/Qpa% (0))
c
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So we get
4 d—1 2 !
deg(CNC) > (d—3)+2 5 +1)|=d —2d+1>degC-degC".

By Bézout’s theorem it follows that C and C’ must have a common component. But C is
irreducible of degree degC > degC’, so this is impossible. We thus arrive at a contradiction
and conclude that the assumption of the existence of (d;l) + 2 loops was false. (]

Corollary 6.2.10. Every isomorphism f : P" — P" is linear, i. e. it is of the form f(x) =
A-x, where x = (xo,...,Xx,) and A is an invertible (n+ 1) x (n+ 1) matrix with elements in
the ground field.

Proof. Let H C P" be a hyperplane, and let L C P" be a line not contained in H. Of course,
H N Lis scheme-theoretically just one reduced point. As f is an isomorphism, f(H)N f(L)
must also be scheme-theoretically one reduced point, i.e. deg(f(H) N f(L)) = 1. As
degrees are always positive integers, it follows by Bézout’s theorem that deg f(H) =
deg f(L) = 1. In particular, f maps hyperplanes to hyperplanes. Applying this to all hy-
perplanes {x; = 0} in turn, we conclude that f maps all coordinate functions x; to linear
functions, so f(x) = A - x for some scalar matrix A. Of course A must be invertible if f has
an inverse. (]

6.3. Divisors on curves. Bézout’s theorem counts the number of intersection points of a
projective curve with a hypersurface. For example, if C C IP? is a plane cubic then the
intersection of C with any line consists of 3 points (counted with their scheme-theoretic
multiplicities). But of course not every collection of three points on C can arise this way,
as three points will in general not lie on a line. So by reducing the intersections of curves
to just the number of intersection points we are losing information about the possible con-
figurations of intersection schemes. In contrast, we will now present a theory that is able
to keep track of the configurations of (intersection) points on curves.

Definition 6.3.1. Let C C P" be a smooth irreducible projective curve. A divisor on C
is a formal finite linear combination D = a{P; + - - - 4+ a,, P, of points P; € C with integer
coefficients @;. Obviously, divisors can be added and subtracted. The group of divisors on
C is denoted DivC.

Equivalently, DivC is the free abelian group generated by the points of C.

The degree degD of a divisor D = a| P, + - - -+ a,, P, is defined to be the integer a; +
---+ay,. Obviously, the degree function is a group homomorphism deg : DivC — Z.

Example 6.3.2. Divisors on a curve C can be associated to several objects:

(i) Let Z C IP" be a zero-dimensional projective subscheme of P”, and let Py, ..., P,
be the points in Z. Each of these points comes with a scheme-theoretic multiplic-
ity a; (the length of the component of Z at P;) which is a positive integer. If the
points P; are on C, then a; P + - - - @ Py, is a divisor on C which we denote by (Z).
It is called the divisor associated to Z.

(i) Let f € k[xo,...,x,] be a homogeneous polynomial such that C is not contained in
Z(f). Then CNZ(f) is a zero-dimensional subscheme of P whose points lie in
C, so by (i) there is an associated divisor (CNZ(f)) on C. It is called the divisor
of f and denoted (f); we can think of it as the zeros of f on C counted with
their respective multiplicities. By Bézout’s theorem, the number of such zeros is
deg(f) = degC-deg f.

(iii) Note that the intersection scheme C N Z(f) and therefore the divisor (f) do not
change if we add to f an element of the ideal /(C). Hence there is a well-defined
divisor (f) for every non-zero f € S(C)@.
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(iv) Assume that C C P?, and that C' = Z(f) C IP? is another (not necessarily irre-
ducible) curve that does not contain C as a component. Then the divisor (f') is
also called the intersection product of C and C’ and denoted C-C’ € DivC.

Lemma 6.3.3. Let C C P" be a smooth irreducible curve, and let f,g € S(C) be non-zero
homogeneous elements in the coordinate ring of C. Then (fg) = (f) + (g).

Proof. Let (fg) = a1Py + -+ anPy. It is obvious that set-theoretically the zeros of fg
are the union of the zeros of f and g, so f and g vanish at most at the points P,. Let
(f)=b1Pi+ -+ byPy and (g) = ¢ Py + - - - ¢ Py. We have to show that a; = b; + ¢; for
alli=1,...,m.

Fix a certain i and choose an affine open subset U = SpecR C C that contains P;, but
no other zero of fg. Then by definition we have a; = dimg R/(fg), b; = dim; R/(f), and
¢; =dim; R/(g). The statement now follows from the exact sequence

. 1
0 —R/(f) == R/(fg) — R/(g) — 0.

O

Definition 6.3.4. Let C C P” be a smooth irreducible curve, and let ¢ € K(C) be a non-zero

rational function. By definition we can write ¢ = g for some non-zero f,g € S (C)(d). We

define the divisor of ¢ to be (¢) = (f) — (g) (this is well-defined by lemma 6.3.3). It can
be thought of as the zeros minus the poles of the rational function.

Remark 6.3.5. Note that the divisor of a rational function always has degree zero: if ¢ =
with f, g € S(C)\), then
deg(p) = deg(f) —deg(g) =d degC—d degC =0

by Bézout’s theorem.

o9 |~

Example 6.3.6. Let C = P!, and consider the two homogeneous polynomials f(xo,x1) =
xox1 and g(xo,x1) = (xo —x1)>. Then (f) = P; + P, with P, = (1:0) and P, = (0: 1),
and (g) = 2P; with P; = (1: 1). The quotient g defines a rational function @ on P! with
(¢) = P + P, —2P3. We have deg(f) = deg(g) = 2 and deg(¢) = 0 (in accordance with
remark 6.3.5).

Remark 6.3.7. By lemma 6.3.3, the map K(C)\{0} — DivC that sends every rational
function ¢ to its divisor (@) is a group homomorphism, if we regard K(C)\{0} as an
abelian group under multiplication. In particular, the subset of DivC of all divisors of the
form (o) is a subgroup of DivC.

Definition 6.3.8. The Picard group (or divisor class group) PicC of C is defined to be
the group DivC modulo the subgroup of all divisors of the form (¢) for ¢ € K(C)\{0}.
If £ € S(C)@, we will usually still write (f) for the divisor class in PicC associated to f.
Two divisors D; and D, are said to be linearly equivalent if D; — D, =0 € PicC, i.e. if
they define the same divisor class.

Remark 6.3.9. By remark 6.3.5, the degree function deg : DivC — Z passes to a group
homomorphism deg : PicC — Z. So it makes sense to talk about the degree of a divisor
class. We define Pic® C C PicC to be the group of divisor classes of degree 0.

Remark 6.3.10. The divisor group DivC is a free (and very “big”) abelian group and there-
fore not very interesting. In contrast, the divisor class group Pic C has quite a rich structure
that we want to study now in some easy examples.

Lemma 6.3.11. PicP' = Z (with an isomorphism being the degree homomorphism). In
other words, on P all divisors of the same degree are linearly equivalent.
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Proof. LetD =a P+ ---a,Py, be adivisor of degree zero, i.e. a; +---+a, = 0. We have
to show that D is the divisor of a rational function. In fact, assume the P; have homogeneous
coordinates (x; : y;); then

3

=] |(xyi—yx)®
=1
is a rational function such that (¢) = D. O

Let us now move on to more complicated curves. We know already that smooth conics
in P? are isomorphic to P!, so their Picard group is isomorphic to the integers too. Let
us therefore consider cubic curves in P2. We will compute PicC and show that it is not
isomorphic to Z (thereby showing that cubic curves are not isomorphic to P'). Let us
prove a lemma first.

Lemma 6.3.12. Let C = Z(f) C P? be a smooth cubic curve, and let C' = Z(g) with
8 € klxo,x1,x2] () pe another curve that does not have C as a component. Assume that
“three points of CNC' lie on a line”, i. e. that C-C' contains three points P, P, Ps (that
need not be distinct) such that there is a line L = Z (1) with C-L = P, + P, + Ps. Then there
is a polynomial g' € k[xo,x1,%2]"V) such that g = 1- ¢ in S(C).

Proof. By Bézout’s theorem we have C' - L = P +--- + P, for some points P; (that need
not be distinct, but they must contain the first three given points Py, P>, P3). Let a €
k[xo,x1,x2]4~3) be a homogeneous polynomial such that Z(a)-L = P4+ --- + Py (it is
obvious that this can always be found). Then Z(af)-L = P, + - P, too.

Now pick any point Q € L distinct from the P,. As g and af do not vanish at O, we can
find a A € k such that g+ Aaf vanishes at Q. It follows that g +Aaf vanishes on L at least at
the d + 1 points Py,...,P;, Q. So it follows by Bézout’s theorem that Z(g + Aaf) contains
the line L, or in other words that g + Aaf = Ig’ for some g’. Passing to the coordinate ring
S(C) = k[xo,x1,x2]/1(C) we get the desired result. O

Proposition 6.3.13. Let C C P? be a smooth cubic curve, and let P,Q be distinct points on
C. Then P—Q # 0 in PicC. In other words, there is no rational function @ € K(C)\{0}
with (¢) = P — Q, i. e. no rational function that has exactly one zero which is at P, and
exactly one pole which is at Q.

Remark 6.3.14. It follows from this proposition already that a smooth plane cubic curve is
not isomorphic to P! (as the statement of the proposition is false for P! by lemma 6.3.11).

Proof. Assume the contrary. Then there is a positive integer d and homogeneous polyno-
mials £, g € S(C) such that

(i) There are points Py,...,Psy_1 and P # Q such that
(f)=Pi+-+Pq1+P and (g) =P+ +Pu1+0

(hence (¢) =P —Q for ¢ = Jé).

(i) Among the Py,...,Ps;_| there are at least 2d — 1 distinct points. (If this is not the
case in the first place, we can replace f by f - and g by g -/ some linear function
[ that vanishes on C at three distinct points that are not among the P;. This raises
the degree of the polynomials by 1 and the number of distinct points by 3, so by
doing this often enough we can get at least 2d — 1 distinct points.)

Pick d minimal with these properties.

Ifd =1then (f) =P +P,+Pand (g) =P+ P>+ Q, soboth f and g define the unique
line through P; and P (or the tangent to C at Py if P; = P,). In particular, it follows that
P = Q as well, which is a contradiction. So we can assume that d > 1. We can rearrange
the P; such that P, # P3, and such that P| = P, if there are any equal points among the P;.
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Now consider curves given by linear combinations Af + ug. These curves will intersect
C at least in the points Py,..., P31 (as Z(f) and Z(g) do). Note that for any point R € C
we can adjust A and p so that (Af +ug)(R) = 0. Such a curve will then have intersection
divisor P; 4 --- 4 P34—1 + R with C. In other words, by passing to linear combinations of
f and g we can assume that the last points P and Q in the divisors of f and g are any two
points we like. We choose P to be the third intersection point of P; P, with C, and Q to be
the third intersection point of P; Pz with C.

By lemma 6.3.12, it now follows that f =1[- f' and g =1'- g’ in S(C) for some linear
functions [ and [’ that have intersection divisors P; + P, + P and P, + P; + Q with C. Hence

(f)=Pst+-+Py1+P and (¢)=Pit-+Py1+P

Note that these f' and g’ satisfy (i) for d replaced by d — 1, as P, # P; by assumption.
Moreover, ' and g’ satisfy (ii) because if there are any equal points among the P; at all,
then by our relabeling of the P; there are only two distinct points among Py, P>, P3, so there
must still be at least 2(d — 1) — 1 distinct points among Py, ..., P34_1.

This contradicts the minimality of d and therefore proves the proposition. g

Corollary 6.3.15. Let C be a smooth cubic curve, and let Py € C be a point. Then the map
C —»Pic’Cc, P—P-—Pp

is a bijection.

Proof. The map is well-defined and injective by proposition 6.3.13. We will show that it
is surjective. Let D =Py +---+ P, — Q1 — - - - — Oy, be any divisor of degree 0.

If m > 1 let P be the third intersection point of PjP, with C, and let Q be the third
intersection point of Q1 Q> with C. Then P; + P> + P and Q| + Q> + Q are both the divisors
of linear forms on C. The quotient of these linear forms is a rational function whose divisor
P +P,+P—Q|— Q> —Q is therefore 0 in PicC. It follows that D =P;+---+ P, + Q —
Q03 —---— QO — P. We have thus reduced the number m of (positive and negative) points
in D by 1. Continuing this process, we can assume that m = 1, i.e. D = P — Q for some
PQcC.

Now let P’ be the third intersection point of PPy with C, and let Q' be the third in-
tersection point of P’Q with C. Then P'+ P+ Py = P'+ Q+ Q' in PicC as above, so
D=P—Q=Q — Py, as desired. O

6.4. The group structure on a plane cubic curve. Let C C P? be a smooth cubic curve.
Corollary 6.3.15 gives a canonical bijection between the variety C and the abelian group
Pic’C, so between two totally different mathematical objects. Using this bijection, we can
give C a group structure (after choosing a base point Py as in the corollary) and Pic®C the
structure of a smooth projective variety.

We should mention that Pic® C can be made into a variety (the so-called Picard variety)
for every smooth projective curve C; it is in general not isomorphic to C however. (If C is
not P! one can show that the map P +— P — Py of corollary 6.3.15 is at least injective, so
we can think of C as a subvariety of the Picard variety.)

In contrast, the statement that C can be made into an abelian group is very special to
cubic plane curves (or to be precise, to curves of genus 1). Curves of other types do not
admit such a group structure.

Example 6.4.1. Let us investigate the group structure on C geometrically. If P and Q
are two points on C (not necessarily distinct), we denote by @(P,Q) the third point of
intersection of the line PQ with C, i. e. the unique point of C such that P+ Q + @(P, Q) is
linearly equivalent to the divisor of a linear function. We will denote the group structure
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on C by @, to distinguish it from the addition of points in DivC or PicC. Consequently,
we write ©P for the inverse of P, and n ® P for P® - -- ® P (n times).

Of course, the zero element of the group structure on C is just Py.

By construction, P& Q is the unique point of C such that (P —Py)+(Q —Py) = (P&
Q) —Pyin PicC, i.e. P+ Q = (P® Q)+ Py. Now let R=@(P,Q). Then P+ Q+R =
(P®Q)+Py+R € PicC, so

PEO=9(R,Py)=9(9(P,Q),F).
In other words, to construct the point P& Q we draw a line through P and Q. Then we
draw another line through the third intersection point R of this line with C and the point Py.
The third intersection point of this second line with C is P &® Q (see the picture below on
the left).
Similarly, to construct ©P we are looking for a point such that (P —Py) + ((6&P) — Py) =
0, so P+ (©&P) = 2P,. In the same way as above we conclude

SP = ¢(¢(Po, R),P).

In other words, to construct the inverse ©P we draw the tangent to C through Py. Then we
draw another line through the (scheme-theoretic) third intersection point R of this tangent
with C and the point P. The third intersection point of this second line with C is ©FP:

Of special geometric importance are the (tangent) lines that meet C in a point with
multiplicity (at least) 3. In analogy with the real analysis case such points will be called
inflection points:

Definition 6.4.2. Let C C P? be a smooth curve. A point P € C is called an inflection
point of C if the tangent line to C at P intersects C in P with multiplicity at least 3. Such a
tangent line is then called a flex.

» flex
7

z C

inflection point

For cubic curves C, any line intersects C in three points, so P € C is a flex if and only if
3P is the divisor of a linear function. Let us first prove that there are some inflection points
on every smooth cubic curve.

Lemma 6.4.3. Let C = Z(f) C P? be a smooth curve of degree d. Then

2
h-det(af)
Bx,-axj 0<i,j<2

is a homogeneous polynomial of degree 3(d —2). (It is called the Hessian polynomial of
C. The corresponding curve H = Z(h) C P? is called the Hessian curve of C.)

Then P € C is an inflection point of C if and only if P € H.
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Proof. By a linear change of coordinates we can assume that P = (1:0: 0) and that the

tangent line to C at Pis L= {x; = 0}. Let f =Y\ j14—q a;, j,kxé)x{xé. In inhomogeneous
coordinates (xo = 1) the restriction of f to L is

1)C1 0 Zad ,,Oxl

As f passes through P and is tangent to L there, f|1(x;) must have a zero of order at least
2 atP,s0aq0,0 = aq—1,1,0 = 0. Now note that

2 2
ng(P):d(d_l)ad.O,Oa az]g; ( ) ( —l)ad_lﬁl_o,
0% 2

Fegs (P) = (d—1aa-101, S (P)=2a4-220.

So the Hessian polynomial at P has the form

0 0 (d—1)ag-10,
h(P) = det 0 Zad_21270 *
(d* l)ad,170,1 * *
In the same way, note that
df Jdf 0
(aT{O, %7 87)2)(1)) = (daq0,0,ad-1,1,0:ad-1,0,1) = (0,0,a4-10.1),

which must be a non-zero vector by the Jacobian criterion of proposition 4.4.8 (ii) as C is
smooth at P. So az_10,1 # 0, and therefore h(P) = 0 if and only if az_50 = 0. This is
the case if and only if f|.(x;) vanishes to order at least 3 at P, i.e. if and only if P is an
inflection point. t

Corollary 6.4.4. Every smooth cubic curve in P* has exactly 9 inflection points.

Proof. By lemma 6.4.3 the inflection points of C are precisely the points of CNH C P?,
where H is the Hessian curve of C. But by Bézout’s theorem, deg(CNH) =d-3(d—2) =9
for d = 3. So we only have to check that every point in C N H occurs with intersection
multiplicity 1.

Let us continue with the notation of the proof of lemma 6.4.3, and assume that P is an
inflection point, so that a3 9o = a2,10 = a12,0 = 0. We will show that the Hessian curve
H is smooth at P and has a tangent line different from that of C (i.e. its tangent line is
not L = {x, = 0}. Both statements follow if we can prove that 4(1,x;,x;) contains the
monomial x; with a non-zero coefficient, i.e. that 4 contains the monomial x(z)xl with a
non-zero coefficient. But note that

0 0 2a30,1x0 +ay 1,1x1
h(x; =0) = det 0 6a93,0X1 * ,
2a270,1x0+a171,1x1 * *

so the x%xl -coefficient of /1 is 724a%‘0 140,3,0- The corollary now follows from the following
two observations:

(i) the Jacobian matrix of f at P is (3a30,0,d2,1,0,a2,0,1)- As C is smooth this matrix
must have rank 1 by proposition 4.4.8 (ii). But a3 and as ;o are zero already,
soarp1 # 0.

(ii) We know already that f|, = ao,’g,ox?. As L cannot be a component of C, it follows
that ao 3,0 75 0.

O
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Remark 6.4.5. 1f C is a smooth curve of degree d in P2, we would still expect from Bézout’s
theorem that C has 3d(d —2) inflection points. This is indeed the “general” number, but for
d > 3 it may occur that C and its Hessian H do not intersect at all points with multiplicity
1, so that there are fewer than 3d(d — 2) inflection points.

Lemma 6.4.6. Let C C P? be a smooth cubic curve, and choose an inflection point Py as
the zero element of the group structure on C. Then a point P € C is an inflection point if
and only if 3 P = Py. In particular, there are exactly 9 3-torsion points in PicC, i.e. 9
points P € C such that 3 P = P.

Proof. Assume that Py is an inflection point, i.e. 3P is the divisor of a linear function on
C. Then P is an inflection point if and only if 3P is the divisor of a linear function too,
which is the case if and only if 3P — 3Py = 3(P — Py) is the divisor of a rational function
(a quotient of two linear functions). This in turn is by definition the case if and only if
3®P = Py. It then follows by corollary 6.4.4 that there are exactly 9 3-torsion points in
PicC. (]

Corollary 6.4.7. Let C C P? be a smooth cubic curve. Then any line through two inflection
points of C passes through a third inflection point of C.

Proof. Choose an inflection point Py € C as the zero element for the group structure on
C. Now let P and Q be two inflection points, and let R = @(P, Q) be the third intersection
point of PQ with C. Then P+ Q + R is the divisor of a linear function and hence equal to
3Py in PicC. It follows that

3(R—P)=302Py—P—Q)=3(Py—P)+3(Ph— Q) =0 € PicC.
So3®R = Py, i.e. R is an inflection point by lemma 6.4.6. (]

Example 6.4.8. There is an interesting application of the group structure on a cubic curve
to cryptography. The key observation is that “multiplication is easy, but division is hard”.
More precisely, assume that we are given a specific cubic curve C and a zero point Py € C
for the group structure. (For practical computations one will usually do this over a finite
field to avoid rounding errors. The group structure exists in these cases too by exercise
6.7.10.) Then:

(i) Given any point P and a positive integer n, the point n ® P can be computed

quickly, even for very large n (think of numbers with hundreds of digits):
(a) By repeatedly applying the operation P — P & P, we can compute all points
2%® P for all k such that 2% < n.
(b) Now we just have to add these points 2X @ P for all k such that the k-th digit
in the binary representation of n is 1.
This computes the point n ® P in a time proportional to logn (i.e. in a very short
time).

(i) On the other hand, given a point P and a positive integer n, it is essentially im-
possible to compute a point Q such that n ® Q = P (assuming that such a point
exists). This is not a mathematically precise statement; there is just no algorithm
known to exist that can perform the “inverse” of the multiplication P — n® P
in shorter time than a simple trial-and-error approach. Of course, if the ground
field is large and C contains enough points, this is practically impossible. In the
same way, given two points P and Q on C, there is no way to find the (smallest)
number n such that n © Q = P except trying out all integers in turn. Again, if n
has hundreds of digits this is of course practically impossible.

Using this idea, assume that Alice wants to send a secret message to Bob. We can think
of this message as just a number N (every message can be converted into a sequence of
numbers, of course). There is an easy way to achieve this if they both know a secret
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key number Np: Alice just sends Bob the number N + Ny in public, and then Bob can
reconstruct the secret N by subtracting the key Ny from the transmitted number N + Np.
Any person who observed the number N + N in transit but does not know the secret key
Ny is not able to reconstruct the message N.

The problem is of course that Alice and Bob must first have agreed on a secret key Ny,
which seems impossible as they do not have a method for secure communication yet.

This is where our cubic curve can help. Let us describe a (simplified) version of what
they might do. Alice and Bob first (publicly) agree on a ground field, a specific cubic
curve C, a zero point Py € C, and another point P € C. Now Alice picks a secret (very
large) integer a, and Bob picks a secret integer b. They are not telling each other what their
secret numbers are. Instead, Alice computes a ® P and sends (the coordinates of) this point
to Bob. In the same way, Bob computes b ® P and sends this point to Alice. Now the point
ab ® P can be used as a secret key number Ny:

(1) Alice got the information about b ® P from Bob and knows her own secret number
a, so she can compute ab©P =a® (b© P).
(ii) In the same way, Bob knows abOP =b® (a® P).

(iii)) The only information that Alice and Bob exchanged was the data of the cubic
curve chosen, P, a® P, and b® P. But we have just noted that there is no practical
way to reconstruct @ and b from this information, so anybody else will not be able
to determine the secret key ab ® P from this data.

6.5. Plane cubic curves as complex tori. We will now restrict our attention to the ground
field k = C and see how smooth plane cubic curves arise in complex analysis in a totally
different way. We will only sketch most arguments; more details can be found e. g. in [K]
section 5.1 (and many other books on complex analysis).

Let U C C be an open set in the classical topology. Recall that a (set-theoretic) function
f U — Cis called holomorphic at zg € U if it is complex differentiable at zp, i. e. if the

limit
. z)— f(z
f/(ZO) - hm f( ) f( 0)
220 Z—20
exists. A function f: U\{zo} — C is called meromorphic if there is a number n € Z and
a holomorphic function f : V — C in a neighborhood V of zp in U such that

f(2)=(z=20)"f(z) and f(z0)#0
on V. Note that the number 7 is then uniquely determined; it is called the order of f at zg
and denoted ord,, f. If n > 0 we say that f(z) has a zero of order n at zg. If n < 0 we say
that f(z) has a pole of order —n at zg. A function that is meromorphic at zy is holomorphic
at zg if and only if its order is non-negative.

Example 6.5.1. Any regular function on Aé: (i. e. any polynomial in z) is a holomorphic
function on C. Similarly, any rational function ¢ on Aé: is a meromorphic function on C.
The notion of zeros and poles of ¢ as a meromorphic function agrees with our old one of
definition 6.3.4, so the multiplicity of a point z € C in the divisor of ¢ is precisely the order
of g at z.

Conversely, there are holomorphic (resp. meromorphic) functions on C that are not
regular (resp. rational), e. g. f(z) = €°.

Remark 6.5.2. Although the definition of holomorphic, i.e. complex differentiable func-
tions is formally exactly the same as that of real differentiable functions, the behavior of
the complex and real cases is totally different. The most notable differences that we will
need are:

(1) Every holomorphic function is automatically infinitely differentiable: all higher
derivatives f*) exist for k > 0 and are again holomorphic functions.
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(i) Every holomorphic function f is analytic, i. e. it can be represented locally around
every point zg by its Taylor series. The radius of convergence is “as large as
it can be”, i.e. if f is holomorphic in an open ball B around zg, then the Tay-
lor series of f at zp converges and represents f at least on B. Consequently, a
meromorphic function f of order n at zg can be expanded in a Laurent series as
f(2) = Yener(z— 20)¥. The coefficient c_; of this series is called the residue of
f at zo and denoted res, f.

(iii) (Liouville’s theorem) Every function f that is holomorphic and bounded on the
whole complex plane C is constant.

(iv) (Identity theorem) Let f and g be holomorphic functions on a connected open
subset U C C. If f and g agree on any open subset V C U then they agree on U.
By (ii) this is e. g. the case if their Taylor series agree at some point in U. One
should compare this to the algebro-geometric version of remark 2.1.9.

(v) (Residue theorem) If 7y is a closed (positively oriented) contour in C and f is a
meromorphic function in a neighborhood of y and its interior that has no poles on
v itself, then

/f(z) dz=2mi Y res;, f(2),

’Y 20

with the sum taken over all zg in the interior of Yy (at which f has poles). In
particular, if f is holomorphic then this integral vanishes.

In this section we will study a particular meromorphic function on C associated to
a lattice. Let us describe the construction. Fix once and for all two complex numbers
o1, € C that are linearly independent over R, i. e. that do not lie on the same real line in
C through the origin. Then the subset

A=7Z0|+Zwo, = {m())1+l’l(l)2 ) m,nEZ} cC

is called a lattice in C. Obviously, the same lattice in C can be obtained by different
choices of ®; and m,. The constructions that we will make in this section will only depend
on the lattice A and not on the particular choice of basis ®;,®;.

Jm z
[ ] | [ ] [ ]
|
I
[ ] |0(D2 [ )
I
|
__._____‘_____.__BCZ
| u)l
I
|
[ ] .I [ ]

Proposition and Definition 6.5.3. Let A = Z®; + Zw, be a lattice in C. There is a
meromorphic function §(z) on C defined by

1 1 1
po=at X (o o)

It is called the Weierstrafy go-function. It has poles of order 2 exactly at the lattice points.

Proof. Tt is a standard fact that an (infinite) sum of holomorphic functions is holomorphic
at zo provided that the sum converges uniformly in a neighborhood of zg. We will only
sketch the proof of this convergence: let zg € C\A be a fixed point that is not in the lattice.
Then every summand is a holomorphic function in a neighborhood of zg. The expansions
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of these summands for large o are

1 1 1 1 Z
m "R ((1_2(90)2 — 1) = (0703 +terms of order at least é
so the summands grow like @>. Let us add up these values according to the absolute
value of ®. As the number of lattice points with a given absolute value (approximately)
equal to N grows linearly with N, the final sum behaves like } NV - % =Yy #, which is
convergent.

Note that the sum would not have been convergent without subtraction of the constant

L in each summand, as then the individual terms would grow like é and therefore the

?
final sum would be of the type } %, which is divergent. (]
Remark 6.5.4. 1t is a standard fact that in an absolutely convergent series as above all
manipulations (reordering of the summands, term-wise differentiation) can be performed
as expected. In particular, the following properties of the g-function are obvious:

(i) The g-function is an even function, i.e. g(z) = g(—z) for all z € C. In particular,
its Laurent series at 0 contains only even exponents.

(i) Its derivative is §/(z) = Ypen ﬁ Itis an odd function, i.e. ¢/ (z) = — ¢/ (—z).
In particular, its Laurent series at 0 contains only odd exponents. It has poles of
order 3 exactly at the lattice points.

(iii) The go-function is doubly periodic with respect to A, i. e. §(z9) = §(z0 + ®) for all
z0 € C and ® € A. To show this note first that it is obvious from (ii) that ¢/ (zg) =
¢ (z0 + ®). Now integrate ¢/ (z) along the closed contour Y=y, +Y> + Y3 + Y4
shown in this picture:

° ° °
9
I+ O
° °
° 0 °
-0 _o 0 (0] ®
2 2
[ ) [ ] [ ]

Of course, the result is 0, since g is an integral of /. But also the integral along
Y» cancels the integral along Yy as ¢/ (z) is periodic. The integral along 3 is equal
to g(—%) — (%) and hence vanishes too as (z) is an even function. So we
conclude that
0= | @(z)dz= p(z0+0) - P(z0),
M
i.e. $(z) is periodic with respect to A too.

Lemma 6.5.5. The g-function associated to a lattice A satisfies a differential equation

@ (2)? = c30(2)> + c20(2)* + c19(2) + co

for some constants c¢; € C that depend on A.

Proof. By remark 6.5.4 (ii) ¢/(z)? is an even function with a pole of order 6 at 0. Hence
its Laurent series around O is

a_¢ a-

80/(2)2 = 766 + —

a_s
+— + — +ao + terms of order 20
z

Z

for some constants a_g,a_4,a_» € C. The functions (z)*, @(z)?, @(z), and 1 are also
even, and they have poles of order 6,4,2, and 0, respectively. Hence there are constants
c_¢,C_4,c_2,co € C such that the series of the linear combination

f(2) =@ 2)? - c30() —c2(z)* — c19(z) — o
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has only positive powers of z. We conclude that f(z) is holomorphic around 0 and vanishes
at 0. By the identity theorem of remark 6.5.2 (iv) it then follows that f = 0 everywhere. [J

Remark 6.5.6. An explicit computation shows that the coefficients ¢; in lemma 6.5.5 are
given by

c3=4, =0, c;=—60 Y —, co=-140 ) —
weA\{O} meA\{O}

Proposition 6.5.7. Let A C C be a given lattice, and let C C IP% be the cubic curve
C = {(x0:x1:x2) 5 X3%0 = €35 + Caxixg + 1153 + coxp }
for the constants c; € C of lemma 6.5.5. Then there is a bijection

D:C/A—C, zm (1:9(): ¢ (2)).

Proof. As (z) and §/(z) are periodic with respect to A and satisfy the differential equation
of lemma 6.5.5, it is clear that ® is well-defined. (Strictly speaking, for z = 0 we have to

note that (z) has a pole of order 2 and /(z) has a pole of order 3, so §(z) = ( £@ and

#(z) = ( ) 1o ocally around O for some holomorphic functions f,g around O that do not
vanish at 0 Then

(1:9(0): £(0)) = (2 : 2/(2) : g(2))|:=0 = (0: 0: 1),
so & is well-defined at 0 too.)

Now let (xp : x1 : x2) € C be a given point; we will show that it has exactly one inverse
image point under ®. By what we have just said this is obvious for the “point at infinity”
(0:0:1), so let us assume that we are not at this point and hence pass to inhomogeneous
coordinates where xg = 1.

We will first look for a number z € C such that $(z) = x;. To do so, consider the integral

#(2)
/Y $(z) —x1 dz

over the boundary of any “parallelogram of periodicity” as in the following picture:

Jm z
° .. °
|
—— - ——— - —— - - —»

| Re z

The integrals along opposite sides of the parallelogram vanish because of the periodicity
of g and ¢/, so the integral must be 0. So by the residue theorem of remark 6.5.2 (v) we
get

Z resy;y ——~——— #(2) (%)
Z()E(C/A ( xl
Now note that if F(z) is any meromorphic function of order n around 0 then
F/(Z) nanznil +
res =res =n,
F(2) "+ -

so we conclude from (*) that ¥, cc/a 0rdg(§$(z) — x1) = 0: the function @(z) —x; has
as many zeros as it has poles in C/A, counted with multiplicities. (This is a statement
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in complex analysis corresponding to remark 6.3.5.) As g)(z) has a pole of order 2 in the
lattice points, it thus follows that there are exactly two points z;,z, € C/A such that g(z) =
x1. Since the go-function is an even function, these two points are obviously negatives of
each other. Now as ¢/ is an odd function, it follows that ¢/(z1) = —/(z2). So if we
specify ¢(z) and ¢/ (z) there is exactly one point z € C/A leading to the given image point
inC. ]

Remark 6.5.8. We are again in a similar situation as in corollary 6.3.15: we have a bijection
between a group C/A and a variety C. In fact, one can show that the group structure of
C/A is precisely the same as that of Pic’C, so we have just rediscovered our old group
structure on a plane cubic curve. But the group structure is a lot more obvious in this new
picture: e. g. the n-torsion points of C are easily read off to be

1
{n(i0)1+jw2);0§i,j<n}.

In particular, there are exactly n®> points P € C such that n® P = 0, in accordance with
exercise 6.7.11 and lemma 6.4.6.

It should be said however that the bijection of proposition 6.5.7 differs from that of
corollary 6.3.15 in that both C/A and C can independently be made into a complex man-
ifold (which you should roughly think of as a variety whose structure sheaf consists of
holomorphic functions instead of just polynomial functions). The map & of the above
proposition is then an isomorphism between these two complex manifolds.

Remark 6.5.9. The topology of a plane cubic curve becomes very clear from proposition
6.5.7: it is just a parallelogram with opposite sides identified, i.e. a torus. This agrees
with our earlier statements that a smooth plane cubic curve has genus 1, and that the genus
should be thought of as the number of “holes” in the (real) surface.

6.6. Where to go from here. After having discussed some basic algebraic geometry we
now want to sketch which important parts of the general theory are still missing in our
framework.

Example 6.6.1. Intersection theory. Let X C IP" be a projective variety of dimension r,
and let Xi,...,X, C P" be r hypersurfaces. If the hypersurfaces are in sufficiently general
position, the intersection X N---NX,.NX will be zero-dimensional. Bézout’s theorem then
tells us that the intersection consists of exactly degX; - --- -degX, - degX points, counted
with multiplicities.

There is obvious room for generalizations here. Assume that we do not have r hyper-
surfaces X1,...,X,, but rather closed subvarieties X1, ..., X, of X whose codimensions in X
add up to r. If these subvarieties are in sufficiently general position then we still expect the
intersection X; N---NX;NX to be zero-dimensional. So we can still ask for the number of
points in the intersection and expect a finite answer.

If X =P" is projective space itself, then the answer is still just degX; - --- -degX,: in P”
the degree is multiplicative when taking intersections. For general X the situation is a lot
more subtle though — there is no single number that can be associated to any subvariety
of X and that is just multiplicative with respect to intersections. This is easy to see: if e. g.
X =P! x P! and we consider the three 1-dimensional subvarieties of X

X =P x {0}, X =P!'x {1}, X;3={0}xP!

then X; N X, is empty, so if there were numbers associated to X; and X, whose product
gives the number of intersection points (namely zero), then one of these two numbers (say
for X) must obviously itself be zero. But then the product of the numbers for X; and X3
would also be zero, although X; and X3 intersect in precisely one point.
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It turns out however that there is a finite collection of numbers that can be associated to
any subvariety of X such that the number of points in X; N---NX; is given by an explicit
multilinear form in these collections of numbers. For example, in the P! x P! case above,
curves (like X1, X5, X3 given above) are characterized by their bidegree (i. e. the bidegree of
the defining equation). In our example, the bidegrees of X;, X», and X3 are (1,0), (1,0), and
(0, 1), respectively. Two curves of bidegrees (d;,e1) and (da,e2) then intersect in exactly
dier 4 dreq points.

Setting up a corresponding theory for any variety X is the object of intersection theory.
It is essentially a well-established theory that can be set up both in algebraic geometry and
(for the ground field C) topology. In the latter case it is a part of algebraic topology. In
both cases the theory allows you to answer most questions concerning numbers of inter-
section points quite effectively (and without the need for computer algebra techniques).
Intersection theory is used in one form or the other in virtually every geometric field of
mathematics.

Example 6.6.2. Sheaves and vector bundles. Let us illustrate the idea behind vector bun-
dles by an example. In section 4.5 we have shown that every smooth cubic surface in P3
has exactly 27 lines on it. We did this by first proving that the number of lines does not
depend on the particular cubic chosen, and then calculating the number for a specific cubic
for which the answer happened to be directly computable.

Now let us consider a slightly more difficult setting. Let X C P* be a (3-dimensional)
smooth hypersurface of degree 5. We will see momentarily that we again expect there to
be a finite number of lines in X. So again we ask for the number of such lines. Compared
to the cubic surface case it is still true that the answer does not depend on the particular
quintic hypersurface chosen. There is no specific quintic any more however for which we
can read off the answer by simply writing down all the lines explicitly. So we need to apply
a different technique to obtain the answer.

As before, we first consider again the Grassmannian variety G(1,4) of lines in P* (see
exercise 3.5.4). The dimension of G(1,4) is 6. Now define the set

E:={(L,f); L€ G(1,4), fis ahomogeneous polynomial of degree 5 on L = P'},

so elements of E are pairs of a line in P* and a quintic equation on this line. There is an
obvious projection map « : E — G(1,4) given by forgetting f.

We claim that E is a variety in a natural way. In fact, as in exercise 3.5.4 consider the
open subset U C G(1,4) isomorphic to A® (with coordinates ay, b2, a3, b3, aq, bs) where the
line L € U can be represented by the matrix

(IOaz as a4) )
0 1 by b3 by )°

For every such line we can obviously take xy and x; as homogeneous coordinates on L =2
P!, so every quintic equation on L is of the form ¥; c,-xf)x?*i for some cy,...,c5. Then
7~ (U) can obviously be thought of as a 12-dimensional affine space with coordinates
az,as,as,br,bz,ba,co,...,c5. As E can be covered by these spaces, it is a 12-dimensional
variety.

Note that the fibers ! (L) for L € G(1,4) are all 6-dimensional vector spaces, namely
the spaces of degree-5 homogeneous polynomials on L. They are not just 6-dimensional
affine spaces but rather linear affine spaces in the sense that it is meaningful to add two
polynomials on L, and to multiply them with a scalar. So two points in E that map to the
same base point in G(1,4) can be “added”, just by summing up their coordinates ¢;. In

contrast, it does not make much sense to add the coefficients a; and b; in two matrices as
in (1), as the resulting line is not related to the two original lines in any obvious way. So
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although the coordinates ay,as3,as,b2,b3,b4 in U live in an affine space AS, it does not
make sense to think of this A° as a vector space.

Note also that E is not just the direct product of G(1,4) with a constant 6-dimensional
vector space k[xo,x;]), as the coordinates that we can use on the line L vary with the line.

Only the fibers of T are all 6-dimensional vector spaces. We say that E is a vector bundle
of rank 6 on G(1,4).

Now let us return to our original question: to count the lines on X. Let f € k[xo, ... ,x4] (3)
be the polynomial whose zero locus is X. There is an obvious morphism
GG(134)_>E7 L'_>(va|L) (2)

such that ToG =idg(1 4). Such a morphism is called a section of E it assigns to every point
L in the base G(1,4) an element in the vector space =~ ! (L) “sitting over” L. Note that this
can indeed be thought of as a section in the sheaf-theoretic sense: suppose that we have an
open cover {U;} of G(1,4) and morphisms o, : U; — 1t~ (U;) such that To6; =idy, (i.e. on
every U; we associate to any point L € U; an element in the vector space n~!(L)). If 6; =& j
on U;NU; for all i, j, then there is obviously a global section ¢ : U — E that restricts to the
6; on the U;. In other words, we can think of the vector bundle E as a sheaf, with E(U) (in
the sense of definition 2.2.1) being the space of all morphisms 6 : U — ©~!(U) such that
Too = ldU

Finally, return to our specific section G in (2). As the fibers of 7 are vector spaces, there
is also a well-defined zero section

c0:G(1,4) - E, L~ (L,0).

Obviously, a line L lies in the quintic hypersurface X if and only if f|; = 0, i.e. if and
only if 6(L) = 6p(L). So the number of lines we are looking for is simply the number
of intersection points of 6(G(1,4)) and 6¢(G(1,4)). As these are both 6-dimensional
varieties in the 12-dimensional variety E, we expect a finite number of such intersection
points, showing that we expect a finite number of lines in X. Their number is now given by
intersection theory methods as explained in example 6.6.1. It can be computed explicitly
and the result turns out to be 2875. (To mention the corresponding keywords: we need
the 6th Chern class of the vector bundle E on G(1,4), and the result can be obtained using
Schubert calculus, i. e. the intersection theory on the Grassmannian G(1,4).)

Another example of a vector bundle on a smooth r-dimensional variety X is the tangent
bundle: it is just the rank-r vector bundle whose fiber over a point P € X is the tangent
space Tx p. The dual vector bundle (i. e. the rank-r bundle whose fiber over a point P € X
is the dual vector space to Tx p) is called the cotangent bundle and denoted Qx p. It can be
thought of as the vector bundle of differential forms on X .

Any operations that can be done with vector spaces can be done with vector bundles as
well, just by performing the corresponding operation in every fiber. So there are e. g. direct
sums of vector bundles, tensor products, symmetric products, exterior products, and so on.

If X is a smooth r-dimensional variety, the r-th exterior power A"Qy of the cotangent
bundle is called the canonical bundle and denoted Kx. Obviously it is a vector bundle of
rank 1: such bundles are called line bundles. Its importance (and name) stems from the
fact that it is canonically given for any smooth variety X.

Vector bundles (and corresponding sheaves) occur in almost any branch of algebraic
geometry, as well as in topology and differential geometry.

Example 6.6.3. Sheaf cohomology. Let X be a variety, and let E be a vector bundle on
X. By the remark above, (global) sections 6 : X — E can be added and multiplied with a
scalar, so the space of global sections is in fact a vector space over the ground field k. It is
denoted H(X ,E).
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As an example, let X C P? be a curve, and let n be an integer. For an open subset U C X
define

E(U)= {ch’ f,g € S(X) homogeneous with deg f —degg =n, g(P) #0 forall P € U}.

These data form a sheaf E that can be thought of as the sheaf of regular “functions”
@(x0,x1,x2) on X that satisfy @(Axo, Axi,Axz) = A'@(xp,x1,x2) under rescaling of the ho-
mogeneous coordinates. An element in the fiber of £ over a point P is then just given by a
number in & that rescales with A”. So E is a line bundle. We will usually denote it by O(n).
For n = 0 we obviously just get the ordinary structure sheaf O.

The spaces H’(X, O(n)) of sections are easily written down:

S(X)™  forn>0,
0 forn < 0.

H°(X,0(n)) {

In particular, their dimensions (usually denoted 4°(X, O(n))) are just the values Ay (n) of
the Hilbert function. So the Hilbert function can be thought of as the dimension of the
space of global sections of a line bundle O(n).

In our study of Hilbert polynomials we have seen that Hilbert functions and polynomials
are usually computed using exact sequences (of graded vector spaces). In the same way,
the spaces of sections H’(X,E) are usually computed using exact sequences of vector
bundles. For example, if Y is a smooth subvariety of a smooth variety X, then there is an
exact sequence of vector bundles on X

0— Ty — Txly = Ny;x =0,

where Ny /x is the normal bundle of Y in X — it is by definition simply the vector bundle
whose fibers are the normal spaces Tx p/ Ty.p. The sequence is then exact by definition
(i.e. it is exact locally at every fiber). This does not mean however that the spaces of
global sections necessarily form an exact sequence

0— HO(Y,Ty) — H(Y, Tx|y) = H°(Y, Ny x) — 0.
In fact one can show that one always gets an exact sequence
0— HO(Y,Ty) — HO(Y, Tx|y) — H°(Y, Ny )x),

but exactness need not be preserved in the last term: a surjective map E — F of vector
bundles need not give rise to a surjective map H%(X,E) — H°(X,F) of global sections.
An example is easily found: consider the morphism of vector bundles

0B0— 0(2)7 ((PI;(P2) »—>x(2)(p1 +x%(P2

on P!, This is obviously surjective in every fiber — for every point P = (xo : x;) € P! at
least one of the coordinates is non-zero, so by picking suitable ¢; (P) and @, (P) we can get
any number for x3¢; (P) +x3¢>(P). But the corresponding morphism of global sections

H(P', 09 0) — H'(P',0(2))
cannot be surjective simply for dimensional reasons, as the dimensions of these vector

spaces are 2 and 3, respectively.

It turns out however that there are canonically defined cohomology groups H' (X, E) for
i > 0 and every vector bundle E (in fact even for more general sheaves) such that every
exact sequence

O0—E —E—E—0
of the bundles gives rise to an exact sequence of cohomology groups

0— H(X,E|) = H'(X,Ey) — H*(X,E3) = H'(X,E|) = H' (X,E2) = H' (X,E3) = H*(X,E}) = --- .
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So every such sequence of vector bundles gives rise to a relation between the (dimensions
of the) cohomology groups: if we set

W(X,E)=dimH (X,E) and %(X,E)= Z(—l)"h"(x,E)

then
XX, Ex) =% (X,E1)+x(X,E3).

It can be shown that the sums in the definition of %(X,E) are always finite. In fact, the
higher cohomology groups vanish in many cases anyway (there are a lot of so-called “van-
ishing theorems™), so that the above long sequence between the cohomology groups is
usually by far not as complicated as it seems to be here.

The problem of computing these numbers /(X ,E) (or rather x(X,E)) is solved by the
Riemann-Roch theorem: expressed in simple terms this theorem states that x(X,E) can
always be computed using the intersection-theoretic data of the vector bundle (namely the
Chern classes mentioned above in example 6.6.2). It is an explicit multilinear function in
these Chern classes that is usually easily computable. In particular, (X, O(n)) turns out to
be a polynomial in n — it is just the Hilbert polynomial of X. There is a vanishing theorem
that implies 4'(X, O(n)) = 0 for i > 0 and n >> 0, so we arrive at our old characterization
of the Hilbert polynomial as the polynomial that agrees with the Hilbert function for large
n.

In particular, we see that the arithmetic genus of a variety (see example 6.1.10) is just
(—1)4mX(y (X, 0) — 1), which obviously does not depend on the embedding of X in pro-
jective space.

The easiest case of the Riemann-Roch theorem is that of line bundles on smooth curves.
If E is a line bundle on a curve X (e.g. a bundle of the form O(n) if X is projective), we
can associate to it:

(i) intersection-theoretic data: given a (rational) section of E, how many zeros and
poles does this section have? This number is called the degree of E. For example,
the degree of O(n) on a plane curve of degree d is d - n, as every global section
of O(n) (i.e. a polynomial of degree n) vanishes on X at d - n points by Bézout’s
theorem.

(ii) cohomological data: how many sections of E are there? Ideally we would like
to know h°(X,E), but the Riemann-Roch theorem will only give us x(X,E) =
W (X,E)—h'(X,E).

The Riemann-Roch theorem then states that
X(XvE) = degE+ 1 - &

where g is the genus of the curve X. For example, for X = P! we get (X, O(n)) =n+1-0,
which is indeed the Hilbert polynomial of P'.

Example 6.6.4. Moduli spaces. We have now met several instances already where it
proved useful to make the ser of all geometric objects of a certain type into a scheme
(or maybe a variety):

(i) The Grassmannian G(1,n) is a variety that can be thought of as the set of all lines
in P
(ii) The affine space AN = k|xo,...,x,]® (with N = ("Zd)) can be thought of as the
set of all degree-d hypersurfaces in P".
(iii) The vector bundle E of example 6.6.2 can be thought of as the set of pairs (L, f),
where L is a line in P* and f is a quintic polynomial on L.
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Schemes whose points describe geometric objects in this sense are called moduli spaces.
So we say e. g. that G(1,n) is the moduli space of lines in P". There are many other moduli
spaces one may want to consider. The most prominent ones are:

(i) moduli spaces of curves (with a fixed given genus),
(i) moduli spaces of projective subschemes of P with a fixed given Hilbert polyno-
mial (the so-called Hilbert schemes),
(iii)) moduli spaces of vector bundles over a given variety,

but you can try to give more or less every set of geometric objects a scheme structure. Such
a scheme structure may or may not exist, and it may or may not behave nicely.

Moduli spaces come into play when you want to consider families of geometric objects,
e.g. families of varieties. For example, a family of lines in P" over a base scheme B
is simply a morphism f : B — G(1,n) to the moduli space of lines. This assigns to every
point of B a line in P” in a continuously varying way (as a morphism is given by continuous
functions). For example, if the ground field is C and you have a sequence of points P, in B
converging to a point P € B, then we get a corresponding sequence of lines f(P;) in P” that
converges to f(P). We can thus talk about convergence, limits, or “small deformations” of
the objects for which we have a moduli space. Deformations are often a powerful tool to
make complicated objects into easier ones. For example, in example 0.1.3 we computed
the genus of a plane curve by deforming it into a union of lines, for which the genus could
be read off easily.

Example 6.6.5. Classification theory. Closely related to the study of moduli spaces is the
desire to “classify all algebraic varieties” (or other objects occurring in algebraic geome-
try). For smooth curves the result is quite easy to state:

(1) Every smooth curve has a genus (see e.g. example 0.1.1 and 6.1.10) that is a
non-negative integer.

(i) The moduli space of all smooth curves of a given genus g is an irreducible pro-
jective variety (with only mild singularities). Its dimension is O for g =0, 1 for
g=1,and3g—3 forg > 1.

So this result says that curves are characterized by one discrete invariant, namely its genus.
Once the genus is fixed, every curve of this genus can be deformed continuously into any
other curve of the same genus. In contrast, curves cannot be deformed into each other if
their genera are different.

For higher-dimensional varieties the situation is a lot more complicated. As above, one
first looks for discrete invariants, i.e. “integers that can be associated to the variety in a
natural way” and that are invariant under deformation. In a second step, one can then ask
for the dimension (and other properties) of the moduli space of varieties with the given
fixed discrete invariants.

Examples of discrete invariants are:
(i) the dimension (of course),

(ii) cohomological or intersection-theoretic properties of the tangent bundle and re-
lated bundles, e. g. (X, Tx ), h'(X,€Qx), the Chern classes of the tangent bundle,

(iii) the genus (—1)4™X (x(X,0)—1),
(iv) various intersection-theoretic data, e. g. the collection of numbers and the multi-
linear functions describing intersection products as in example 6.6.1.

For surfaces, this classification problem is solved, but the result is quite complicated. For
higher-dimensional varieties, the problem is still largely unsolved.

6.7. Exercises.
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Exercise 6.7.1. Let X be a collection of four distinct points in some P*. What are the
possible Hilbert functions Ay ?

Exercise 6.7.2. Compute the Hilbert function and the Hilbert polynomial of the “twisted
cubic curve” C = {(s3 : %t 1 st : 13) 5 (s :1) € P'} C P3.

Exercise 6.7.3. Let X C P" be a projective scheme with Hilbert polynomial . As in
example 6.1.10 define the arithmetic genus of X to be g(X) = (—1)4mX . (x(0) —1).

(i) Show that g(P") =0.
(ii) If X is a hypersurface of degree d in P, show that g(X)
C C P? is a plane curve of degree d, then g(C) = 1(d —
to example 0.1.3).
(iii) Compute the arithmetic genus of the union of the three coordinate axes

= (dzl). In particular, if
1)(d —2) (compare this

Z(X1XQ,X1X3,)C2)C3) C P3.

Exercise 6.7.4. For N = (n+1)(m+1) — 1 let X C PV be the image of the Segre embed-
ding P" x P — PV. Show that the degree of X is ("1"").

Exercise 6.7.5. Let X be an ellipse in the real plane R?, and let P be a given point on X.
Using only a ruler with no markings, construct the tangent line to X at P.

(In other words: start with a piece of paper which has only the ellipse X and the marked
point P € X on it. The only thing you are now allowed to do is to repeatedly draw straight
lines through two points that have already been constructed (the point P, intersection points
of previously drawn curves, or arbitrarily chosen points). No measuring of lengths or
angles is permitted. Give an algorithm that finally allows you to draw the tangent line to X
at P this way.)

Exercise 6.7.6. Let C C IP" be an irreducible curve of degree d. Show that C is contained
in a linear subspace of P"* of dimension d.

Exercise 6.7.7. Let X and Y be subvarieties of P} that lie in disjoint linear subspaces of
IP}. Recall from exercises 3.5.7 and 4.6.1 that the join J(X,Y) C P} of X and Y is defined
to be the union of all lines PO withP € X and Q € Y.

(i) Show that S(J(X,¥)) @ =@, ;_,S(X)D & S(X)\V).
(ii) Show that degJ(X,Y) =degX -deg?.

Exercise 6.7.8. Let C; = {f; = 0} and C; = {f> = 0} be affine curves in A2, and let
P € C;1NC;, be a point. Show that the intersection multiplicity of C; and C; at P (i.e. the
length of the component at P of the intersection scheme C; N (C3) is equal to the dimension
of the vector space Oy2 p/(f1, f2) over k.

Exercise 6.7.9. Let C;,C, C P2 be distinct smooth cubic curves, and assume that C; and
C, intersect in 9 (distinct) points Py, ..., Py. Prove that every cubic curve passing through
Py,..., P also has to pass through Py.

Can you find a stronger version of this statement that applies in the case that the inter-
section multiplicities in C; N C; are not all equal to 1 ?

Exercise 6.7.10. Let C be a smooth cubic curve of the form
C={(x:y:2);yz=2>+axz* + b’} C P}

for some given a,b € k. (It can be shown that every cubic can be brought into this form

by a change of coordinates.) Pick the point Py = (0: 1 : 0) as the zero element for the

group structure on C. For given points P; = (x; : y; : 1) and P, = (x; : y» : 1) compute

explicitly the coordinates of the inverse ©P; and of the sum P; & P>. Conclude that the

group structure on C is well-defined even if & is not necessarily algebraically closed.
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Exercise 6.7.11. Let C C IF% be a smooth cubic curve, and let P € C be an inflection point
of C. Show that there are exactly 4 tangents of C that pass through P. Conclude that there
are exactly 4 divisor classes D in PicC such that 2D = 0.

Exercise 6.7.12. Let C C P? be a smooth cubic curve, and let P, Q € C be two points. Show
that there is an isomorphism f : C — C with f(P) = Q. Is this isomorphism unique?

Exercise 6.7.13. Check that the cubic curve C C ]P’% defined by a lattice A C C as in
proposition 6.5.7 is smooth.

Exercise 6.7.14. Using the complex analysis methods of section 6.5, reprove the statement
of proposition 6.3.13 that there is no rational function ¢ on a smooth plane complex cubic
curve C with divisor (¢) = P — Q if P and Q are two distinct points on C.

Exercise 6.7.15. Let C C IF’?C be a smooth cubic curve arising from a lattice A C C. Show
that the group structure of Picoc is isomorphic to the natural group structure of C/A.

Exercise 6.7.16. Let A C C be a lattice. Given a point z € C/A and any n € Z, it is
obviously very easy to find a point w € C/A such that n-w = z (in the group structure of
C/A). Isn’t this a contradiction to the idea of example 6.4.8?



