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5. SCHEMES

To any commutative ring R with identity we associate a locally ringed space called
SpecR, the spectrum of R. Its underlying set is the set of prime ideals of R, so if
R is the coordinate ring of an affine variety X over an algebraically closed field,
then SpecR as a set is the set of non-empty closed irreducible subvarieties of X .
Moreover, in this case the open subsets of SpecR are in one-to-one correspondence
with the open subsets of X , and the structure sheaves of SpecR and X coincide via
this correspondence.

A morphism of locally ringed spaces is a morphism of ringed spaces that respects
the maximal ideals of the local rings. Locally ringed spaces of the form SpecR are
called affine schemes; locally ringed spaces that are locally of the form SpecR are
called schemes. Schemes are the fundamental objects of study in algebraic geometry.
Prevarieties correspond exactly to those schemes that are reduced, irreducible, and
of finite type over an algebraically closed field.

For any two morphisms of schemes X → S and Y → S there is a fiber product
X×S Y ; this is a scheme such that giving morphisms Z→ X and Z→Y that commute
with the given morphisms to S is “the same” as giving a morphism Z→ X×S Y . If X
and Y are prevarieties over k and we take S = Speck, we get back our old notion of
the product X×Y of prevarieties.

For any graded ring R there is a scheme ProjR whose points are the homoge-
neous prime ideals of R that do not contain the irrelevant ideal. This construction
generalizes our earlier construction of projective varieties; if R is the homogeneous
coordinate ring of a projective variety X over an algebraically closed field then ProjR
“is” just the projective variety X .

5.1. Affine schemes. We now come to the definition of schemes, which are the main
objects of study in algebraic geometry. The notion of schemes extends that of prevarieties
in a number of ways. We have already met several instances where an extension of the
category of prevarieties could be useful:

• We defined a prevariety to be irreducible. Obviously, it makes sense to also con-
sider reducible spaces. In the case of affine and projective varieties we called
them algebraic sets, but we did not give them any further structure or defined reg-
ular functions and morphisms of them. Now we want to make reducible spaces
into full-featured objects of our category.

• At present we have no geometric objects corresponding to non-radical ideals in
k[x1, . . . ,xn], or in other words to coordinate rings with nilpotent elements. These
non-radical ideals pop up naturally however: e. g. we have seen in exercise 1.4.1
that intersections of affine varieties correspond to sums of their ideals, modulo
taking the radical. It would seem more natural to define the intersection X1 ∩X2
of two affine varieties X1,X2 ⊂An to be a geometric object associated to the ideal
I(X1) + I(X2) ⊂ k[x1, . . . ,xn]. This was especially obvious when we discussed
blow-ups: blowing up X1∩X2 in An “separates” X1 and X2 (if none of these two
sets is contained in the other), i. e. their strict transforms X̃1 and X̃2 are disjoint
in Ãn, but this is only true if we blow-up at the ideal I(X1)+ I(X2) and not at its
radical (see exercise 4.6.10).

• Recall that by lemma 2.3.7 and remark 2.3.14 we have a one-to-one correspon-
dence between affine varieties over k and finitely generated k-algebras that are
domains, both modulo isomorphism. We have just seen that we should drop the
condition on the k-algebra to be a domain. We can go even further and also drop
the condition that it is finitely generated — then we would expect to arrive at
“infinite-dimensional” objects. Moreover, it turns out that we do not even need a
k-algebra to do geometry; it is sufficient to start with any commutative ring with
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identity, i. e. we do not have to have a ground field. This can be motivated by
noting that most constructions we made with the coordinate ring of a variety —
defining the structure sheaf, setting up correspondences between points and max-
imal ideals, and so on — actually only used the ring structure of the coordinate
ring, and not the k-algebra structure.

All these generalizations are included in the definition of a scheme. Note that they apply
already to affine varieties; so we will start by defining an affine scheme to be “an affine
variety generalized as above”. Later we will then say that a scheme is an object that looks
locally like an affine scheme, just as we did it in the case of prevarieties.

We are now ready to construct from any ring R (which will always mean a commutative
ring with identity) an affine scheme, which will be a ringed space and which will be denoted
SpecR, the spectrum of R.

Definition 5.1.1. Let R be a ring (commutative with identity, as always). We define SpecR
to be the set of all prime ideals of R. (As usual, R itself does not count as a prime ideal,
but (0) does if R is a domain.) We call SpecR the spectrum of R, or the affine scheme
associated to R. For every p∈ SpecR, i. e. p⊂ R a prime ideal, let k(p) be the quotient field
of the domain R/p.

Remark 5.1.2. Let X = SpecR be an affine scheme. We should think of X as the analogue
of an affine variety, and of R as the analogue of its coordinate ring.

Remark 5.1.3. Any element f ∈ R can be considered to be a “function” on SpecR in the
following sense: for p ∈ SpecR, denote by f (p) the image of f under the composite map
R→ R/p→ k(p). We call f (p) the value of f at the point p. Note that these values will
in general lie in different fields. If R = k[x1, . . . ,xn]/I(X) is the coordinate ring of an affine
variety X and p is a maximal ideal (i. e. a point in X), then k(p) = k and the value of an
element f ∈ R as defined above is equal to the value of f at the point corresponding to p
in the classical sense. If p⊂ R is not maximal and corresponds to some subvariety Y ⊂ X ,
the value f (p) lies in the function field K(Y ) and can be thought of as the restriction of the
function f to Y .

Example 5.1.4.

(i) If k is a field, then Speck consists of a single point (0).
(ii) The space SpecC[x] (that will correspond to the affine varietyA1 overC) contains

a point (x− a) for every a ∈ A1, together with a point (0) corresponding to the
subvariety A1.

(iii) More generally, if R = A(X) is the coordinate ring of an affine variety X over an
algebraically closed field, then the set SpecR contains a point for every closed
subvariety of X (as subvarieties correspond exactly to prime ideals). This affine
scheme SpecR will be the analogue of the affine variety X . So an affine scheme
has “more points” than the corresponding affine variety: we have enlarged the
set by throwing in an additional point for every closed subvariety Y of X . This
point is usually called the generic point (or general point) of Y . In other words,
in the scheme corresponding to an affine variety with coordinate ring R we will
have a point for every prime ideal in R, and not just for every maximal ideal.
These additional points are sometimes important, but quite often one can ignore
this fact. Many textbooks will even adopt the convention that a point of a scheme
is always meant to be a point in the old geometric sense (i. e. a maximal ideal).

(iv) In contrast to (ii), the affine scheme SpecR[x] contains points that are not of the
form (x−a) or (0), e. g. (x2 +1) ∈ SpecR[x].

(v) The affine scheme SpecZ contains an element for every prime number, and in
addition the generic point (0).
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So far we have defined SpecR as a set. This is not particularly interesting, so let us
move on and make SpecR into a topological space. This is done in the same way as for
affine varieties.

Definition 5.1.5. Let R be a ring. For every subset S⊂ R, we define the zero locus of S to
be the set

Z(S) := {p ∈ SpecR ; f (p) = 0 for all f ∈ S} ⊂ SpecR,
where f (p) is the value of f at p as in remark 5.1.3. (Obviously, S and (S) define the same
zero locus, so we will usually only consider zero loci of ideals.)

Remark 5.1.6. By the definition of the value of an element f ∈ R at a point p ∈ SpecR, we
can also write the definition of the zero locus as

Z(S) = {p ∈ SpecR ; f ∈ p for all f ∈ S}
= {p ∈ SpecR ; p⊃ S}.

Lemma 5.1.7. Let R be a ring.

(i) If {Ii} is a family of ideals of R then
⋂

i Z(Ii) = Z(∑i Ii)⊂ SpecR.
(ii) If I1, I2 ⊂ R then Z(I1)∪Z(I2) = Z(I1I2)⊂ SpecR.

(iii) If I1, I2 ⊂ R then Z(I1)⊂ Z(I2) if and only if
√

I2 ⊂
√

I1.

Proof. The proof is literally the same as in the case of affine algebraic sets. �

Hence we can define a topology on SpecR by taking the subsets of the form Z(S) as the
closed subsets. In particular, this defines the notions of irreducibility and dimension for
SpecR, as they are purely topological concepts.

Remark 5.1.8. Note that points p in SpecR are not necessarily closed: in fact,

{p}= Z(p) = {q ∈ SpecR ; q⊃ p}.
This is equal to {p} only if p is maximal. Hence the closed points of SpecR correspond to
the points of an affine variety in the classical sense. The other points are just generic points
of irreducible closed subsets of SpecR, as already mentioned in example 5.1.4.

Example 5.1.9. The motivation for the name “generic point” can be seen from the follow-
ing example. Let k be an algebraically closed field, and let R = Speck[x1,x2] be the affine
scheme corresponding to A2. Consider Z(x2) ⊂ SpecR, which “is” just the x1-axis; so its
complement SpecR\Z(x2) should be the set of points that do not lie on the x1-axis. But
note that the element p= (x1) is contained in SpecR\Z(x2), although the zero locus of x1,
namely the x2-axis, does intersect the x1-axis. So the geometric way to express the fact
that (x1) ∈ SpecR\Z(x2) is to say that the generic point of the x2-axis does not lie on the
x1-axis.

Remark 5.1.10. Let R be a ring, let X = SpecR, and let f ∈ R. As in the case of affine
varieties, we call X f := X\Z( f ) the distinguished open subset associated to f . Note that
any open subset of X is a (not necessarily finite) union of distinguished open subsets. This
is often expressed by saying that the distinguished open subsets form a base of the topology
of X .

Now we come to the definition of the structure sheaf of SpecR. Recall that in the case
of an affine variety X , we first defined the local ring OX ,P of the functions regular at a point
P ∈ X to be the localization of A(X) at the maximal ideal corresponding to P, and then
said that an element in OX (U) for an open subset U ⊂ X is a function that is regular at
every point P ∈U . We could accomplish that in the case of varieties just by intersecting
the local rings OX ,P, as they were all contained in the function field K(X). But in the case
of a general affine scheme SpecR the various local rings Rp for p∈ SpecR do not lie inside
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some big space, so we cannot just take their intersection. The way around this problem is
to say that an element in OX (U) (for X = SpecR and U ⊂ X open) is given by a collection
of elements in the various local rings Rp for all p ∈U , and require that these elements can
locally be written as quotients of elements of R (recall that we had a similar condition for
affine varieties in lemma 2.1.8):

Definition 5.1.11. Let R be a ring, and let X = SpecR. For every open subset U ⊂ X we
define OX (U) to be

OX (U) := {ϕ = (ϕp)p∈U with ϕp ∈ Rp for all p ∈U

such that “ϕ is locally of the form f
g for f ,g ∈ R”}

= {ϕ = (ϕp)p∈U with ϕp ∈ Rp for all p ∈U

such that for every p ∈U there is a neighborhood V in U and f ,g ∈ R

with g /∈ q and ϕq =
f
g ∈ Rq for all q ∈V .}

As the conditions imposed on the elements of OX (U) are local, it is easy to verify that
this defines a sheaf OX on X = SpecR. The first thing to do is to check that this sheaf has
the properties that we expect from the case of affine varieties (see definition 2.1.5, remark
2.1.6, and proposition 2.1.10).

Proposition 5.1.12. Let R be a ring and X = SpecR.

(i) For any p ∈ X the stalk OX ,p of the sheaf OX is isomorphic to the local ring Rp.
(ii) For any f ∈ R, the ring OX (X f ) is isomorphic to the localized ring R f . In partic-

ular, OX (X) = R.

Proof. (i): There is a well-defined ring homomorphism

ψ : OX ,p→ Rp, (U,ϕ) 7→ ϕp.

We have to show that ψ is a bijection.
ψ is surjective: Any element of Rp has the form f

g with f ,g ∈ R and g /∈ p. The function
f
g is well-defined on Xg, so (Xg,

f
g ) defines an element in OX ,p that is mapped by ψ to the

given element.
ψ is injective: Let ϕ1,ϕ2 ∈ OX (U) for some neighborhood U of p, and assume that

(ϕ1)p = (ϕ2)p. We have to show that ϕ1 and ϕ2 coincide in a neighborhood of p, so that
they define the same element in OX ,p. By shrinking U if necessary we may assume that
ϕi =

fi
gi

on U for i = 1,2, where fi,gi ∈ R and gi /∈ p. As ϕ1 and ϕ2 have the same image
in Rp, it follows that h( f1g2− f2g1) = 0 in R for some h /∈ p. Therefore we also have
f1
g1

= f2
g2

in every local ring Rq such that g1,g2,h /∈ q. But the set of such q is the open set
Xg1 ∩Xg2 ∩Xh, which contains p. Hence ϕ1 = ϕ2 on some neighborhood of p, as required.

(ii): There is a well-defined ring homomorphism

ψ : R f → OX (X f ),
g
f r 7→

g
f r

(i. e. we map g
f r to the element of OX (X f ) that assigns to any p the image of g

f r in Rp).

ψ is injective: Assume that ψ( g1
f r1 ) = ψ( g2

f r2 ), i. e. for every p ∈ X f there is an element
h /∈ p such that h(g1 f r2−g2 f r1) = 0. Let I ⊂ R be the annihilator of g1 f r2−g2 f r1 , then we
have just shown that I 6⊂ p, as h∈ I but h /∈ p. This holds for every p∈ X f , so Z(I)∩X f = /0,
or in other words Z(I) ⊂ Z( f ). By lemma 5.1.7 (iii) this means that f r ∈ I for some r, so
f r(g1 f r2 −g2 f r1) = 0, hence g1

f r1 = g2
f r2 in R f .

ψ is surjective: Let ϕ ∈ OX (X f ). By definition, we can cover X f by open sets Ui on
which ϕ is represented by a quotient gi

fi
, with fi /∈ p for all p ∈ Ui, i. e. Ui ⊂ X fi . As
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the open subsets of the form Xhi form a base for the topology of X , we may assume that
Ui = Xhi for some hi.

We want to show that we can assume fi = hi. In fact, as Xhi ⊂ X fi , i. e. by taking
complements we get Z( fi) ⊂ Z(hi), and therefore hi ∈

√
fi by lemma 5.1.7 (iii). Hence

hr
i = c fi, so gi

fi
= cgi

hr
i

. Replacing hi by hr
i (as Xhi = Xhr

i
) and gi by cgi we can assume that

X f is covered by open subsets of the form Xhi , and that ϕ is represented by gi
hi

on Xhi .
Next we prove that X f can actually be covered by finitely many such Xhi . Indeed, X f ⊂⋃

i Xhi if and only if Z( f ) ⊃
⋂

i Z(hi) = Z(∑(hi)). By lemma 5.1.7 (iii) this is equivalent
to saying that f r ∈ ∑(hi) for some r. But this means that f r can be written as a finite sum
f r = ∑bihi. Hence we can assume that we have only finitely many hi.

On Xhi∩Xh j =Xhih j , we have two elements gi
hi

and g j
h j

representing ϕ, so by the injectivity

proven above it follows that gi
hi
=

g j
h j

in Rhih j , hence (hih j)
n(gih j− g jhi) = 0 for some n.

As we have only finitely many hi, we may pick one n that works for all i, j. Now replace gi
by gihn

i and hi by hn+1
i for all i, then we still have ϕ represented by gi

hi
on Xhi , and moreover

gih j−g jhi = 0 for all i, j.
Now write f r =∑bihi as above, which is possible since the Xhi cover X f . Let g=∑bigi.

Then for every j we have

gh j = ∑
i

bigih j = ∑
i

bihig j = f rg j,

so f
g =

h j
g j

on Xh j . Hence ϕ is represented on X f by g
f r ∈ R f , i. e. ψ is surjective. �

Remark 5.1.13. Note that a regular function is in general no longer determined by its values
on points. For example, let R = k[x]/(x2) and X = SpecR. Then X has just one point (x).
On this point, the function x ∈ R = OX (X) takes the value 0 = x ∈ (k[x]/(x2))/(x) = k. In
particular, the functions 0 and x have the same values at all points of X , but they are not
the same regular function.

5.2. Morphisms and locally ringed spaces. As in the case of varieties, the next step after
defining regular functions on an affine scheme is to define morphisms between them. Of
course one is tempted to define a morphism f : X → Y between affine schemes to be a
morphism of ringed spaces as in definition 2.3.1, but recall that for this definition to work
we needed a notion of pull-back f ∗ of regular functions. In the case of varieties we got
this by requiring that the structure sheaves be sheaves of k-valued functions, so that a set-
theoretic pull-back exists. But this is not possible for schemes, as we do not have a ground
field, and the values ϕ(p) of a regular function ϕ lie in unrelated rings. Even worse, we
have seen already in example 5.1.13 that a regular function is not determined by its values
on points.

The way out of this dilemma is to make the pull-back maps f ∗ : OY (U)→ OX ( f−1(U))
part of the data required to define a morphism. Hence we say that a morphism f : X → Y
between affine schemes is given by a continuous map f : X → Y between the underlying
topological spaces, together with pull-back maps f ∗ = f ∗U : OY (U)→ OX ( f−1(U)) for
every open subset U ⊂ Y . Of course we need some compatibility conditions among the
f ∗U . The most obvious one is compatibility with the restriction maps, i. e. f ∗V ◦ ρU,V =
ρ f−1(U), f−1(V ) ◦ f ∗U . But we also need some sort of compatibility between the f ∗U and the
continuous map f . To explain this condition, note that the maps f ∗U give rise to a map
between the stalks

f ∗P : OY, f (P)→ OX ,P, (U,ϕ) 7→ ( f−1(U), f ∗ϕ)

for every point P ∈ X (this is easily seen to be well-defined). These stalks are local rings,
call their maximal ideals mY, f (P) and mX ,P, respectively. Now the fact that f maps P
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to f (P) should be reflected on the level of the pull-back maps f ∗ by the condition that
( f ∗P)

−1(mX ,P) =mY, f (P). This leads to the following definition.

Definition 5.2.1. A locally ringed space is a ringed space (X ,OX ) such that at each point
P ∈ X the stalk OX ,P is a local ring. The maximal ideal of OX ,P will be denoted by mX ,P,
and the residue field OX ,P/mX ,P will be denoted k(P).

A morphism of locally ringed spaces from (X ,OX ) to (Y,OY ) is given by the following
data:

• a continuous map f : X → Y ,
• for every open subset U ⊂ Y a ring homomorphism f ∗U : OY (U)→ OX ( f−1(U)),

such that f ∗V ◦ρU,V = ρ f−1(U), f−1(V ) ◦ f ∗U for all V ⊂U ⊂Y (i. e. the f ∗ are compatible with
the restriction maps) and ( f ∗P)

−1(mX ,P) = mY, f (P), where the f ∗P : OY, f (P) → OX ,P are the
maps induced on the stalks, as explained above. We will often omit the index of the various
pull-back maps f ∗ if it is clear from the context on which spaces they act.

A morphism of affine schemes is a morphism as locally ringed spaces.

The following proposition is the analogue of lemma 2.3.7. It shows that definition 5.2.1
was “the correct one”, because it gives us finally what we want.

Proposition 5.2.2. Let R,S be rings, and let X = SpecR and Y = SpecS the corresponding
affine schemes. There is a one-to-one correspondence between morphisms X→Y and ring
homomorphisms S→ R.

Proof. If ψ : S→R is a ring homomorphism, we define a map f : X→Y by f (p)=ψ−1(p).
For every ideal I ⊂ S it follows that f−1(Z(I)) = Z(ψ(I)), so f is continuous. For each p ∈
SpecR, we can localize ψ to get a homomorphism of local rings ψp : OY, f (p) = Sψ−1(p)→
Rp = OX ,p satisfying the condition ψ

−1
p (mX ,p) = mY, f (p). By definition of the structure

sheaf, this gives homomorphisms of rings f ∗ : OY (U)→OX ( f−1(U)), and by construction
f ∗p = ψp, so we get a morphism of locally ringed spaces.

If f : X→Y is a morphism, we get a ring homomorphism f ∗ : S = OY (Y )→OX (X) = R
by proposition 5.1.12 (ii). By the above this again determines a morphism g : X → Y .
We leave it as an exercise to check that the various compatibility conditions imply that
f = g. �

Example 5.2.3. Let X = SpecR be an affine scheme. If I ⊂ R is an ideal, then we can
form the affine scheme Y = Spec(R/I), and the ring homomorphism R→ R/I gives us a
morphism Y → X . Note that the prime ideals of R/I are exactly the ideals p⊂ R with p⊃ I,
so the map Y → X is an inclusion with image Z(I). So we can view Y as an affine “closed
subscheme” of X . For a precise definition of this concept see example 7.2.10.

Now let Y1 = Spec(R/I1) and Y2 = Spec(R/I2) be closed subschemes of X . We define
the intersection scheme Y1∩Y2 in X to be Y1∩Y2 = SpecR/(I1 + I2).

For example, let X = SpecC[x1,x2], Y1 = SpecC[x1,x2]/(x2), Y2 = SpecC[x1,x2]/(x2−
x2

1+a2) for some a ∈C. Then the intersection scheme Y1∩Y2 is SpecC[x1]/((x1−a)(x1+
a)). For a 6= 0 we haveC[x1]/((x1−a)(x1+a))∼=C[x1]/(x1−a)×C[x1]/(x1+a)∼=C×C,
so Y1 ∩Y2 is just the disjoint union of the two points (a,0) and (−a,0) in C2. For a = 0
however we have Y1 ∩Y2 = SpecC[x1]/(x2

1), which has only one point (0,0). But in all
cases the ring C[x1]/((x1−a)(x1 +a)) has dimension 2 as a vector space over C. We say
that Y1∩Y2 is a “scheme of length 2”, which consists either of two distinct points of length
1 each, or of one point of length (i. e. multiplicity) 2.

Note also that there is always a unique line in A2 through Y1∩Y2, even in the case a = 0
where the scheme has only one geometric point. This is because the scheme Y1 ∩Y2 =
SpecC[x1,x2]/(x2,(x1−a)(x1 +a)) is a subscheme of the line L = SpecC[x1,x2]/(c1x1 +
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c2x2) if and only if (c1x1 + c2x2)⊂ (x2,(x1−a)(x1 +a)), which is the case only if c1 = 0.
In particular, the x1-axis is the only line in A2 that contains SpecC[x1,x2]/(x2,x2

1). One
can therefore think of this scheme as “the origin together with a tangent direction along the
x1-axis”.

x
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Example 5.2.4. Again let Y1 = Spec(R/I1) and Y2 = Spec(R/I2) be closed subschemes
of of the affine scheme X = SpecR. Note that for affine varieties the ideal of the union
of two closed subsets equals the intersection of their ideals (see exercise 1.4.1 (i)). So
scheme-theoretically we just define the union Y1∪Y2 to be SpecR/(I1∩ I2).

The following lemma is the scheme-theoretic analogue of lemma 2.3.16.

Lemma 5.2.5. Let X = SpecR be an affine scheme, and let f ∈ R. Then the distinguished
open subset X f is the affine scheme SpecR f .

Proof. Note that both X f and SpecR f have the description {p ∈ X ; f /∈ p}. So it only
remains to be checked that the structure sheaves on X f and SpecR f agree. Now let g ∈ R
and consider the distinguished open subset X f g = (SpecR f )g. By proposition 5.1.12 (ii)
we have

OX f (X f g) = OX (X f g) = R f g

and OSpecR f ((SpecR f )g) = (R f )g = R f g.

So the rings of regular functions are the same for X f and SpecR f on every distinguished
open subset. But every open subset is the intersection of such distinguished opens, so the
rings of regular functions must be the same on every open subset. �

5.3. Schemes and prevarieties. Having defined affine schemes and their morphisms, we
can now define schemes as objects that look locally like affine schemes — this is in parallel
to the definition 2.4.1 of prevarieties.

Definition 5.3.1. A scheme is a locally ringed space (X ,OX ) that can be covered by open
subsets Ui ⊂ X such that (Ui,OX |Ui) is isomorphic to an affine scheme SpecRi for all i. A
morphism of schemes is a morphism as locally ringed spaces.

Remark 5.3.2. From the point of view of prevarieties, it would seem more natural to call
the objects defined above preschemes, and then say that a scheme is a prescheme having
the “Hausdorff” property, i. e. a prescheme with closed diagonal (see definition 2.5.1 and
lemma 2.5.3). This is in fact the terminology of [M1], but nowadays everyone seems to
adopt the definition that we gave above, and then say that a scheme having the “Hausdorff
property” is a separated scheme.

From our definitions we see that prevarieties are in a sense special cases of schemes
— if we have an affine variety X = Z(I) ⊂ An with I ⊂ k[x1, . . . ,xn] an ideal, the scheme
SpecA(X) corresponds to X (where A(X) = k[x1, . . . ,xn] is the coordinate ring of X); and
any glueing along isomorphic open subsets that can be done in the category of prevarieties
can be done equally well for the corresponding schemes. Hence we would like to say
that every prevariety is a scheme. In the strict sense of the word this is not quite true
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however, because the topological space of a scheme contains a point for every irreducible
closed subset, whereas the topological space of a prevariety consists only of the geometric
points in the classical sense (i. e. the closed points). But of course there is a natural way to
consider every prevariety as a scheme, by throwing in additional generic points for every
irreducible closed subset. We give the precise statement and leave its proof as an exercise:

Proposition 5.3.3. Let k be an algebraically closed field, and let X be a prevariety over
k. Let Xsch be the space of all non-empty closed irreducible subsets of X. Then Xsch is a
scheme in a natural way. The open subsets of X correspond bijectively to the open subsets
of Xsch, and for every open subset U of X (which can then also be considered as an open
subset of Xsch) we have OXsch(U) = OX (U). Every morphism X → Y of prevarieties over k
extends to a morphism Xsch→ Ysch of schemes in a natural way.

Let us now investigate the properties of schemes that arise from prevarieties in this way.
As we have mentioned already, the glueing of schemes from affine schemes is exactly the
same as that of prevarieties from varieties. Hence the special properties of schemes that
come from prevarieties can already be seen on the level of affine schemes. We have also
seen above that in an affine scheme SpecR the ring R corresponds to what is the coordinate
ring A(X) of an affine variety. Moreover we know by remark 2.3.14 that the coordinate
ring of an affine variety is a finitely generated k-algebra that is a domain. So we have to
write down conditions on a scheme that reflect the property that its local patches SpecR
are not made from arbitrary rings, but rather from finitely generated k-algebras that are
domains.

Definition 5.3.4. Let Y be a scheme. A scheme over Y is a scheme X together with a
morphism X → Y . A morphism of schemes X1, X2 over Y is a morphism of schemes
X1→ X2 such that

X1 //

��

X2

��
Y

commutes. If R is a ring, a scheme over R is a scheme over SpecR.
A scheme X over Y is said to be of finite type over Y if there is a covering of Y by open

affine subsets Vi = SpecBi such that f−1(Vi) can be covered by finitely many open affines
Ui, j = SpecAi, j, where each Ai, j is a finitely generated Bi-algebra. In particular, a scheme
X over a field k is of finite type over k if it can be covered by finitely many open affines
Ui = SpecAi, where each Ai is a finitely generated k-algebra.

A scheme X is called reduced if the rings OX (U) have no nilpotent elements for all
open subsets U ⊂ X .

Now it is obvious what these conditions mean for an affine scheme SpecR:

• SpecR is a scheme over k if and only if we are given a morphism k→ R, i. e. if R
is a k-algebra. Moreover, a morphism SpecR→ SpecS is a morphism of schemes
over k if and only if the corresponding ring homomorphism S→ R is a morphism
of k-algebras.

• SpecR is of finite type over k if and only if R is a finitely generated k-algebra.
• SpecR is reduced and irreducible if and only if f · g = 0 in R implies f = 0 or

g= 0, i. e. if and only if R is a domain. To see this, assume that f ·g= 0, but f 6= 0
and g 6= 0. If f and g are the same up to a power, then R is not nilpotent-free,
so SpecR is not reduced. Otherwise, we get a decomposition of SpecR into two
proper closed subsets Z( f ) and Z(g), so SpecR is not irreducible.
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As glueing affine patches is allowed for varieties in the same way as for schemes, we get
the following result:

Proposition 5.3.5. Let k be an algebraically closed field. There is a one-to-one correspon-
dence between prevarieties over k (and their morphisms) and reduced, irreducible schemes
of finite type over k (and their morphisms).

Hence, from now on a prevariety over k will mean a reduced and irreducible scheme of
finite type over k.

Remark 5.3.6. As in the case of prevarieties, schemes and morphisms of schemes can
(almost by definition) be glued together. As for glueing schemes lemma 2.4.7 holds in
the same way (except that one may now also glue infinitely many patches Xi, and the
isomorphic open subsets Ui, j ⊂ Xi and U j,i ⊂ X j can be empty, which might give rise to
disconnected schemes). A morphism from the glued scheme X to some scheme Y can then
be given by giving morphisms Xi→ Y that are compatible on the overlaps in the obvious
sense.

The following generalization of proposition 5.2.2 is an application of these glueing
techniques.

Proposition 5.3.7. Let X be any scheme, and let Y = SpecR be an affine scheme. Then
there is a one-to-one correspondence between morphisms X→Y and ring homomorphisms
R = OY (Y )→ OX (X).

Proof. Let {Ui} be an open affine cover of X , and let {Ui, j,k} be an open affine cover
of Ui ∩U j. Then by remark 5.3.6 giving a morphism f : X → Y is the same as giving
morphisms fi : Ui→ Y such that fi and f j agree on Ui∩U j, i. e. such that fi|Ui, j,k = f j|Ui, j,k

for all i, j,k. But as the Ui and Ui, j,k are affine, by proposition 5.2.2 the morphisms fi
and fi|Ui, j,k correspond exactly to ring homomorphisms OY (Y )→ OUi(Ui) = OX (Ui) and
OY (Y )→OUi, j,k(Ui, j,k) =OX (Ui, j,k), respectively. Hence a morphism f : X→Y is the same
as a collection of ring homomorphisms f ∗i : OY (Y )→ OX (Ui) such that the compositions
ρUi,Ui, j,k ◦ f ∗i : OY (Y ) → OX (Ui, j,k) and ρU j ,Ui, j,k ◦ f ∗j : OY (Y ) → OX (Ui, j,k) agree for all
i, j,k. But by the sheaf axiom for OX , this is exactly the data of a ring homomorphism
OY (Y )→ OX (X). �

Remark 5.3.8. By the above proposition, every scheme X admits a unique morphism to
SpecZ, determined by the natural map Z→ OX (X). More explicitly, on points this map
is given by associating to every point P ∈ X the characteristic of its residue field k(P). In
particular, if X is a scheme over C (or any ground field of characteristic 0 for that matter)
then the morphism X → SpecZ maps every point to the zero ideal (0).

5.4. Fiber products. In example 2.3.9 and exercise 2.6.13 we defined the product X ×Y
for two given prevarieties X and Y by giving the product set X ×Y a suitable structure
of a ringed space. The idea of this construction was that the coordinate ring A(X ×Y )
should be A(X)⊗A(Y ) if X and Y are affine (see remark 2.3.13), and then to globalize this
construction by glueing techniques. The characteristic property of the product X ×Y was
that giving a morphism to it is equivalent to giving a morphism to X and a morphism to Y
(see lemma 2.3.11 and exercise 2.6.13).

Now we want to do the same thing for schemes. More generally, if X and Y are two
schemes over a third scheme S (i. e. if morphisms f : X → S and g : Y → S are given)
we want to construct the so-called fiber product X ×S Y , that should naı̈vely correspond to
the points (x,y) ∈ X ×Y such that f (x) = g(y). As in the case of prevarieties this will be
done by first constructing this product in the affine case, and then glueing these products
together to obtain the fiber product of general schemes. We start by defining fiber products
using the characteristic property mentioned above.
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Definition 5.4.1. Let f : X → S and g : Y → S be morphisms of schemes. We define the
fiber product X×S Y to be a scheme together with “projection” morphisms πX : X×S Y →
X and πY : X ×S Y → Y such that the square in the following diagram commutes, and
such that for any scheme Z and morphisms Z → X and Z → Y making a commutative
diagram with f and g there is a unique morphism Z→ X ×S Y making the whole diagram
commutative:

Z

%%""

��

X×S Y
πY

//

πX

��

Y

g
��

X
f
// S

Let us first show that the fiber product is uniquely determined by this property:

Lemma 5.4.2. The fiber product X ×S Y is unique if it exists. (In other words, if F1 and
F2 are two fiber products satisfying the above characteristic property, then F1 and F2 are
canonically isomorphic.)

Proof. Let F1 and F2 be two fiber products satisfying the characteristic property of the
definition. In particular, F2 comes together with morphisms to X and Y . As F1 is a fiber
product, we get a morphism ϕ : F2→ F1

F2

##
ϕ

��

��

F1 //

��

Y

g
��

X
f
// S

so that this diagram commutes. By symmetry, we get a morphism ψ : F1→ F2 as well. The
diagram

F1

##
ϕ◦ψ
��

��

F1 //

��

Y

g
��

X
f
// S

is then commutative by construction. But the same diagram is commutative too if we
replace ϕ ◦ψ by the identity morphism. So by the uniqueness part of the definition of a
fiber product it follows that ϕ ◦ψ is the identity. Of course ψ ◦ϕ is then also the identity
by symmetry. So F1 and F2 are canonically isomorphic. �

Remark 5.4.3. The following two properties of fiber products are easily seen from the
definition:
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(i) If S ⊂U is an open subset, then X ×S Y = X ×U Y (morphisms from any Z to X
and Y commuting with f and g are then the same regardless of whether the base
scheme is S or U).

(ii) If U ⊂ X and V ⊂ Y are open subsets, then the fiber product

U×S V = π
−1
X (U)∩π

−1
Y (V )⊂ X×S Y

is an open subset of the total fiber product X×S Y .

Now we want to show that fiber products always exist. We have already mentioned
that in the affine case, fiber products should correspond to tensor products in commutative
algebra. So let us define the corresponding tensor products first.

Definition 5.4.4. Let R be a ring, and let M and N be R-modules. For every m ∈ M and
n ∈ N let m⊗ n be a formal symbol. We let F be the “free R-module generated by the
symbols m⊗n”, i. e. F is the R-module of formal finite linear combinations

F =
{
∑

i
ri(mi⊗ni) ; ri ∈ R,mi ∈M,ni ∈ N

}
.

Now we define the tensor product M⊗R N of M and N over R to be the R-module F
modulo the relations

(m1 +m2)⊗n = m1⊗n+m2⊗n,

m⊗ (n1 +n2) = m⊗n1 +m⊗n2,

r(m⊗n) = (rm)⊗n = m⊗ (rn)

for all m,mi ∈M, n,ni ∈ N, and r ∈ R. Obviously, M⊗R N is an R-module as well.

Example 5.4.5.

(i) Let k be a field. Then k[x]⊗k k[y] = k[x,y], where the isomorphism is given by

k[x]⊗k k[y]→ k[x,y], f (x)⊗g(y) 7→ f (x) ·g(y)

and

k[x,y]→ k[x]⊗k k[y], ∑
i, j

ai, jxiy j 7→∑
i, j

ai, j(xi⊗ y j).

(ii) Let R be a ring, and let I1 and I2 be ideals. Then R/I1 and R/I2 are R-modules,
and we have R/I1⊗R R/I2 = R/(I1 + I2). In fact, the isomorphism is given by

R/I1⊗R R/I2→ R/(I1 + I2), r1⊗ r2 7→ r1 · r2

and

R/(I1 + I2)→ R/I1⊗R R/I2, r 7→ r(1⊗1) = (r⊗1) = (1⊗ r).

(iii) If M is any R-module, then M⊗R R = R⊗R M = M.

Remark 5.4.6. It is easy to see that the tensor product of modules satisfies the following
characteristic property (which is exactly the same as that of definition 5.4.1, just with all
the arrows reversed):

Let R, M, and N be rings, and assume that we are given ring homomorphisms f : R→M
and g : R→ N (that make M and N into R-modules). Then for every ring A and homomor-
phisms M→ A and N→ A making a commutative diagram with f and g there is a unique
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ring homomorphism M⊗R N→ A making the whole diagram commutative:

A

M⊗R N

bb

Noo

ll

M

OO

UU

R
f

oo

g

OO

where M→M⊗R N and N→M⊗R N are the obvious maps m 7→m⊗1 and n 7→ 1⊗n. In
fact, if a : M→ A and b : N → A are the two ring homomorphisms, then M⊗R N → A is
given by m⊗n 7→ a(m) ·b(n).

Using the tensor product of modules, we can now construct the fiber product of schemes.

Lemma 5.4.7. Let f : X→ S and g : Y → S be morphisms of schemes. Then there is a fiber
product X×S Y .

Proof. First assume that X , Y , and S are affine schemes, so X = SpecM, Y = SpecN, and
S = SpecR. The morphisms X → S and Y → S make M and N into R-modules by propo-
sition 5.2.2. We claim that Spec(M⊗R N) is the fiber product X ×S Y . Indeed, giving a
morphism Z→ Spec(M⊗R N) is the same as giving a homomorphism M⊗R N→OZ(Z) by
proposition 5.3.7. By remark 5.4.6, this is the same as giving homomorphisms M→OZ(Z)
and N → OZ(Z) that induce the same homomorphism on R, which again by proposition
5.3.7 is the same as giving morphisms Z→ X and Z→ Y that give rise to the same mor-
phism from Z→ S. Hence Spec(M⊗R N) is the desired product.

Now let X , Y and S be general schemes. Cover S by open affines Si, then cover f−1(Si)
and g−1(Si) by open affines Xi, j and Yi,k, respectively. Consider the fiber products Xi, j×Si

Yi,k that exist by the above tensor product construction. Note that by remark 5.4.3 (i) these
will then be fiber products over S as well. Now if we have another such product Xi′, j′ ×S
Yi′,k′ , both of them will contain the (unique) fiber product (Xi, j ∩Xi′, j′)×S (Yi,k ∩Yi′,k′) as
an open subset by remark 5.4.3 (ii), hence they can be glued along these isomorphic open
subsets. It is obvious that the final scheme X×S Y obtained by glueing the patches satisfies
the defining property of a fiber product. �

Example 5.4.8. Let X and Y be prevarieties over a field k. Then the scheme-theoretic
fiber product X×Speck Y is just the product prevariety X×Y considered earlier. In fact, this
follows from remark 2.3.13 in the affine case, and the glueing is done in the same way for
prevarieties and schemes.

Consequently, we will still use the notation X×Y to denote the fiber product X×Speck Y
over Speck. Note however that for general schemes X and Y one also often defines X ×Y
to be X ×SpecZY (see remark 5.3.8). For schemes over k, X ×Speck Y and X ×SpecZY will
in general be different (see exercise 5.6.10), so one has to make clear what is meant by the
notation X×Y .

Example 5.4.9. Let Y1 → X and Y2 → X be morphisms of schemes that are “inclusion
morphisms”, i. e. the Yi might be open subsets of X , or closed subschemes as in example
5.2.3. Then Then Y1×X Y2 is defined to be the intersection scheme of Y1 and Y2 in X and is
usually written Y1∩Y2. For example, if X = SpecR, Y1 = SpecR/I1, and Y2 = SpecR/I2 as
in example 5.2.3, then Y1 ∩Y2 is SpecR/(I1 + I2), which is consistent with example 5.4.5
(ii).
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Example 5.4.10. Let Y be a scheme, and let P ∈ Y be a point. Let k = k(P) be the residue
field of P. Then there is a natural morphism Speck→ Y that maps the unique point of
Speck to P and pulls back a section ϕ ∈ OY (U) (with P ∈U) to the element in k(P) deter-
mined by the composition of maps OY (U)→ OY,P→ k(P).

Now let X →Y be a morphism. Then the fiber product X×Y Speck (with the morphism
Speck→Y constructed above) is called the inverse image or fiber of X→Y over the point
P ∈ Y (hence the name “fiber product”).

As an example, consider the morphism X = A1
C→ Y = A1

C given by x 7→ y = x2. Over
the point 0∈Y the fiber is then Spec(C[x]⊗C[y]C), where the maps are given by y∈C[y] 7→
x2 ∈C[x] and y ∈C[y] 7→ 0 ∈C. This tensor product is equal to C[x]/(x2), so the fiber over
0 is the double point SpecC[x]/(x2); it is a non-reduced scheme and therefore different
from the set-theoretic inverse image of 0 as defined earlier for prevarieties.

Y
00

X

Example 5.4.11. Continuing the above example, one might want to think of a morphism
X → Y as some sort of fibered object, giving a scheme X ×Y Speck(P) for every point
P ∈ Y . (This is analogous to fibered objects in topology.) Now let f : Y ′ → Y be any
morphism. Then the fiber product X ′ = X ×Y Y ′ has a natural projection morphism to Y ′,
and its fiber over a point P ∈ Y ′ is equal to the fiber of X → Y over the point P ∈ Y . This
is usually called a base extension of the morphism X → Y . (It corresponds to e. g. the
pull-back of a vector bundle in topology.)

Y

XX

Y´

´

5.5. Projective schemes. We know that projective varieties are a special important class
of varieties that are not affine, but still can be described globally without using glueing
techniques. They arise from looking at homogeneous ideals, i. e. graded coordinate rings.
A completely analogous construction exists in the category of schemes, starting with a
graded ring and looking at homogeneous ideals in it.

Definition 5.5.1. Let R be a graded ring (think of the homogeneous coordinate ring S(X)

of a projective variety X), i. e. a ring together with a decomposition R =
⊕

d≥0 R(d) into
abelian groups such that R(d) ·R(e) ⊂ R(d+e). An element of R(d) is called homogeneous of
degree d. An ideal I ⊂ R is called homogeneous if it can be generated by homogeneous
elements. Let R+ be the ideal

⊕
d>0 R(d).

We define the set ProjR to be the set of all homogeneous prime ideals p⊂R with R+ 6⊂ p
(compare this to theorem 3.2.6; R+ corresponds to the “irrelevant ideal” (x0, . . . ,xn) ⊂
k[x0, . . . ,xn]). If I ⊂ R is a homogeneous ideal, we define Z(I) = {p ∈ ProjR ; p⊃ I} to be
the zero locus of I.
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The proof of the following lemma is the same as in the case of affine or projective
varieties:

Lemma 5.5.2. Let R be a graded ring.

(i) If {Ii} is a family of homogeneous ideals of R then
⋂

i Z(Ii) = Z(∑i Ii)⊂ ProjR.
(ii) If I1, I2 ⊂ R are homogeneous ideals then Z(I1)∪Z(I2) = Z(I1I2)⊂ ProjR.

In particular, we can define a topology on ProjR by taking the subsets of the form Z(I)
for some I to be the closed sets. Of course, the next thing to do is to define a structure of
(locally) ringed space on ProjR. This is in complete analogy to the affine case.

Next we have to define the rings of regular functions on ProjR. This is a mixture of the
case of affine schemes and projective varieties. We will more or less copy definition 5.1.11
for affine schemes, keeping in mind that in the projective (i. e. homogeneous) case our
functions should locally be quotients of homogeneous elements of R of the same degree.

Definition 5.5.3. Let R be a graded ring, and let X = ProjR. For every p ∈ ProjR, let

R(p) =

{
f
g

; g /∈ p and f ,g ∈ R(d) for some d
}

be the ring of degree zero elements of the localization of R with respect to the multiplicative
system of all homogeneous elements of R that are not in p. (Of course, this will correspond
to the local ring at the point p, see proposition 5.5.4 below.)

Now for every open subset U ⊂ X we define OX (U) to be

OX (U) := {ϕ = (ϕp)p∈U with ϕp ∈ R(p) for all p ∈U

such that “ϕ is locally of the form f
g for f ,g ∈ R(d) for some d”}

= {ϕ = (ϕp)p∈U with ϕp ∈ R(p) for all p ∈U

such that for every p ∈U there is a neighborhood V in U and f ,g ∈ R(d)

for some d with g /∈ q and ϕq =
f
g ∈ R(q) for all q ∈V .}

It is clear from the local nature of the definition of OX (U) that OX is a sheaf.

Proposition 5.5.4. Let R be a graded ring.

(i) For every p ∈ ProjR the stalk OX ,p is isomorphic to the local ring R(p).
(ii) For every homogeneous f ∈ R+, let X f ⊂ X be the distinguished open subset

X f := X\Z( f ) = {p ∈ ProjR ; f /∈ p}.

These open sets cover X, and for each such open set we have an isomorphism of
locally ringed spaces (X f ,OX |X f )

∼= SpecR( f ), where

R( f ) =

{
g
f r ; g ∈ R(r·deg f )

}
is the ring of elements of degree zero in the localized ring R f .

In particular, ProjR is a scheme.

Proof. (i): There is a well-defined homomorphism

OX ,p→ R(p), (U,ϕ) 7→ ϕ(p).

The proof that this is an isomorphism is the same as in the affine case (see proposition
5.1.12 (i).

(ii): Let p ∈ X be a point. By definition, R+ 6⊂ p, so there is a f ∈ R+ with f /∈ p. But
then p ∈ X f ; hence the open subsets of the form X f cover X .
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Now fix f ∈ R+; we will define an isomorphism ψ : X f → SpecR( f ). For any homoge-
neous ideal I ⊂ R, set ψ(I) := (I R f )∩R( f ). In particular, restricting this to prime ideals
gives a map of sets X f → SpecR( f ), which is easily seen to be a bijection. Moreover,
if I ⊂ R is any ideal then ψ(p) ⊃ ψ(I) if and only if p ⊃ I, so ψ : X f → SpecR( f ) is a
homeomorphism. Note also that for p ∈ X f the local rings

OProjR,p = R(p) =
{g

h
; g and h homogeneous of the same degree, h /∈ p

}
and

OSpecR( f ),ψ(p)
= (R( f ))ψ(p)

=

{
g/ f r

h/ f s ; g and h homogeneous of degrees r ·deg f and s ·deg f , h /∈ p

}
are isomorphic for f /∈ p. This gives rise to isomorphisms between the rings of regular
functions OX f (U) and OSpecR( f )(U) (as they are by definition made up of the local rings).

�

Example 5.5.5. If k is an algebraically closed field, then by construction Projk[x0, . . . ,xn]
is the scheme that corresponds to projective n-space Pn

k over k. More generally, the scheme
associated to a projective variety X is just ProjS(X), where S(X) = k[x0, . . . ,xn]/I(X) is
the homogeneous coordinate ring of X .

Of course, scheme-theoretically we can now also consider schemes that are of the form
Projk[x0, . . . ,xn]/I where I is any homogeneous ideal of the polynomial ring. This allows
projective “subschemes of Pn” that are not necessarily irreducible or reduced. Let us turn
this into a definition.

Definition 5.5.6. Let k be an algebraically closed field. A projective subscheme of Pn
k is

a scheme of the form Projk[x0, . . . ,xn]/I for some homogeneous ideal I.

As mentioned above, every projective variety is a projective subscheme of Pn. However,
the category of projective subschemes of Pn is bigger because it contains schemes that are
reducible (e. g. the union of the coordinate axes in the plane Projk[x0,x1,x2]/(x1x2)) or
non-reduced (e. g. the double point Projk[x0,x1]/(x2

1)).
As in the case of projective varieties, we now want to make precise the relation be-

tween projective subschemes of Pn and homogeneous ideals in k[x0, . . . ,xn]. Note that the
existence of the irrelevant ideal (x0, . . . ,xn) implies that this correspondence is not one-to-
one: the example Projk[x0, . . . ,xn]/( f ) = Projk[x0, . . . ,xn]/( f x0, . . . , f xn) of remark 3.1.11
works for schemes as well.

Definition 5.5.7. Let I ⊂ S = k[x0, . . . ,xn] be a homogeneous ideal. The saturation Ī of I
is defined to be

Ī = {s ∈ S ; xm
i · s ∈ I for some m and all i}.

Example 5.5.8. If I = ( f x0, . . . , f xn) then Ī = ( f ). So in this case the saturation removes
the ambiguity of the ideal associated to a projective subscheme of Pn. We will now show
that this is true in general:

Lemma 5.5.9. Let I,J ⊂ S = k[x0, . . . ,xn] be homogeneous ideals. Then

(i) Ī is a homogeneous ideal.
(ii) ProjS/I = ProjS/Ī.

(iii) ProjS/Ī = ProjS/J̄ if and only if Ī = J̄.
(iv) I(d) = Ī(d) for d � 0. Here and in the following we say that a statement holds

for d � 0 if and only if it holds for large enough d, i. e. if and only if there is a
number D≥ 0 such that the statement holds for all d ≥ D.
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Proof. (i): Let s∈ Ī any (possibly non-homogeneous) element. Then by definition xm
i ·s∈ I

for some m and all i. As I is homogeneous, it follows that the graded pieces xm
i · s(d) are

in I as well for all d. Therefore, by definition, it follows that s(d) ∈ Ī for all i. Hence Ī is
homogeneous.

(ii): As the open affines Ui := {xi 6= 0} ⊂ Pn cover Pn, it suffices to show that Ui ∩
ProjS/I =Ui∩ProjS/Ī. But this is obvious as I|xi=1 = Īxi=1.

(iii): The direction “⇒” is trivial. For “⇐” it suffices to show that the saturated ideal
Ī can be recovered from the projective scheme X = ProjS/Ī alone. Thinking of projective
varieties, Ī should just be “the ideal I(X) of X”, i. e. the ideal of functions vanishing on X .
Now the elements of S do not define functions on X , but after setting one xi equal to 1 they
do define functions on X ∩Ui. Hence we can recover Ī from X as

Ī = {s ∈ S ; s|xi=1 = 0 on X ∩Ui for all i}
(note that the right hand side depends only on the scheme X and not on its representation
as ProjS/I for a certain I.

(iv): The inclusion I(d) ⊂ Ī(d) is obvious (for all d) as I ⊂ Ī. So we only have to show
that Ī(d) ⊂ I(d) for d� 0.

First of all note that Ī is finitely generated; let f1, . . . , fm be (homogeneous) generators.
Let D1 be the maximum degree of the fi. Next, by definition of Ī there is a number D2 such
that xd

j · fi ∈ I for all 0≤ j ≤ n, 1≤ i≤ m, and d ≥ D2. Set D = D1 +(n+1)D2.

Now let f ∈ Ī(d) be any homogeneous element in the saturation of degree d ≥ D. We
can write f as ∑i ai fi, with the ai homogeneous of degree at least (n+1)D2. This degree
bound implies that every monomial of ai contains at least one x j with a power of at least
D2. But then this power multiplied with fi lies in I by construction. So it follows that
ai fi ∈ I for all i, and therefore f ∈ I(d). �

Definition 5.5.10. If X is a projective subscheme of Pn, we let I(X) be the saturation
of any ideal I ⊂ k[x0, . . . ,xn] such that X = Projk[x0, . . . ,xn]/I. (This is well-defined by
lemma 5.5.9 (iii) and generalizes the notion of the ideal of a projective variety to projective
subschemes of Pn.) We define S(X) to be k[x0, . . . ,xn]/I(X). As usual, we call I(X) the
ideal of X and S(X) the homogeneous coordinate ring of X .

Corollary 5.5.11. There is a one-to-one correspondence between projective subschemes
of Pn

k and saturated homogeneous ideals in k[x0, . . . ,xn], given by X 7→ I(X) and I 7→
Projk[x0, . . . ,xn]/I.

5.6. Exercises.

Exercise 5.6.1. Find all closed points of the real affine plane A2
R. What are their residue

fields?

Exercise 5.6.2. Let f (x,y) = y2− x2− x3. Describe the affine scheme X = SpecR/( f )
set-theoretically for the following rings R:

(i) R = C[x,y] (the standard polynomial ring),
(ii) R = C[x,y](x,y) (the localization of the polynomial ring at the origin),

(iii) R = C[[x,y]] (the ring of formal power series).

Interpret the results geometrically. In which of the three cases is X irreducible?

Exercise 5.6.3. For each of these cases below give an example of an affine scheme X with
that property, or prove that such an X does not exist:

(i) X has infinitely many points, and dimX = 0.
(ii) X has exactly one point, and dimX = 1.

(iii) X has exactly two points, and dimX = 1.
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(iv) X = SpecR with R⊂ C[x], and dimX = 2.

Exercise 5.6.4. Let X be a scheme, and let Y be an irreducible closed subset of X . If ηY
is the generic point of Y , we write OX ,Y for the stalk OX ,ηY . Show that OX ,Y is “the ring
of rational functions on X that are regular at a general point of Y ”, i. e. it is isomorphic to
the ring of equivalence classes of pairs (U,ϕ), where U ⊂ X is open with U ∩Y 6= /0 and
ϕ ∈ OX (U), and where two such pairs (U,ϕ) and (U ′,ϕ′) are called equivalent if there is
an open subset V ⊂U ∩U ′ with V ∩Y 6= /0 such that ϕ|V = ϕ|V ′ .

(In particular, if X is a scheme that is a variety, then OX ,ηX is the function field of X
as defined earlier. Hence the stalks of the structure sheaf of a scheme generalize both the
concepts of the local rings and the function field of a variety.)

Exercise 5.6.5. Let X be a scheme of finite type over an algebraically closed field k. Show
that the closed points of X are dense in every closed subset of X . Conversely, give an
example of a scheme X such that the closed points of X are not dense in X .

Exercise 5.6.6. Let X = {(x,y,z) ∈ C3 ; xy = xz = yz = 0} be the union of the three coor-
dinate lines in C3. Let Y = {(x,y) ∈ C2 ; xy(x− y) = 0} be the union of three concurrent
lines in C2.

Are X and Y isomorphic as schemes? (Hint: Define and compute the tangent spaces of
X and Y at the origin.)

Exercise 5.6.7. Let X ⊂ P3 the complex cubic surface

X = {(x0 : x1 : x2 : x3) ; x3
0 = x1x2x3}.

(i) Show that X is singular.
(ii) Let M⊂G(1,3) be the subset of the Grassmannian of lines in P3 that corresponds

to all lines in P3 that lie in X . By writing down explicit equations for M, show
that M has the structure of a scheme in a natural way.

(iii) Show that the scheme M contains exactly 3 points, but that it has length 27 over
C, i. e. it is of the form M = SpecR with R a 27-dimensional C-algebra. Hence in
a certain sense we can say that even the singular cubic surface X contains exactly
27 lines, if we count the lines with their correct multiplicities.

Exercise 5.6.8. Let k be an algebraically closed field. An n-fold point (over k) is a scheme
of the form X = SpecR such that X has only one point and R is a k-algebra of vector space
dimension n over k (i. e. X has length n). Show that every double point is isomorphic
to Speck[x]/(x2). On the other hand, find two non-isomorphic triple points over k, and
describe them geometrically.

Exercise 5.6.9. Show that for a scheme X the following are equivalent:

(i) X is reduced, i. e. for every open subset U ⊂ X the ring OX (U) has no nilpotent
elements.

(ii) For any open subset Ui of an open affine cover {Ui} of X , the ring OX (Ui) has no
nilpotent elements.

(iii) For every point P ∈ X the local ring OX ,P has no nilpotent elements.

Exercise 5.6.10. Show that A2
C �A1

C×SpecZA1
C.

Exercise 5.6.11. Let X = Z(x2
1x2 + x1x2

2x3) ⊂ A3
C, and denote by πi the projection to the

i-th coordinate. Compute the scheme-theoretic fibers Xxi=a = π
−1
i (a) for all a ∈ C, and

determine the set of isomorphism classes of these schemes.

Exercise 5.6.12. Let X be a prevariety over an algebraically closed field k, and let P∈ X be
a (closed) point of X . Let D = Speck[x]/(x2) be the “double point”. Show that the tangent
space TX ,P to X at P can be canonically identified with the set of morphisms D→ X that
map the unique point of D to P.
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(In particular, this gives the set of morphisms D→ X with fixed image point P ∈ X the
structure of a vector space over k. Can you see directly how to add two such morphisms,
and how to multiply them with a scalar in k ?)

Exercise 5.6.13. Let X be an affine variety, let Y be a closed subscheme of X defined by
the ideal I ⊂ A(X), and let X̃ be the blow-up of X at I. Show that:

(i) X̃ = Proj(
⊕

d≥0 Id), where we set I0 := A(X).
(ii) The projection map X̃ → X is the morphism induced by the ring homomorphism

I0→
⊕

d≥0 Id .
(iii) The exceptional divisor of the blow-up, i. e. the fiber Y ×X X̃ of the blow-up X̃ →

X over Y , is isomorphic to Proj(
⊕

d≥0 Id/Id+1).

Exercise 5.6.14. Let X = SpecR and Y = SpecS be affine schemes. Show that the disjoint
union X tY is an affine scheme with

X tY = Spec(R×S),

where as usual R× S = {(r,s) ; r ∈ R,s ∈ S} (with addition and multiplication defined
componentwise).


